toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Conard, T.; de Witte, H.; Loo, R.; Verheyen, P.; Vandervorst, W.; Caymax, M.; Gijbels, R.
  Title XPS and TOFSIMS studies of shallow Si/Si1-xGex/Si layers Type A1 Journal article
  Year 1999 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
  Volume 343/344 Issue Pages 583-586
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam : Elsevier Editor
  Language Wos 000081103100149 Publication Date 2002-07-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.879 Times cited 1 Open Access
  Notes (down) Approved Most recent IF: 1.879; 1999 IF: 1.101
  Call Number UA @ lucian @ c:irua:24934 Serial 3926
Permanent link to this record
 

 
Author Afanasov, I.M.; Van Tendeloo, G.
  Title Zirconia-modified exfoliated graphite Type A1 Journal article
  Year 2011 Publication Inorganic materials Abbreviated Journal Inorg Mater+
  Volume 47 Issue 6 Pages 603-608
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Zirconia has been incorporated into exfoliated graphite (EG) through the anodic polarization in the natural graphite-ZrO(NO3)2-HNO3-H2O system, followed by flash heating. The thermal properties of the oxidized graphites employed as precursors to EG have been studied by thermogravimetry in combination with differential scanning calorimetry, and the distribution of ZrO2 particles in the EG has been assessed by scanning and transmission electron microscopy. Conditions are described for the preparation of EG with bulk densities in the range 1.34.7 g/l and ZrO2 contents in the range 434 wt %.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000291698100008 Publication Date 2011-05-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0020-1685;1608-3172; ISBN Additional Links UA library record; WoS full record
  Impact Factor 0.62 Times cited Open Access
  Notes (down) Approved Most recent IF: 0.62; 2011 IF: 0.414
  Call Number UA @ lucian @ c:irua:90447 Serial 3933
Permanent link to this record
 

 
Author Seftel, E.M.; Popovici, E.; Mertens, M.; de Witte, K.; Van Tendeloo, G.; Cool, P.; Vansant, E.F.
  Title Zn-Al layered double hydroxides: synthesis, characterization and photocatalytic application Type A1 Journal article
  Year 2008 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
  Volume 113 Issue 1/3 Pages 296-304
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000257362100035 Publication Date 2007-12-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.615 Times cited 154 Open Access
  Notes (down) Approved Most recent IF: 3.615; 2008 IF: 2.555
  Call Number UA @ lucian @ c:irua:68281 Serial 3934
Permanent link to this record
 

 
Author Vannier, R.-N.; Théry, O.; Kinowski, C.; Huvé, M.; Van Tendeloo, G.; Suard, E.; Abraham, F.
  Title Zr substituted bismuth uranate Type A1 Journal article
  Year 1999 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
  Volume 9 Issue Pages 435-443
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000078572900019 Publication Date 2002-07-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 4 Open Access
  Notes (down) Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:29714 Serial 3937
Permanent link to this record
 

 
Author Verreck, D.; Van de Put, M.L.; Verhulst, A.S.; Sorée, B.; Magnus, W.; Dabral, A.; Thean, A.; Groeseneken, G.
  Title 15-band spectral envelope function formalism applied to broken gap tunnel field-effect transistors Type P1 Proceeding
  Year 2015 Publication 18th International Workshop On Computational Electronics (iwce 2015) Abbreviated Journal
  Volume Issue Pages
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)
  Abstract A carefully chosen heterostructure can significantly boost the performance of tunnel field-effect transistors (TFET). Modelling of these hetero-TFETs requires a quantum mechanical (QM) approach with an accurate band structure to allow for a correct description of band-to-band-tunneling. We have therefore developed a fully QM 2D solver, combining for the first time a full zone 15-band envelope function formalism with a spectral approach, including a heterostructure basis set transformation. Simulations of GaSb/InAs broken gap TFETs illustrate the wide body capabilities and transparant transmission analysis of the formalism.
  Address
  Corporate Author Thesis
  Publisher Ieee Place of Publication New york Editor
  Language Wos 000380398200055 Publication Date 2015-10-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 978-0-692-51523-5 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes (down) Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:134998 Serial 4131
Permanent link to this record
 

 
Author Paolella, A.; Turner, S.; Bertoni, G.; Hovington, P.; Flacau, R.; Boyer, C.; Feng, Z.; Colombo, M.; Marras, S.; Prato, M.; Manna, L.; Guerfi, A.; Demopoulos, G.P.; Armand, M.; Zaghib, K.;
  Title Accelerated removal of Fe-antisite defects while nanosizing hydrothermal LiFePO4 with Ca2+ Type A1 Journal article
  Year 2016 Publication Nano letters Abbreviated Journal Nano Lett
  Volume 16 Issue 16 Pages 2692-2697
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Based on neutron powder diffraction (NPD) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), we show that calcium ions help eliminate the Fe-antisite defects by controlling the nucleation and evolution of the LiFePO4 particles during their hydrothermal synthesis. This Ca-regulated formation of LiFePO4 particles has an overwhelming impact on the removal of their iron antisite defects during the subsequent carbon coating step since (i) almost all the Fe-antisite defects aggregate at the surface of the LiFePO4 crystal when the crystals are small enough and (ii) the concomitant increase of the surface area, which further exposes the Fe-antisite defects. Our results not only justify a low-cost, efficient and reliable hydrothermal synthesis method for LiFePO4 but also provide a promising alternative viewpoint on the mechanism controlling the nanosizing of LiFePO4, which leads to improved electrochemical performances.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington Editor
  Language Wos 000374274600084 Publication Date 2016-03-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.712 Times cited 30 Open Access
  Notes (down) Approved Most recent IF: 12.712
  Call Number UA @ lucian @ c:irua:133600 Serial 4134
Permanent link to this record
 

 
Author Meledina, M.
  Title Advanced electron microscopy characterization of catalysts Type Doctoral thesis
  Year 2016 Publication Abbreviated Journal
  Volume Issue Pages
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Antwerpen Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes (down) Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:133788 Serial 4135
Permanent link to this record
 

 
Author Kurttepeli, M.
  Title Carbon based materials and hybrid nanostructures investigated by advanced transmission electron microscopy Type Doctoral thesis
  Year 2015 Publication Abbreviated Journal
  Volume Issue Pages
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Antwerpen Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes (down) Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:130502 Serial 4145
Permanent link to this record
 

 
Author Semkina, A.; Abakumov, M.; Grinenko, N.; Abakumov, A.; Skorikov, A.; Mironova, E.; Davydova, G.; Majouga, A.G.; Nukolova, N.; Kabanov, A.; Chekhonin, V.;
  Title Core-shell-corona doxorubicin-loaded superparamagnetic Fe3O4 nanoparticles for cancer theranostics Type A1 Journal article
  Year 2015 Publication Colloids and surfaces: B : biointerfaces Abbreviated Journal Colloid Surface B
  Volume 136 Issue 136 Pages 1073-1080
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Superparamagnetic iron oxide magnetic nanoparticles (MNPs) are successfully used as contrast agents in magnetic-resonance imaging. They can be easily functionalized for drug delivery functions, demonstrating great potential for both imaging and therapeutic applications. Here we developed new pH-responsive theranostic core-shell-corona nanoparticles consisting of superparamagentic Fe3O4 core that displays high T2 relaxivity, bovine serum albumin (BSA) shell that binds anticancer drug, doxorubicin (Dox) and poly(ethylene glycol) (PEG) corona that increases stability and biocompatibility. The nanoparticles were produced by adsorption of the BSA shell onto the Fe3O4 core followed by crosslinking of the protein layer and subsequent grafting of the PEG corona using monoamino-terminated PEG via carbodiimide chemistry. The hydrodynamic diameter, zeta-potential, composition and T2 relaxivity of the resulting nanoparticles were characterized using transmission electron microscopy, dynamic light scattering, thermogravimetric analysis and T2-relaxometry. Nanoparticles were shown to absorb Dox molecules, possibly through a combination of electrostatic and hydrophobic interactions. The loading capacity (LC) of the nanoparticles was 8 wt.%. The Dox loaded nanoparticles release the drug at a higher rate at pH 5.5 compared to pH 7.4 and display similar cytotoxicity against C6 and HEK293 cells as the free Dox. (C) 2015 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000367408100131 Publication Date 2015-11-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0927-7765 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.887 Times cited 37 Open Access
  Notes (down) Approved Most recent IF: 3.887; 2015 IF: 4.152
  Call Number UA @ lucian @ c:irua:131075 Serial 4157
Permanent link to this record
 

 
Author Dharanipragada, N.V.R.A.; Meledina, M.; Galvita, V.V.; Poelman, H.; Turner, S.; Van Tendeloo, G.; Detavernier, C.; Marin, G.B.
  Title Deactivation study of Fe2O3-CeO2 during redox cycles for CO production from CO2 Type A1 Journal article
  Year 2016 Publication Industrial and engineering chemistry research Abbreviated Journal Ind Eng Chem Res
  Volume 55 Issue 55 Pages 5911-5922
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Deactivation was investigated in Fe2O3-CeO2 oxygen storage materials during repeated H-2-reduction and CO2-reoxidation. In situ XRD, XAS, and TEM were used to identify phases, crystallite sizes, and morphological changes upon cycling operation. The effect of redox cycling was investigated both in Fe-rich (80 wt % Fe2O3-CeO2) and Ce-rich (10 wt %Fe2O3-CeO2) materials. The former consisted of 100 nm Fe2O3 particles decorated with 5-10 nm Ce1-xFexO2-x. The latter presented CeO2 with incorporated Fe, i.e. a solid solution of Ce1-xFexO2-x, as the main oxygen carrier. By modeling the EXAFS Ce-K signal for as-prepared 10 wt %Fe2O3-CeO2, the amount of Fe in CeO2 was determined as 21 mol %, corresponding to 86% of the total iron content. Sintering and solid solid transformations, the latter including both new phase formation and element segregation, were identified as deactivation pathways upon redox cycling. In Ce-rich material, perovskite (CeFeO3) was identified by XRD. This phase remained inert during reduction and reoxidation, resulting in an overall lower oxygen storage capacity. Further, Fe segregated from the solid solution, thereby decreasing its reducibility. In addition, an increase in crystallite size occurred for all phases. In Fe-rich material, sintering is the main deactivation pathway, although Fe segregation from the solid solution and perovskite formation cannot be excluded.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000376825300013 Publication Date 2016-04-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.843 Times cited 26 Open Access
  Notes (down) Approved Most recent IF: 2.843
  Call Number UA @ lucian @ c:irua:134214 Serial 4158
Permanent link to this record
 

 
Author Lemoine, G.; Delannay, L.; Idrissi, H.; Colla, M.-S.; Pardoen, T.
  Title Dislocation and back stress dominated viscoplasticity in freestanding sub-micron Pd films Type A1 Journal article
  Year 2016 Publication Acta materialia Abbreviated Journal Acta Mater
  Volume 111 Issue 111 Pages 10-21
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract A dislocation-based crystal plasticity model is developed in order to study the mechanical and creep/ relaxation behaviour of polycrystalline metallic thin films. The model accounts for the confinement of plasticity due to grain boundaries and for the anisotropy of individual grains, as well as for the significant viscoplastic effects associated to dislocation dominated thermally activated mechanisms. Numerical predictions are assessed based on experimental tensile test followed by relaxation on freestanding Pd films, based on an on-chip test technique. The dislocation-based mechanism assumption captures all the experimental trends, including the stress strain response, the relaxation behaviour and the dislocation density evolution, confirming the dominance of a dislocation driven deformation mechanism for the present Pd films with high defects density. The model has also been used to address some original experimental evidences involving back stresses, Bauschinger effect, backward creep and strain recovery. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000375812100002 Publication Date 2016-03-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.301 Times cited 6 Open Access
  Notes (down) Approved Most recent IF: 5.301
  Call Number UA @ lucian @ c:irua:133636 Serial 4162
Permanent link to this record
 

 
Author Clima, S.; Chen, Y.Y.; Chen, C.Y.; Goux, L.; Govoreanu, B.; Degraeve, R.; Fantini, A.; Jurczak, M.; Pourtois, G.
  Title First-principles thermodynamics and defect kinetics guidelines for engineering a tailored RRAM device Type A1 Journal article
  Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 119 Issue 119 Pages 225107
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Resistive Random Access Memories are among the most promising candidates for the next generation of non-volatile memory. Transition metal oxides such as HfOx and TaOx attracted a lot of attention due to their CMOS compatibility. Furthermore, these materials do not require the inclusion of extrinsic conducting defects since their operation is based on intrinsic ones (oxygen vacancies). Using Density Functional Theory, we evaluated the thermodynamics of the defects formation and the kinetics of diffusion of the conducting species active in transition metal oxide RRAM materials. The gained insights based on the thermodynamics in the Top Electrode, Insulating Matrix and Bottom Electrode and at the interfaces are used to design a proper defect reservoir, which is needed for a low-energy reliable switching device. The defect reservoir has also a direct impact on the retention of the Low Resistance State due to the resulting thermodynamic driving forces. The kinetics of the diffusing conducting defects in the Insulating Matrix determine the switching dynamics and resistance retention. The interface at the Bottom Electrode has a significant impact on the low-current operation and long endurance of the memory cell. Our first-principles findings are confirmed by experimental measurements on fabricated RRAM devices. Published by AIP Publishing.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000378925400035 Publication Date 2016-06-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 17 Open Access
  Notes (down) Approved Most recent IF: 2.068
  Call Number UA @ lucian @ c:irua:134651 Serial 4181
Permanent link to this record
 

 
Author Sivek, J.; Sahin, H.; Partoens, B.; Peeters, F.M.
  Title Giant magnetic anisotropy in doped single layer molybdenum disulfide and fluorographene Type A1 Journal article
  Year 2016 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
  Volume 28 Issue 28 Pages 195301
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Stable monolayer materials based on existing, well known and stable two-dimensional crystal fluorographene and molybdenum disulfide are predicted to exhibit a huge magnetocrystalline anisotropy when functionalized with adsorbed transition metal atoms at vacant sides. Ab initio calculations within the density-functional theory formalism were performed to investigate the adsorption of the transitional metals in a single S (or F) vacancy of monolayer molybdenum disulfide (or fluorographene). We found strong bonding of the transitional metal atoms to the vacant sites with binding energies ranging from 2.5 to 5.2 eV. Our calculations revealed that these systems with adsorbed metal atoms exhibit a magnetic anisotropy, specifically the structures including Os and Ir show a giant magnetocrystalline anisotropy energy of 31-101 meV. Our results demonstrate the possibility of obtaining stable monolayer materials with huge magnetocrystalline anisotropy based on preexisting, well known and stable two-dimensional crystals: fluorographene and molybdenum disulfide. We believe that the results obtained here are useful not only for deeper understanding of the origin of magnetocrystalline anisotropy but also for the design of monolayer optoelectronic devices with novel functionalities.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000374394700007 Publication Date 2016-04-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.649 Times cited 7 Open Access
  Notes (down) Approved Most recent IF: 2.649
  Call Number UA @ lucian @ c:irua:133611 Serial 4185
Permanent link to this record
 

 
Author Li, M.R.; Retuerto, M.; Deng, Z.; Stephens, P.W.; Croft, M.; Huang, Q.; Wu, H.; Deng, X.; Kotliar, G.; Sánchez-Benítez, J.; Hadermann, J.; Walker, D.; Greenblatt, M.;
  Title Giant magnetoresistance in the half-metallic double-perovskite ferrimagnet Mn2FeReO6 Type A1 Journal article
  Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
  Volume 54 Issue 54 Pages 12069-12073
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The first transition-metal-only double perovskite compound, Mn2+ Fe-2(3+) Re5+ O-6, with 17 unpaired d electrons displays ferrimagnetic ordering up to 520K and a giant positive magnetoresistance of up to 220% at 5K and 8 T. These properties result from the ferrimagnetically coupled Fe and Re sublattice and are affected by a two-to-one magnetic-structure transition of the Mn sublattice when a magnetic field is applied. Theoretical calculations indicate that the half-metallic state can be mainly attributed to the spin polarization of the Fe and Re sites.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000363396000031 Publication Date 2015-08-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 11.994 Times cited Open Access
  Notes (down) Approved Most recent IF: 11.994; 2015 IF: 11.261
  Call Number UA @ lucian @ c:irua:129457 Serial 4186
Permanent link to this record
 

 
Author Peymanirad, F.; Neek Amal, M.; Beheshtian, J.; Peeters, F.M.
  Title Graphene-silicene bilayer : a nanocapacitor with permanent dipole and piezoelectricity effect Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 92 Issue 92 Pages 155113
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using density functional theory, we study the electronic properties of a graphene-silicene bilayer (GSB). A single layer of silicene binds to the graphene layer with adhesion energy of about 25 meV/atom. This adhesion energy between the two layers follows accurately the well-known -1/z(2) dispersion energy as found between two infinite parallel plates. In small flakes of GSB with hydrogenated edges, negative charge is transferred from the graphene layer to the silicene layer, producing a permanent and a switchable polar bilayer, while in an infinite GSB, the negative charge is transferred from the silicene layer to the graphene layer. The graphene-silicene bilayer is a good candidate for a nanocapacitor with piezoelectric capabilities. We found that the permanent dipole of the bilayer can be tuned by an external perpendicular electric field.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000362493400002 Publication Date 2015-10-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 17 Open Access
  Notes (down) Approved Most recent IF: 3.836; 2015 IF: 3.736
  Call Number UA @ lucian @ c:irua:128762 Serial 4188
Permanent link to this record
 

 
Author Kang, J.; Horzum, S.; Peeters, F.M.
  Title Heterostructures of graphene and nitrogenated holey graphene: Moire pattern and Dirac ring Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 92 Issue 92 Pages 195419
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Nitrogenated holey graphene (NHG) is a recently synthesized two-dimensional material. In this paper the structural and electronic properties of heterostructures of graphene and NHG are investigated using first-principles and tight-binding calculations. Due to the lattice mismatch between NHG and graphene, the formation of a moire pattern is preferred in the graphene/NHG heterostructure, instead of a lattice-coherent structure. In moire-patterned graphene/NHG, the band gap opening at the K point is negligible, and the linear band dispersion of graphene survives. Applying an electric field modifies the coupling strength between the two atomic layers. The Fermi velocity upsilon(F) is reduced as compared to the one of pristine graphene, and its magnitude depends on the twist angle theta between graphene and NHG: For theta = 0 degrees, upsilon(F) is 30% of that of graphene, and it increases rapidly to a value of 80% with increasing theta. The heterostructure exhibits electron-hole asymmetry in upsilon(F), which is large for small theta. In NHG encapsulated between two graphene layers, a “Dirac ring” appears around the K point. Its presence is robust with respect to the relative stacking of the two graphene layers. These findings can be useful for future applications of graphene/NHG heterostructures.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000364998000006 Publication Date 2015-11-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 33 Open Access
  Notes (down) Approved Most recent IF: 3.836; 2015 IF: 3.736
  Call Number UA @ lucian @ c:irua:130266 Serial 4189
Permanent link to this record
 

 
Author Neubert, S.; Mitoraj, D.; Shevlin, S.A.; Pulisova, P.; Heimann, M.; Du, Y.; Goh, G.K.L.; Pacia, M.; Kruczała, K.; Turner, S.; Macyk, W.; Guo, Z.X.; Hocking, R.K.; Beranek, R.;
  Title Highly efficient rutile TiO2 photocatalysts with single Cu(II) and Fe(III) surface catalytic sites Type A1 Journal article
  Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
  Volume 4 Issue 4 Pages 3127-3138
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Highly active photocatalysts were obtained by impregnation of nanocrystalline rutile TiO2 powders with small amounts of Cu(II) and Fe(III) ions, resulting in the enhancement of initial rates of photocatalytic degradation of 4-chlorophenol in water by factors of 7 and 4, compared to pristine rutile, respectively. Detailed structural analysis by EPR and X-ray absorption spectroscopy (EXAFS) revealed that Cu(II) and Fe(III) are present as single species on the rutile surface. The mechanism of the photoactivity enhancement was elucidated by a combination of DFT calculations and detailed experimental mechanistic studies including photoluminescence measurements, photocatalytic experiments using scavengers, OH radical detection, and photopotential transient measurements. The results demonstrate that the single Cu(II) and Fe(III) ions act as effective cocatalytic sites, enhancing the charge separation, catalyzing “dark” redox reactions at the interface, thus improving the normally very low quantum yields of UV light-activated TiO2 photocatalysts. The exact mechanism of the photoactivity enhancement differs depending on the nature of the cocatalyst. Cu(II)-decorated samples exhibit fast transfer of photogenerated electrons to Cu(II/I) sites, followed by enhanced catalysis of dioxygen reduction, resulting in improved charge separation and higher photocatalytic degradation rates. At Fe(III)-modified rutile the rate of dioxygen reduction is not improved and the photocatalytic enhancement is attributed to higher production of highly oxidizing hydroxyl radicals produced by alternative oxygen reduction pathways opened by the presence of catalytic Fe(III/II) sites. Importantly, it was demonstrated that excessive heat treatment (at 450 degrees C) of photocatalysts leads to loss of activity due to migration of Cu(II) and Fe(III) ions from TiO2 surface to the bulk, accompanied by formation of oxygen vacancies. The demonstrated variety of mechanisms of photoactivity enhancement at single site catalyst-modified photocatalysts holds promise for developing further tailored photocatalysts for various applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000371077300040 Publication Date 2015-12-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.867 Times cited 44 Open Access
  Notes (down) Approved Most recent IF: 8.867
  Call Number UA @ lucian @ c:irua:132322 Serial 4191
Permanent link to this record
 

 
Author Roesler, C.; Aijaz, A.; Turner, S.; Filippousi, M.; Shahabi, A.; Xia, W.; Van Tendeloo, G.; Muhler, M.; Fischer, R.A.
  Title Hollow Zn/Co Zeolitic Imidazolate Framework (ZIF) and Yolk-Shell Metal@Zn/Co ZIF nanostructures Type A1 Journal article
  Year 2016 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
  Volume 22 Issue 22 Pages 3304-3311
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Metal-organic frameworks (MOFs) feature a great possibility for a broad spectrum of applications. Hollow MOF structures with tunable porosity and multifunctionality at the nanoscale with beneficial properties are desired as hosts for catalytically active species. Herein, we demonstrate the formation of well-defined hollow Zn/Co-based zeolitic imidazolate frameworks (ZIFs) by use of epitaxial growth of Zn-MOF (ZIF-8) on preformed Co-MOF (ZIF-67) nanocrystals that involve in situ self-sacrifice/excavation of the Co-MOF. Moreover, any type of metal nanoparticles can be accommodated in Zn/Co-ZIF shells to generate yolk-shell metal@ZIF structures. Transmission electron microscopy and tomography studies revealed the inclusion of these nanoparticles within hollow Zn/Co-ZIF with dominance of the Zn-MOF as shell. Our findings lead to a generalization of such hollow systems that are working effectively to other types of ZIFs.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000371419200001 Publication Date 2016-01-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.317 Times cited 43 Open Access
  Notes (down) Approved Most recent IF: 5.317
  Call Number UA @ lucian @ c:irua:132347 Serial 4192
Permanent link to this record
 

 
Author Zhang, B.; Dugas, R.; Rousse, G.; Rozier, P.; Abakumov, A.M.; Tarascon, J.-M.
  Title Insertion compounds and composites made by ball milling for advanced sodium-ion batteries Type A1 Journal article
  Year 2016 Publication Nature communications Abbreviated Journal Nat Commun
  Volume 7 Issue 7 Pages 10308
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Sodium-ion batteries have been considered as potential candidates for stationary energy storage because of the low cost and wide availability of Na sources. However, their future commercialization depends critically on control over the solid electrolyte interface formation, as well as the degree of sodiation at the positive electrode. Here we report an easily scalable ball milling approach, which relies on the use of metallic sodium, to prepare a variety of sodium-based alloys, insertion layered oxides and polyanionic compounds having sodium in excess such as the Na4V2(PO4)(2)F-3 phase. The practical benefits of preparing sodium-enriched positive electrodes as reservoirs to compensate for sodium loss during solid electrolyte interphase formation are demonstrated by assembling full C/P'2-Na-1[Fe0.5Mn0.5]O-2 and C/'Na3+xV2(PO4)(2)F-3' sodium-ion cells that show substantial increases (>10%) in energy storage density. Our findings may offer electrode design principles for accelerating the development of the sodium-ion technology.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000369021400002 Publication Date 2016-01-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.124 Times cited 104 Open Access
  Notes (down) Approved Most recent IF: 12.124
  Call Number UA @ lucian @ c:irua:131599 Serial 4197
Permanent link to this record
 

 
Author O'Sullivan, M.; Hadermann, J.; Dyer, M.S.; Turner, S.; Alaria, J.; Manning, T.D.; Abakumov, A.M.; Claridge, J.B.; Rosseinsky, M.J.
  Title Interface control by chemical and dimensional matching in an oxide heterostructure Type A1 Journal article
  Year 2016 Publication Nature chemistry Abbreviated Journal Nat Chem
  Volume 8 Issue 8 Pages 347-353
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Interfaces between different materials underpin both new scientific phenomena, such as the emergent behaviour at oxide interfaces, and key technologies, such as that of the transistor. Control of the interfaces between materials with the same crystal structures but different chemical compositions is possible in many materials classes, but less progress has been made for oxide materials with different crystal structures. We show that dynamical self-organization during growth can create a coherent interface between the perovskite and fluorite oxide structures, which are based on different structural motifs, if an appropriate choice of cations is made to enable this restructuring. The integration of calculation with experimental observation reveals that the interface differs from both the bulk components and identifies the chemical bonding requirements to connect distinct oxide structures.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000372505500013 Publication Date 2016-02-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1755-4330; 1755-4349 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 25.87 Times cited 28 Open Access
  Notes (down) Approved Most recent IF: 25.87
  Call Number UA @ lucian @ c:irua:133189 Serial 4199
Permanent link to this record
 

 
Author Clima, S.; Chen, Y.Y.; Fantini, A.; Goux, L.; Degraeve, R.; Govoreanu, B.; Pourtois, G.; Jurczak, M.
  Title Intrinsic tailing of resistive states distributions in amorphous <tex>HfOx </tex> and TaOx based resistive random access memories Type A1 Journal article
  Year 2015 Publication IEEE electron device letters Abbreviated Journal Ieee Electr Device L
  Volume 36 Issue 36 Pages 769-771
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We report on the ineffectiveness of programming oxide-based resistive random access memory (OxRAM) at low current with a program and verify algorithm due to intrinsic relaxation of the verified distribution to the natural state distribution obtained by single-pulse programming without verify process. Based on oxygen defect formation thermodynamics and on their diffusion barriers in amorphous HfOx and TaOx, we describe the intrinsic nature of tailing of the verified low resistive state and high resistive state distributions. We introduce different scenarios to explain fast distribution widening phenomenon, which is a fundamental limitation for OxRAM current scaling and device reliability.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000358570300011 Publication Date 2015-06-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0741-3106 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.048 Times cited 33 Open Access
  Notes (down) Approved Most recent IF: 3.048; 2015 IF: 2.754
  Call Number UA @ lucian @ c:irua:134412 Serial 4200
Permanent link to this record
 

 
Author Van de Put, M.L.; Vandenberghe, W.G.; Magnus, W.; Sorée, B.; Fischetti, M.V.
  Title Modeling of inter-ribbon tunneling in graphene Type P1 Proceeding
  Year 2015 Publication 18th International Workshop On Computational Electronics (iwce 2015) Abbreviated Journal
  Volume Issue Pages
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)
  Abstract The tunneling current between two crossed graphene ribbons is described invoking the empirical pseudopotential approximation and the Bardeen transfer Hamiltonian method. Results indicate that the density of states is the most important factor determining the tunneling current between small (similar to nm) ribbons. The quasi-one dimensional nature of graphene nanoribbons is shown to result in resonant tunneling.
  Address
  Corporate Author Thesis
  Publisher Ieee Place of Publication New york Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 978-0-692-51523-5 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes (down) Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:134997 Serial 4206
Permanent link to this record
 

 
Author Heyne, M.H.; Chiappe, D.; Meersschaut, J.; Nuytten, T.; Conard, T.; Bender, H.; Huyghebaert, C.; Radu, I.P.; Caymax, M.; de Marneffe, J.F.; Neyts, E.C.; De Gendt, S.;
  Title Multilayer MoS2 growth by metal and metal oxide sulfurization Type A1 Journal article
  Year 2016 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
  Volume 4 Issue 4 Pages 1295-1304
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We investigated the deposition of MoS2 multilayers on large area substrates. The pre-deposition of metal or metal oxide with subsequent sulfurization is a promising technique to achieve layered films. We distinguish a different reaction behavior in metal oxide and metallic films and investigate the effect of the temperature, the H2S/H-2 gas mixture composition, and the role of the underlying substrate on the material quality. The results of the experiments suggest a MoS2 growth mechanism consisting of two subsequent process steps. At first, the reaction of the sulfur precursor with the metal or metal oxide occurs, requiring higher temperatures in the case of metallic film compared to metal oxide. At this stage, the basal planes assemble towards the diffusion direction of the reaction educts and products. After the sulfurization reaction, the material recrystallizes and the basal planes rearrange parallel to the substrate to minimize the surface energy. Therefore, substrates with low roughness show basal plane assembly parallel to the substrate. These results indicate that the substrate character has a significant impact on the assembly of low dimensional MoS2 films.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000370723300020 Publication Date 2016-01-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.256 Times cited Open Access
  Notes (down) Approved Most recent IF: 5.256
  Call Number UA @ lucian @ c:irua:132327 Serial 4211
Permanent link to this record
 

 
Author Topalovic, D.B.; Arsoski, V.V.; Pavlovic, S.; Cukaric, N.A.; Tadic, M.Z.; Peeters, F.M.
  Title On improving accuracy of finite-element solutions of the effective-mass Schrodinger equation for interdiffused quantum wells and quantum wires Type A1 Journal article
  Year 2016 Publication Communications in theoretical physics Abbreviated Journal Commun Theor Phys
  Volume 65 Issue 1 Pages 105-113
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We use the Galerkin approach and the finite-element method to numerically solve the effective-mass Schrodinger equation. The accuracy of the solution is explored as it varies with the range of the numerical domain. The model potentials are those of interdiffused semiconductor quantum wells and axially symmetric quantum wires. Also, the model of a linear harmonic oscillator is considered for comparison reasons. It is demonstrated that the absolute error of the electron ground state energy level exhibits a minimum at a certain domain range, which is thus considered to be optimal. This range is found to depend on the number of mesh nodes N approximately as alpha(0) log(e)(alpha 1) (alpha N-2), where the values of the constants alpha(0), alpha(1), and alpha(2) are determined by fitting the numerical data. And the optimal range is found to be a weak function of the diffusion length. Moreover, it was demonstrated that a domain range adaptation to the optimal value leads to substantial improvement of accuracy of the solution of the Schrodinger equation.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Wallingford Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0253-6102; 1572-9494 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 0.989 Times cited Open Access
  Notes (down) Approved Most recent IF: 0.989
  Call Number UA @ lucian @ c:irua:133213 Serial 4216
Permanent link to this record
 

 
Author Sun, Z.; Madej, E.; Wiktor; Sinev, I.; Fischer, R.A.; Van Tendeloo, G.; Muhler, M.; Schuhmann, W.; Ventosa, E.
  Title One-pot synthesis of carbon-coated nanostructured iron oxide on few-layer graphene for lithium-ion batteries Type A1 Journal article
  Year 2015 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
  Volume 21 Issue 21 Pages 16154-16161
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Nanostructure engineering has been demonstrated to improve the electrochemical performance of iron oxide based electrodes in Li-ion batteries (LIBs). However, the synthesis of advanced functional materials often requires multiple steps. Herein, we present a facile one-pot synthesis of carbon-coated nanostructured iron oxide on few-layer graphene through high-pressure pyrolysis of ferrocene in the presence of pristine graphene. The ferrocene precursor supplies both iron and carbon to form the carbon-coated iron oxide, while the graphene acts as a high-surface-area anchor to achieve small metal oxide nanoparticles. When evaluated as a negative-electrode material for LIBs, our composite showed improved electrochemical performance compared to commercial iron oxide nanopowders, especially at fast charge/discharge rates.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000363890700036 Publication Date 2015-09-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.317 Times cited 8 Open Access
  Notes (down) Approved Most recent IF: 5.317; 2015 IF: 5.731
  Call Number UA @ lucian @ c:irua:129510 Serial 4218
Permanent link to this record
 

 
Author Forsh, E.A.; Abakumov, A.M.; Zaytsev, V.B.; Konstantinova, E.A.; Forsh, P.A.; Rumyantseva, M.N.; Gaskov, A.M.; Kashkarov, P.K.
  Title Optical and photoelectrical properties of nanocrystalline indium oxide with small grains Type A1 Journal article
  Year 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
  Volume 595 Issue 595 Pages 25-31
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Optical properties, spectral dependence of photoconductivity and photoconductivity decay in nanocrystalline indium oxide In2O3 are studied. A number of nanostructured In2O3 samples with various nanocrystals size are prepared by sol-gel method and characterized using various techniques. The mean nanocrystals size varies from 7 to 8 nm to 39-41 nm depending on the preparation conditions. Structural characterization of the In2O3 samples is performed by means of transmission electron microscopy and X-ray powder diffraction. The combined analysis of ultraviolet-visible absorption spectroscopy and diffuse reflectance spectroscopy shows that nanostructuring leads to the change in optical band gap: optical band gap of the In2O3 samples (with an average nanocrystal size from 7 to 41 nm) is equal to 2.8 eV. We find out the correlation between spectral dependence of photoconductivity and optical properties of nanocrystalline In2O3: sharp increase in photoconductivity was observed to begin at 2.8 eV that is equal to the optical bandgap in the In2O3 samples, and reached its maximum at 3.2-3.3 eV. The combined analysis of the slow photoconductivity decay in air, vacuum and argon, that was accurately fitted by a stretched-exponential function, and electron paramagnetic resonance (EPR) measurements shows that the kinetics of photoconductivity decay is strongly depended on the presence of oxygen molecules in the ambient of In2O3 nanocrystals. There is the quantitative correlation between EPR and photoconductivity data. Based on the obtained data we propose the model clearing up the phenomenon of permanent photoconductivity decay in nanocrystalline In2O3. (C) 2015 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lausanne Editor
  Language Wos 000365812400005 Publication Date 2015-10-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0040-6090 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.879 Times cited 18 Open Access
  Notes (down) Approved Most recent IF: 1.879; 2015 IF: 1.759
  Call Number UA @ lucian @ c:irua:130254 Serial 4219
Permanent link to this record
 

 
Author Brammertz, G.; Buffiere, M.; Verbist, C.; Bekaert, J.; Batuk, M.; Hadermann, J.; et al.
  Title Process variability in Cu2ZnSnSe4 solar cell devices: Electrical and structural investigations Type P1 Proceeding
  Year 2015 Publication The conference record of the IEEE Photovoltaic Specialists Conference T2 – IEEE 42nd Photovoltaic Specialist Conference (PVSC), JUN 14-19, 2015, New Orleans, LA Abbreviated Journal
  Volume Issue Pages
  Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract We have fabricated 9.7% efficient Cu2ZnSnSe4/CdS/ZnO solar cells by H2Se selenization of sequentially sputtered metal layers. Despite the good efficiency obtained, process control appears to be difficult. In the present contribution we compare the electrical and physical properties of two devices with nominal same fabrication procedure, but 1% and 9.7% power conversion efficiency respectively. We identify the problem of the lower performing device to be the segregation of ZnSe phases at the backside of the sample. This ZnSe seems to be the reason for the strong bias dependent photocurrent observed in the lower performing devices, as it adds a potential barrier for carrier collection. The reason for the different behavior of the two nominally same devices is not fully understood, but speculated to be related to sputtering variability.
  Address
  Corporate Author Thesis
  Publisher Ieee Place of Publication New york Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 978-1-4799-7944-8 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes (down) Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:132335 Serial 4229
Permanent link to this record
 

 
Author Ercolani, G.; Gorle, C.; Garcia Sánchez, C.; Corbari, C.; Mancini, M.
  Title RAMS and WRF sensitivity to grid spacing in large-eddy simulations of the dry convective boundary layer Type A1 Journal article
  Year 2015 Publication Computers and fluids Abbreviated Journal Comput Fluids
  Volume 123 Issue 123 Pages 54-71
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Large-eddy simulations (LESS) are frequently used to model the planetary boundary layer, and the choice of the grid cell size, numerical schemes and sub grid model can significantly influence the simulation results. In the present paper the impact of grid spacing on LES of an idealized atmospheric convective boundary layer (CBL), for which the statistics and flow structures are well understood, is assessed for two mesoscale models: the Regional Atmospheric Modeling System (RAMS) and the Weather Research and Forecasting model (WRF). Nine simulations are performed on a fixed computational domain (6 x 6 x 2 km), combining three different horizontal (120, 60, 30 m) and vertical (20, 10, 5 m) spacings. The impact of the cell size on the CBL is investigated by comparing turbulence statistics and velocity spectra. The results demonstrate that both WRF and RAMS can perform LES of the CBL under consideration without requiring extremely high computational loads, but they also indicate the importance of adopting a computational grid that is adequate for the numerical schemes and subgrid models used. In both RAMS and WRF a horizontal cell size of 30 m is required to obtain a suitable turbulence reproduction throughout the CBL height. Considering the vertical grid spacing, WRF produced similar results for all the three tested values, while in RAMS it should be ensured that the aspect ratio of the cells does not exceed a value of 3. The two models were found to behave differently in function of the grid resolution, and they have different shortcomings in their prediction of CBL turbulence. WRF exhibits enhanced damping at the smallest scales, while RAMS is prone to the appearance of spurious fluctuations in the flow when the grid aspect ratio is too high. (C) 2015 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000365367500006 Publication Date 2015-10-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0045-7930 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.313 Times cited 3 Open Access
  Notes (down) Approved Most recent IF: 2.313; 2015 IF: 1.619
  Call Number UA @ lucian @ c:irua:130200 Serial 4236
Permanent link to this record
 

 
Author Ryabova, A.S.; Napolskiy, F.S.; Poux, T.; Istomin, S.Y.; Bonnefont, A.; Antipin, D.M.; Baranchikov, A.Y.; Levin, E.E.; Abakumov, A.M.; Kéranguéven, G.; Antipov, E.V.; Tsirlina, G.A.; Savinova, E.R.;
  Title Rationalizing the influence of the Mn(IV)/Mn(III) red-Ox transition on the electrocatalytic activity of manganese oxides in the oxygen reduction reaction Type A1 Journal article
  Year 2016 Publication Electrochimica acta Abbreviated Journal Electrochim Acta
  Volume 187 Issue 187 Pages 161-172
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Knowledge on the mechanisms of oxygen reduction reaction (ORR) and descriptors linking the catalytic activity to the structural and electronic properties of transition metal oxides enable rational design of more efficient catalysts. In this work ORR electrocatalysis was studied on a set of single and complex Mn (III) oxides with a rotating disc electrode method and cyclic voltammetry. We discovered an exponential increase of the specific electrocatalytic activity with the potential of the surface Mn(IV)/Mn(III) red-ox couple, suggesting the latter as a new descriptor for the ORR electrocatalysis. The observed dependence is rationalized using a simple mean-field kinetic model considering availability of the Mn( III) centers and adsorbate-adsorbate interactions. We demonstrate an unprecedented activity of Mn2O3, ca. 40 times exceeding that of MnOOH and correlate the catalytic activity of Mn oxides to their crystal structure. (C) 2015 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000367235600019 Publication Date 2015-11-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.798 Times cited 51 Open Access
  Notes (down) Approved Most recent IF: 4.798
  Call Number UA @ lucian @ c:irua:131096 Serial 4237
Permanent link to this record
 

 
Author Voss, A.; Wei, H.Y.; Zhang, Y.; Turner, S.; Ceccone, G.; Reithmaier, J.P.; Stengl, M.; Popov, C.
  Title Strong attachment of circadian pacemaker neurons on modified ultrananocrystalline diamond surfaces Type A1 Journal article
  Year 2016 Publication Materials science and engineering: part C: biomimetic materials Abbreviated Journal Mat Sci Eng C-Mater
  Volume 64 Issue 64 Pages 278-285
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Diamond is a promising material for a number of bio-applications, including the fabrication of platforms for attachment and investigation of neurons and of neuroprostheses, such as retinal implants. In the current work ultrananocrystalline diamond (UNCD) films were deposited by microwave plasma chemical vapor deposition, modified by UV/O-3 treatment or NH3 plasma, and comprehensively characterized with respect to their bulk and surface properties, such as crystallinity, topography, composition and chemical bonding nature. The interactions of insect circadian pacemaker neurons with UNCD surfaces with H-, O- and NH2-terminations were investigated with respect to cell density and viability. The fast and strong attachment achieved without application of adhesion proteins allowed for advantageous modification of dispersion protocols for the preparation of primary cell cultures. Centrifugation steps, which are employed for pelletizing dispersed cells to separate them from dispersing enzymes, easily damage neurons. Now centrifugation can be avoided since dispersed neurons quickly and strongly attach to the UNCD surfaces. Enzyme solutions can be easily washed off without losing many of the dispersed cells. No adverse effects on the cell viability and physiological responses were observed as revealed by calcium imaging. Furthermore, the enhanced attachment of the neurons, especially on the modified UNCD surfaces, was especially advantageous for the immunocytochemical procedures with the cell cultures. The cell losses during washing steps were significantly reduced by one order of magnitude in comparison to controls. In addition, the integration of a titanium grid structure under the UNCD films allowed for individual assignment of physiologically characterized neurons to immunocytochemically stained cells. Thus, employing UNCD surfaces free of foreign proteins improves cell culture protocols and immunocytochemistry with cultured cells. The fast and strong attachment of neurons was attributed to a favorable combination of topography, surface chemistry and wettability. (C) 2016 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lausanne Editor
  Language Wos 000376547700033 Publication Date 2016-03-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0928-4931 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.164 Times cited 7 Open Access
  Notes (down) Approved Most recent IF: 4.164
  Call Number UA @ lucian @ c:irua:134164 Serial 4251
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: