toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author van der Snickt, G.; Legrand, S.; Slama, I.; Van Zuien, E.; Gruber, G.; Van der Stighelen, K.; Klaassen, L.; Oberthaler, E.; Janssens, K. pdf  url
doi  openurl
  Title In situ macro X-ray fluorescence (MA-XRF) scanning as a non-invasive tool to probe for subsurface modifications in paintings by PP Rubens Type A1 Journal article
  Year 2018 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 138 Issue 138 Pages 238-245  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Within the last decade, the established synchrotron- and laboratory-based micro-XRF scanning technology inspired the development of mobile instruments that allow performing in situ experiments on paintings on a macro scale. Since the development of the first mobile scanner at the start of this decade, this chemical imaging technique has brought new insights with respect to several iconic paintings, especially in cases when standard imaging techniques such as X-Ray Radiography (XRR) or Infrared Refiectography (IRR) yielded ambiguous results. The ability of scanning MA-XRF to visualise the distribution of elements detected at and below the paint surface renders this spectrometric method particularly helpful for studying painting techniques and revealing materials that remain hidden below the paint surface. The latter aspect is especially relevant for the technical study of works by Pieter Paul Rubens (1577-1640) as this highly productive seventeenth century master is particularly renowned for the continuous application of modifications during (and even after) the entire course of the creative process. In this work, the added value of MA-XRF scanning experiments for visualising these subsurface features is exemplified by interpreting the chemical images obtained on three of Rubens' key works. Special attention is given to three types of adjustments that are particularly relevant for the technical study of Rubens' oeuvre: (1) compositional changes ('pentimenti'), exemplified by results obtained on The Portrait of Helene Fourment (ca. 1638), (2) extensions to the support ('Anstlickungen.), illustrated by imaging experiments performed on the Venus Frigida (1614) and (3) Rubens' intriguing halos around flesh tones, as found amongst others in The Incredulity of Saint Thomas (1613). The ensuing insights in the paint stratigraphy and the underlying supporting structure illustrate the potential of MA-XRF scanning for the non-invasive, comparative study of Rubens' oeuvre. The results do not only augment the understanding of the complex genesis of Rubens' works of art and his efficient painting technique, but prove valuable during conservation treatments as well, as addressed in this paper. (C) 2018 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428103000027 Publication Date 2018-01-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 5 Open Access  
  Notes (up) ; ; Approved Most recent IF: 3.034  
  Call Number UA @ admin @ c:irua:151564 Serial 5657  
Permanent link to this record
 

 
Author Buczyńska, A.J.; Geypens, B.; Van Grieken, R.; De Wael, K. pdf  url
doi  openurl
  Title Optimization of sample clean-up for the GC-C-IRMS and GC-IT-MS analysis of PAHs from air particulate matter Type A1 Journal article
  Year 2015 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 119 Issue Pages 83-92  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The optimization of sample clean-up for the analysis of air particulate matter PAHs stable carbon isotope ratio using Solid Phase Extraction (SPE) cartridges is described in this paper. Various adsorbents, such as silica gel, alumina, florisil, commercially available for sample purification were compared. Best performance for the clean-up of 24-h air particulate matter samples was obtained with activated silica-gel columns in terms of selectivity and reproducibility. One step clean-up was optimized for concentration determination and in case of co-elutions, a second step was additionally used for carbon isotope ratio analysis. The method was subsequently validated with standard reference material and was checked for carbon isotope fractionation artefacts. No significant differences in δ13C values were found for unprocessed solutions of PAHs and solution subjected to the extraction and purification procedure. The procedure was tested on air particulate matter samples collected in three different locations in Belgium. Statistically significant differences in carbon isotope ratio of PAHs between Borgerhout location and Zelzate or Gent were noticed, confirming the differences in distribution and diagnostic ratios found during the concentration analyses and different PAH sources in these locations. The results, therefore, seem very promising for the use of δ13C of PAHs as an additional information helpful in source identification of these pollutants  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000348957800013 Publication Date 2014-11-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 7 Open Access  
  Notes (up) ; ; Approved Most recent IF: 3.034; 2015 IF: 2.746  
  Call Number UA @ admin @ c:irua:120641 Serial 5759  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: