toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Albrecht, W.; Bals, S.
  Title Fast Electron Tomography for Nanomaterials Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume Issue Pages acs.jpcc.0c08939
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Electron tomography (ET) has become a well-established technique to visualize nanomaterials in three dimensions. A vast richness in information can be gained by ET, but the conventional acquisition of a tomography series is an inherently slow process on the order of 1 h. The slow acquisition limits the applicability of ET for monitoring dynamic processes or visualizing nanoparticles, which are sensitive to the electron beam. In this Perspective, we summarize recent work on the development of emerging experimental and computational schemes to enhance the data acquisition process. We particularly focus on the application of these fast ET techniques for beam-sensitive materials and highlight insight into dynamic transformations of nanoparticles under external stimuli, which could be gained by fast in situ ET. Moreover, we discuss challenges and possible solutions for simultaneously increasing the speed and quality of fast ET.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000608876900003 Publication Date 2020-11-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.7 Times cited 26 Open Access OpenAccess
  Notes (up) H2020 Research Infrastructures, 823717 ; H2020 European Research Council, 815128 ; The authors acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grant No. 815128-REALNANO) and the European Commission (EUSMI). The authors furthermore acknowledge funding from the European Union’s Horizon 2020 research and innovation program, ESTEEM3. The authors also acknowledge contributions from all co-workers that have contributed over the years: J. Batenburg and co-workers, A. Béché, E. Bladt, L. Liz-Marzán and co-workers, H. Pérez Garza and co-workers, A. Skorikov, S. Skrabalak and co-workers, S. Van Aert, A. van Blaaderen and co-workers, H. Vanrompay, and J. Verbeeck.; sygma Approved Most recent IF: 3.7; 2020 IF: 4.536
  Call Number EMAT @ emat @c:irua:173965 Serial 6656
Permanent link to this record
 

 
Author De Meyer, R.; Albrecht, W.; Bals, S.
  Title Effectiveness of reducing the influence of CTAB at the surface of metal nanoparticles during in situ heating studies by TEM Type A1 Journal article
  Year 2021 Publication Micron Abbreviated Journal Micron
  Volume 144 Issue Pages 103036
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract In situ TEM is a valuable technique to offer novel insights in the behavior of nanomaterials under various conditions. However, interpretation of in situ experiments is not straightforward since the electron beam can impact the outcome of such measurements. For example, ligands surrounding metal nanoparticles transform into a protective carbon layer upon electron beam irradiation and may impact the apparent thermal stability during in situ heating experiments. In this work, we explore the effect of different treatments typically proposed to remove such ligands. We found that plasma treatment prior to heating experiments for Au nanorods and nanostars increased the apparent thermal stability of the nanoparticles, while an activated carbon treatment resulted in a decrease of the observed thermal stability. Treatment with HCl barely changed the experimental outcome. These results demonstrate the importance of carefully selecting pre-treatments procedures during in situ heating experiments.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000632282600002 Publication Date 2021-02-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0968-4328 ISBN Additional Links UA library record; WoS full record
  Impact Factor 1.98 Times cited Open Access OpenAccess
  Notes (up) H2020; European Research Council; This work was supported by the European Union’s Horizon 2020 research and innovation program [grant agreement No 823717 (ESTEEM3) and No 815128 (REALNANO)]; We acknowledge Prof. Luis M. Liz-Marzán and co-workers of the Bionanoplasmonics Laboratory, CICbiomaGUNE, Spain for providing the Au nanoparticles.; sygma; esteem3jra; esteem3reported Approved Most recent IF: 1.98
  Call Number EMAT @ emat @c:irua:175874 Serial 6677
Permanent link to this record
 

 
Author Salzmann, B.B.V.; Vliem, J.F.; Maaskant, D.N.; Post, L.C.; Li, C.; Bals, S.; Vanmaekelbergh, D.
  Title From CdSe nanoplatelets to quantum rings by thermochemical edge reconfiguration Type A1 Journal article
  Year 2021 Publication Chemistry Of Materials Abbreviated Journal Chem Mater
  Volume 33 Issue 17 Pages 6853-6859
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The variation in the shape of colloidal semiconductor nanocrystals (NCs) remains intriguing. This interest goes beyond crystallography as the shape of the NC determines its energy levels and optoelectronic properties. While thermodynamic arguments point to a few or just a single shape(s), terminated by the most stable crystal facets, a remarkable variation in NC shape has been reported for many different compounds. For instance, for the well-studied case of CdSe, close-to-spherical quantum dots, rods, two-dimensional nanoplatelets, and quantum rings have been reported. Here, we report how two-dimensional CdSe nanoplatelets reshape into quantum rings. We monitor the reshaping in real time by combining atomically resolved structural characterization with optical absorption and photoluminescence spectroscopy. We observe that CdSe units leave the vertical sides of the edges and recrystallize on the top and bottom edges of the nanoplatelets, resulting in a thickening of the rims. The formation of a central hole, rendering the shape into a ring, only occurs at a more elevated temperature.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000696553600024 Publication Date 2021-08-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 7 Open Access OpenAccess
  Notes (up) Hans Meeldijk is kindly acknowledged for helping with electron microscopy at Utrecht University. B.B.V.S. and D.V. acknowledge the Dutch NWO for financial support via the TOP-ECHO grant no. 715.016.002. D.V. acknowledges financial support from the European ERC Council, ERC Advanced grant 692691 “First Step”. D.V. and L.C.P. acknowledge the Dutch NWO for financial support via the TOP-ECHO grant nr. 718.015.002. S.B acknowledges financial support from the European ERC Council, ERC Consolidator grant 815128. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 731019 (EUSMI). Realnano; sygmaSB Approved Most recent IF: 9.466
  Call Number UA @ admin @ c:irua:181550 Serial 6839
Permanent link to this record
 

 
Author Verbeeck, J.; Schattschneider, P.; Lazar, S.; Stöger-Pollach, M.; Löffler, S.; Steiger-Thirsfeld, A.; Van Tendeloo, G.
  Title Atomic scale electron vortices for nanoresearch Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 99 Issue 20 Pages 203109-203109,3
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Electron vortex beams were only recently discovered and their potential as a probe for magnetism in materials was shown. Here we demonstrate a method to produce electron vortex beams with a diameter of less than 1.2 Å. This unique way to prepare free electrons to a state resembling atomic orbitals is fascinating from a fundamental physics point of view and opens the road for magnetic mapping with atomic resolution in an electron microscope.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000297786500058 Publication Date 2011-11-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 90 Open Access
  Notes (up) Hercules Approved Most recent IF: 3.411; 2011 IF: 3.844
  Call Number UA @ lucian @ c:irua:93625UA @ admin @ c:irua:93625 Serial 184
Permanent link to this record
 

 
Author Bourgeois, J.; Hervieu, M.; Poienar, M.; Abakumov, A.M.; Elkaïm, E.; Sougrati, M.T.; Porcher, F.; Damay, F.; Rouquette, J.; Van Tendeloo, G.; Maignan, A.; Haines, J.; Martin, C.;
  Title Evidence of oxygen-dependent modulation in LuFe2O4 Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 85 Issue 6 Pages 064102-064120,10
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A polycrystalline sample of LuFe2O4 has been investigated by means of powder synchrotron x-ray and neutron diffraction and transmission electron microscopy (TEM), along with Mössbauer spectroscopy and transport and magnetic properties. A monoclinic distortion is unambiguously evidenced, and the crystal structure is refined in the monoclinic C2/m space group [aM = 5.9563(1) Å, bM = 3.4372(1) Å, cM = 8.6431(1) Å, β = 103.24(1)°]. Along with the previously reported modulations distinctive of the charge-ordering (CO) of the iron species, a new type of incommensurate order is observed, characterized by a vector q⃗1 = α1a⃗M* + γ1c⃗M* (with α1 ≅ 0.55, γ1 ≅ 0.13). In situ heating TEM observations from 300 to 773 K confirm that the satellites associated with q⃗1 vanish completely, only at a temperature significantly higher than the CO temperature. This incommensurate modulation has a displacive character and corresponds primarily to a transverse displacive modulation wave of the Lu cations position, as revealed by the high resolution, high angle annular dark field scanning TEM images and in agreement with synchrotron data refinements. Analyses of vacuum-annealed samples converge toward the hypothesis of a new ordering mechanism, associated with a tiny oxygen deviation from the O4 stoichiometry.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000299896900003 Publication Date 2012-02-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 24 Open Access
  Notes (up) Hercules Approved Most recent IF: 3.836; 2012 IF: 3.767
  Call Number UA @ lucian @ c:irua:95042 Serial 1095
Permanent link to this record
 

 
Author Esken, D.; Turner, S.; Wiktor, C.; Kalidindi, S.B.; Van Tendeloo, G.; Fischer, R.A.
  Title GaN@ZIF-8 : selective formation of gallium nitride quantum dots inside a zinc methylimidazolate framework Type A1 Journal article
  Year 2011 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
  Volume 133 Issue 41 Pages 16370-16373
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The microporous zeolitic imidazolate framework [Zn(MeIM)2; ZIF-8; MeIM = imidazolate-2-methyl] was quantitatively loaded with trimethylamine gallane [(CH3)3NGaH3]. The obtained inclusion compound [(CH3)3NGaH3]@ZIF-8 reveals three precursor molecules per host cavity. Treatment with ammonia selectively yields the caged cyclotrigallazane intermediate (H2GaNH2)3@ZIF-8, and further annealing gives GaN@ZIF-8. This new composite material was characterized with FT-IR spectroscopy, solid-state NMR spectroscopy, powder X-ray diffraction, elemental analysis, (scanning) transmission electron microscopy combined with electron energy-loss spectroscopy, photoluminescence (PL) spectroscopy, and N2 sorption measurements. The data give evidence for the presence of GaN nanoparticles (13 nm) embedded in the cavities of ZIF-8, including a blue-shift of the PL emission band caused by the quantum size effect.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000295997500014 Publication Date 2011-09-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.858 Times cited 82 Open Access
  Notes (up) Hercules Approved Most recent IF: 13.858; 2011 IF: 9.907
  Call Number UA @ lucian @ c:irua:93582 Serial 1315
Permanent link to this record
 

 
Author Bhatia, H.; Keshavarz, M.; Martin, C.; Van Gaal, L.; Zhang, Y.; de Coen, B.; Schrenker, N.J.; Valli, D.; Ottesen, M.; Bremholm, M.; Van de Vondel, J.; Bals, S.; Hofkens, J.; Debroye, E.
  Title Achieving High Moisture Tolerance in Pseudohalide Perovskite Nanocrystals for Light-Emitting Diode Application Type A1 Journal Article
  Year 2023 Publication ACS Applied Optical Materials Abbreviated Journal ACS Appl. Opt. Mater.
  Volume 1 Issue 6 Pages 1184-1191
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract The addition of potassium thiocyanate (KSCN) to the FAPbBr3 structure and subsequent post-treatment of nanocrystals (NCs) lead to high quantum confinement, resulting in a photoluminescent quantum yield (PLQY) approaching unity and microsecond decay times. This synergistic approach demonstrated exceptional stability under humid conditions, retaining 70% of the PLQY for over a month, while the untreated NCs degrade within 24 h. Additionally, the devices incorporating the post-treated NCs displayed 1.5% external quantum efficiency (EQE), a 5-fold improvement over untreated devices. These results provide promising opportunities for the use of perovskites in moisture-stable optoelectronics.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2023-06-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2771-9855 ISBN Additional Links UA library record
  Impact Factor Times cited Open Access OpenAccess
  Notes (up) Hercules Foundation, HER/11/14 ; European Commission; Ministerio de Ciencia e Innovaci?n, PID2021-128761OA-C22 ; European Regional Development Fund; Vlaamse regering, CASAS2 Meth/15/04 ; Fonds Wetenschappelijk Onderzoek, 1238622N 1514220N 1S45223N G.0B39.15 G.0B49.15 G098319N S002019N ZW15_09-GOH6316 ; Onderzoeksraad, KU Leuven, C14/19/079 db/21/006/bm iBOF-21-085 STG/21/010 ; Junta de Comunidades de Castilla-La Mancha, SBPLY/21/180501/000127 ; H2020 European Research Council, 642196 815128 ; Approved Most recent IF: NA
  Call Number EMAT @ emat @c:irua:201011 Serial 8975
Permanent link to this record
 

 
Author Huijben, M.; Liu, Y.; Boschker, H.; Lauter, V.; Egoavil, R.; Verbeeck, J.; te Velthuis, S.G.E.; Rijnders, G.; Koster, G.
  Title Enhanced local magnetization by interface engineering in perovskite-type correlated oxide heterostructures Type A1 Journal article
  Year 2015 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces
  Volume 2 Issue 2 Pages 1400416
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000349916000001 Publication Date 2015-01-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2196-7350; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.279 Times cited 30 Open Access
  Notes (up) Hercules; 246791 COUNTATOMS; 278510 VORTEX; 246102 IFOX; 312483 ESTEEM2; FWO G004413N; esteem2jra3 ECASJO; Approved Most recent IF: 4.279; 2015 IF: NA
  Call Number c:irua:125333 c:irua:125333UA @ admin @ c:irua:125333 Serial 1052
Permanent link to this record
 

 
Author Tan, H.; Egoavil, R.; Béché, A.; Martinez, G.T.; Van Aert, S.; Verbeeck, J.; Van Tendeloo, G.; Rotella, H.; Boullay, P.; Pautrat, A.; Prellier, W.
  Title Mapping electronic reconstruction at the metal-insulator interface in LaVO3/SrVO3 heterostructures Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 88 Issue 15 Pages 155123-155126
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A (LaVO3)6/(SrVO3)(3) superlattice is studied with a combination of sub-A resolved scanning transmission electron microscopy and monochromated electron energy-loss spectroscopy. The V oxidation state is mapped with atomic spatial resolution enabling us to investigate electronic reconstruction at the LaVO3/SrVO3 interfaces. Surprisingly, asymmetric charge distribution is found at adjacent chemically symmetric interfaces. The local structure is proposed and simulated with a double channeling calculation which agrees qualitatively with our experiment. We demonstrate that local strain asymmetry is the likely cause of the electronic asymmetry of the interfaces. The electronic reconstruction at the interfaces extends much further than the chemical composition, varying from 0.5 to 1.2 nm. This distance corresponds to the length of charge transfer previously found in the (LaVO3)./(SrVO3). metal/insulating and the (LaAlO3)./(SrTiO3). insulating/insulating interfaces.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000326087100003 Publication Date 2013-10-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 15 Open Access
  Notes (up) Hercules; 246791 COUNTATOMS; 278510 VORTEX; 246102 IFOX; 312483 ESTEEM2; FWO; GOA XANES meets ELNES; esteem2jra3 ECASJO; Approved Most recent IF: 3.836; 2013 IF: 3.664
  Call Number UA @ lucian @ c:irua:112733UA @ admin @ c:irua:112733 Serial 1944
Permanent link to this record
 

 
Author Zeng, Y.-J.; Schouteden, K.; Amini, M.N.; Ruan, S.-C.; Lu, Y.-F.; Ye, Z.-Z.; Partoens, B.; Lamoen, D.; Van Haesendonck, C.
  Title Electronic band structures and native point defects of ultrafine ZnO nanocrystals Type A1 Journal article
  Year 2015 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
  Volume 7 Issue 7 Pages 10617-10622
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract Ultrafine ZnO nanocrystals with a thickness down to 0.25 nm are grown by a metalorganic chemical vapor deposition method. Electronic band structures and native point defects of ZnO nanocrystals are studied by a combination of scanning tunneling microscopy/spectroscopy and first-principles density functional theory calculations. Below a critical thickness of nm ZnO adopts a graphitic-like structure and exhibits a wide band gap similar to its wurtzite counterpart. The hexagonal wurtzite structure, with a well-developed band gap evident from scanning tunneling spectroscopy, is established for a thickness starting from similar to 1.4 nm. With further increase of the thickness to 2 nm, V-O-V-Zn defect pairs are easily produced in ZnO nanocrystals due to the self-compensation effect in highly doped semiconductors.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000355055000063 Publication Date 2015-04-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.504 Times cited 15 Open Access
  Notes (up) Hercules; EWI Approved Most recent IF: 7.504; 2015 IF: 6.723
  Call Number c:irua:126408 Serial 999
Permanent link to this record
 

 
Author Vorobyeva, N.; Rumyantseva, M.; Filatova, D.; Konstantinova, E.; Grishina, D.; Abakumov, A.; Turner, S.; Gaskov, A.
  Title Nanocrystalline ZnO(Ga) : paramagnetic centers, surface acidity and gas sensor properties Type A1 Journal article
  Year 2013 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
  Volume 182 Issue Pages 555-564
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Nanocrystalline ZnO and ZnO(Ga) samples with different gallium content were prepared by wet-chemical method. Introduction of gallium leads to the increase of amount of weak acid sites such as surface hydroxyl groups. Gas sensing properties toward 0.22 ppm H2S and NO2 were studied at 100450 °C by DC conductance measurements. The optimal temperature for gas sensing experiments was determined. Sensor signal toward H2S decreases with increase of Ga concentration. The dependence of ZnO(Ga) sensor signal to NO2 on the gallium content has non-monotonous character, which correlates with the change of conductivity of the samples in air and concentration of paramagnetic donor states.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lausanne Editor
  Language Wos 000319488800075 Publication Date 2013-03-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.401 Times cited 42 Open Access
  Notes (up) Hercules; FWO Approved Most recent IF: 5.401; 2013 IF: 3.840
  Call Number UA @ lucian @ c:irua:107346 Serial 2250
Permanent link to this record
 

 
Author Kolchina, L. M.; Lyskov, N.V.; Kuznetsov, A.N.; Kazakov, S.M.; Galin, M.Z.; Meledin, A.; Abakumov, A.M.; Bredikhin, S.I.; Mazo, G.N.; Antipov, E.V.
  Title Evaluation of Ce-doped Pr2CuO4for potential application as a cathode material for solid oxide fuel cells Type A1 Journal article
  Year 2016 Publication RSC advances Abbreviated Journal Rsc Adv
  Volume 6 Issue 6 Pages 101029-101037
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Pr2−xCexCuO4 (x = 0.05; 0.1; 0.15) samples were synthesized and systematically characterized towards application as a cathode material for solid oxide fuel cells (SOFCs). High-temperature electrical conductivity, thermal expansion, and electrocatalytic activity in the oxygen reduction reaction (ORR) were examined. The electrical conductivity of Pr2−xCexCuO4 oxides demonstrates semiconducting behavior up to 900 °C. Small Ce-doping (2.5 at%) allows an increase in electrical conductivity from 100 to 130 S cm−1 in air at 500–800 °C. DFT calculations revealed that the density of states directly below the Fermi level, comprised mainly of Cu 3d and O 2p states, is significantly affected by atoms in rare earth positions, which might give an indication of a correlation between calculated electronic structures and measured conducting properties. Ce-doping in Pr2−xCexCuO4 slightly increases TEC from 11.9 × 10−6 K−1 for x = 0 to 14.2 × 10−6 K−1 for x = 0.15. Substitution of 2.5% of Pr atoms in Pr2CuO4 by Ce is effective to enhance the electrochemical performance of the material as a SOFC cathode in the ORR (ASR of Pr1.95Ce0.05CuO4 electrode applied on Ce0.9Gd0.1O1.95 electrolyte is 0.39 Ω cm2 at 750 °C in air). The peak power density achieved for the electrolyte-supported fuel cell with the Pr1.95Ce0.05CuO4 cathode is 150 mW cm−2 at 800 °C
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000387427700044 Publication Date 2016-10-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.108 Times cited 7 Open Access
  Notes (up) his work was partially supported by Russian Foundation for Basic Research (grant no. 153820247), Skolkovo Institute of Science and Technology (Center of electrochemical energy), and MSUdevelopment Program up to 2020. K.L.M. is grateful to Haldor Topsøe A/S for the financial support. Approved Most recent IF: 3.108
  Call Number EMAT @ emat @ c:irua:136441 Serial 4296
Permanent link to this record
 

 
Author Prabhakara, V.; Nuytten, T.; Bender, H.; Vandervorst, W.; Bals, S.; Verbeeck, J.
  Title Linearized radially polarized light for improved precision in strain measurements using micro-Raman spectroscopy Type A1 Journal article
  Year 2021 Publication Optics Express Abbreviated Journal Opt Express
  Volume 29 Issue 21 Pages 34531
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Strain engineering in semiconductor transistor devices has become vital in the semiconductor industry due to the ever-increasing need for performance enhancement at the nanoscale. Raman spectroscopy is a non-invasive measurement technique with high sensitivity to mechanical stress that does not require any special sample preparation procedures in comparison to characterization involving transmission electron microscopy (TEM), making it suitable for inline strain measurement in the semiconductor industry. Indeed, at present, strain measurements using Raman spectroscopy are already routinely carried out in semiconductor devices as it is cost effective, fast and non-destructive. In this paper we explore the usage of linearized radially polarized light as an excitation source, which does provide significantly enhanced accuracy and precision as compared to linearly polarized light for this application. Numerical simulations are done to quantitatively evaluate the electric field intensities that contribute to this enhanced sensitivity. We benchmark the experimental results against TEM diffraction-based techniques like nano-beam diffraction and Bessel diffraction. Differences between both approaches are assigned to strain relaxation due to sample thinning required in TEM setups, demonstrating the benefit of Raman for nondestructive inline testing.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000708940500144 Publication Date 2021-10-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1094-4087 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.307 Times cited 2 Open Access OpenAccess
  Notes (up) Horizon 2020 Framework Programme, 823717 – ESTEEM3 ; GOA project, “Solarpaint” ; Herculesstichting;; esteem3jra; esteem3reported; Approved Most recent IF: 3.307
  Call Number EMAT @ emat @c:irua:182472 Serial 6816
Permanent link to this record
 

 
Author Li, C.; Sanli, E.S.; Barragan-Yani, D.; Stange, H.; Heinemann, M.-D.; Greiner, D.; Sigle, W.; Mainz, R.; Albe, K.; Abou-Ras, D.; van Aken, P. A.
  Title Secondary-Phase-Assisted Grain Boundary Migration in CuInSe2 Type A1 Journal article
  Year 2020 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett
  Volume 124 Issue 9 Pages 095702
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Significant structural evolution occurs during the deposition of CuInSe2 solar materials when the Cu content increases. We use in situ heating in a scanning transmission electron microscope to directly observe how grain boundaries migrate during heating, causing nondefected grains to consume highly defected grains. Cu substitutes for In in the near grain boundary regions, turning them into a Cu-Se phase topotactic with the CuInSe2 grain interiors. Together with density functional theory and molecular dynamics calculations, we reveal how this Cu-Se phase makes the grain boundaries highly mobile.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000518464200009 Publication Date 2020-03-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.6 Times cited Open Access OpenAccess
  Notes (up) Horizon 2020 Framework Programme, 823717—ESTEEM3 ; Max-Planck-Gesellschaft; Helmholtz Virtual Institute; Approved Most recent IF: 8.6; 2020 IF: 8.462
  Call Number UA @ lucian @c:irua:167699 Serial 6393
Permanent link to this record
 

 
Author Veronesi, S.; Pfusterschmied, G.; Fabbri, F.; Leitgeb, M.; Arif, O.; Esteban, D.A.; Bals, S.; Schmid, U.; Heun, S.
  Title 3D arrangement of epitaxial graphene conformally grown on porousified crystalline SiC Type A1 Journal article
  Year 2022 Publication Carbon Abbreviated Journal Carbon
  Volume 189 Issue Pages 210-218
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000760358800008 Publication Date 2021-12-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 10.9 Times cited 3 Open Access OpenAccess
  Notes (up) Horizon 2020; European Commission; Horizon 2020 Framework Programme; European Research Council, 128 731 019 ; European Research Council, REALNANO 815 128 ; sygmaSB Approved Most recent IF: 10.9
  Call Number EMAT @ emat @c:irua:186583 Serial 6952
Permanent link to this record
 

 
Author Kovnir, K.A.; Abramchuk, N.S.; Zaikina, J.V.; Baitinger, M.; Burkhardt, U.; Schnelle, W.; Olenev, A.V.; Lebedev, O.I.; Van Tendeloo, G.; Dikarev, E.V.; Shevelkov, A.V.
  Title Ge40.0Te5.3I8: synthesis, crystal structure, and properties of a new clathrate-I compound Type A1 Journal article
  Year 2006 Publication Zeitschrift für Kristallographie Abbreviated Journal Z Krist-Cryst Mater
  Volume 221 Issue 5/7 Pages 527-532
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication München Editor
  Language Wos 000239321400026 Publication Date 2006-07-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2196-7105;2194-4946; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.179 Times cited 16 Open Access
  Notes (up) Hprn-Ct Approved Most recent IF: 3.179; 2006 IF: NA
  Call Number UA @ lucian @ c:irua:60122 Serial 3534
Permanent link to this record
 

 
Author Bittencourt, C.; Felten, A.; Ghijsen, J.; Pireaux, J.-J.; Drube, W.; Erni, R.; Van Tendeloo, G.
  Title Decorating carbon nanotubes with nickel nanoparticles Type A1 Journal article
  Year 2007 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett
  Volume 436 Issue 4/6 Pages 368-372
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000245302000013 Publication Date 2007-01-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.815 Times cited 78 Open Access
  Notes (up) Ia-Sfs; Pai 5/1 Approved Most recent IF: 1.815; 2007 IF: 2.207
  Call Number UA @ lucian @ c:irua:64310 Serial 611
Permanent link to this record
 

 
Author Zelaya, E.; Schryvers, D.; Tolley, A.; Fitchner, P.F.P.
  Title Cavity nucleation and growth in Cu-Zn-Al irradiated with Cu+ ions at different temperatures Type A1 Journal article
  Year 2010 Publication Intermetallics Abbreviated Journal Intermetallics
  Volume 18 Issue 4 Pages 493-498
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The effects of high dose ion irradiation in β CuZnAl were investigated between room temperature and 150 °C. Single crystal samples with surface normal close to [001]β were irradiated with 300 keV Cu+ ions. Microstructural changes were characterized using transmission electron microscopy. Irradiation induced cavities located on the surface exposed to the irradiation were observed. The morphology, size and density distribution of these cavities were analyzed as a function of different irradiation conditions. The shape and location of the cavities with respect to the irradiation surface were not affected by irradiation temperature or irradiation dose. Instead, the cavity size distribution showed a bi-modal shape for a dose of 15 dpa, regardless of irradiation temperature. For a dose of 30 dpa the bi-modal distribution was only observed after room temperature irradiation. The diffusion effects of vacancies produced by irradiation are analyzed in shape memory CuZnAl alloys, which main characteristic is the diffusionless martensitic transformation. Particularly, the cavity size distributions were analyzed in terms of nucleation, growth and coalescence.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Chicago, Ill. Editor
  Language Wos 000276058200014 Publication Date 2009-10-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0966-9795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.14 Times cited 1 Open Access
  Notes (up) Iaea Approved Most recent IF: 3.14; 2010 IF: 2.335
  Call Number UA @ lucian @ c:irua:80924 Serial 302
Permanent link to this record
 

 
Author Narayanan, V.; Lommens, P.; De Buysser, K.; Vanpoucke, D.E.P.; Huehne, R.; Molina, L.; Van Tendeloo, G.; van der Voort, P.; Van Driessche, I.
  Title Aqueous CSD approach for the growth of novel, lattice-tuned LaxCe1-xO\delta epitaxial layers Type A1 Journal article
  Year 2012 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
  Volume 22 Issue 17 Pages 8476-8483
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Lanthanumcerium oxide (LCO) films were deposited on Ni-5%W substrates by chemical solution deposition (CSD) from water-based precursors. LCO films containing different ratios of lanthanum and cerium ions (from CeO2 to La2Ce2O7) were prepared. The composition of the layers was optimized towards the formation of LCO buffer layers, lattice-matched with the superconducting YBa2Cu3Oy layer, useful for the development of coated conductors. Single, crack-free LCO layers with a thickness of up to 140 nm could be obtained in a single deposition step. The crystallinity and microstructure of these lattice-matched LCO layers were studied by X-ray diffraction techniques, RHEED and SEM. We find that only layers with thickness below 100 nm show a crystalline top surface although both thick and thin layers show good biaxial texture in XRD. On the most promising layers, AFM and (S)TEM were performed to further evaluate their morphology. The overall surface roughness varies between 3.9 and 7.5 nm, while the layers appear much more dense than the frequently used La2Zr2O7 (LZO) systems, showing much smaller nanovoids (12 nm) than the latter system. Their effective buffer layer action was studied using XPS. The thin LCO layers supported the growth of superconducting YBCO deposited using PLD methods.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000302367500044 Publication Date 2012-03-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 24 Open Access
  Notes (up) Iap Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:96960 Serial 148
Permanent link to this record
 

 
Author Bittencourt, C.; Navio, C.; Nicolay, A.; Ruelle, B.; Godfroid, T.; Snyders, R.; Colomer, J.-F.; Lagos, M.J.; Ke, X.; Van Tendeloo, G.; Suarez-Martinez, I.; Ewels, C.P.
  Title Atomic oxygen functionalization of vertically aligned carbon nanotubes Type A1 Journal article
  Year 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 115 Issue 42 Pages 20412-20418
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Vertically aligned multiwalled carbon nanotubes (v-MWCNTs) are functionalized using atomic oxygen generated in a microwave plasma. X-ray photoelectron spectroscopy depth profile analysis shows that the plasma treatment effectively grafts oxygen exclusively at the v-MWCNT tips. Electron microscopy shows that neither the vertical alignment nor the structure of v-MWCNTs were affected by the plasma treatment. Density functional calculations suggest assignment of XPS C 1s peaks at 286.6 and 287.5 eV, to epoxy and carbonyl functional groups, respectively.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000296205600009 Publication Date 2011-10-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 31 Open Access
  Notes (up) Iap Approved Most recent IF: 4.536; 2011 IF: 4.805
  Call Number UA @ lucian @ c:irua:91890 Serial 174
Permanent link to this record
 

 
Author Tikhomirov, A.S.; Sorokina, N.E.; Shornikova, O.N.; Morozov, V.A.; Van Tendeloo, G.; Avdeev, V.V.
  Title The chemical vapor infiltration of exfoliated graphite to produce carbon/carbon composites Type A1 Journal article
  Year 2011 Publication Carbon Abbreviated Journal Carbon
  Volume 49 Issue 1 Pages 147-153
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Chemical vapor infiltration was used for the production of carbon/carbon composites based on exfoliated graphite and pyrolytic carbon Two different exfoliated graphites compacted to densities of 0 05-0 4 g/cm(3) were used as a preform The influence of the synthesis conditions (temperature, pressure, time etc) on the degree of infiltration, the pyrolytic carbon morphology and the C/C composite characteristics was examined using Raman spectroscopy, scanning electron microscopy and low-temperature nitrogen adsorption (C) 2010 Elsevier Ltd All rights reserved
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000284977500021 Publication Date 2010-09-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.337 Times cited 7 Open Access
  Notes (up) Iap Approved Most recent IF: 6.337; 2011 IF: 5.378
  Call Number UA @ lucian @ c:irua:99185 Serial 354
Permanent link to this record
 

 
Author Tarakina, N.V.; Zubkov, V.G.; Leonidov, I.I.; Tyutunnik, A.P.; Surat, L.L.; Hadermann, J.; Van Tendeloo, G.
  Title Crystal structure of the group of optical materials Ln2MeGe4O12 (Me = Ca, Mn) Type A1 Journal article
  Year 2009 Publication Zeitschrift für Kristallographie Abbreviated Journal
  Volume Issue S:30 Pages 401-406
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The crystal structure of the group of optical materials Ln2MeGe4O12, Ln = Eu, Gd, Dy-Lu, Y; Me = Ca, Mn and of the solid solution (Y1-xErx)2CaGe4O12 (x = 0 – 1), promising materials for photonics, has been studied in detail. The crystal structure of all compounds exhibit two alternating layers: one formed by Ln and Me atoms and another by cyclic [Ge4O12]8- anions.
  Address
  Corporate Author Thesis
  Publisher Place of Publication München Editor
  Language Wos 000271325700028 Publication Date 2009-08-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0930-486X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 7 Open Access
  Notes (up) Iap Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:79988 Serial 575
Permanent link to this record
 

 
Author Navío, C.; Vallejos, S.; Stoycheva, T.; Llobet, E.; Correig, X.; Snyders, R.; Blackman, C.; Umek, P.; Ke, X.; Van Tendeloo, G.; Bittencourt, C.;
  Title Gold clusters on WO3 nanoneedles grown via AACVD : XPS and TEM studies Type A1 Journal article
  Year 2012 Publication Materials chemistry and physics Abbreviated Journal Mater Chem Phys
  Volume 134 Issue 2/3 Pages 809-813
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We have prepared tungsten oxide films decorated with gold particles on Si substrates by aerosol assisted chemical vapor deposition (AACVD) and characterized them using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). SEM shows that the films are composed of needle-like structures and TEM shows that both the needles and the gold particles are crystalline. XPS indicates the presence of oxygen vacancies, i.e. the films are WO3−x, and hence the deposited material is composed of semiconducting nanostructures and that the interaction between the gold particles and the WO3 needles surface is weak. The synthesis of semiconducting tungsten oxide nanostructures decorated with metal particles represents an important step towards the development of sensing devices with optimal properties.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lausanne Editor
  Language Wos 000305918200038 Publication Date 2012-04-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0254-0584; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.084 Times cited 52 Open Access
  Notes (up) Iap Approved Most recent IF: 2.084; 2012 IF: 2.072
  Call Number UA @ lucian @ c:irua:97705 Serial 1356
Permanent link to this record
 

 
Author Amin-Ahmadi, B.; Idrissi, H.; Delmelle, R.; Pardoen, T.; Proost, J.; Schryvers, D.
  Title High resolution transmission electron microscopy characterization of fcc -> 9R transformation in nanocrystalline palladium films due to hydriding Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 102 Issue 7 Pages 071911-71914
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Sputtered nanocrystalline palladium thin films with nanoscale growth twins have been subjected to hydriding cycles. The evolution of the twin boundaries has been investigated using high resolution transmission electron microscopy. Surprisingly, the Sigma 3{112} incoherent twin boundaries dissociate after hydriding into two phase boundaries bounding a 9R phase. This phase which corresponds to single stacking faults located every three {111} planes in the fcc Pd structure was not expected because of the high stacking fault energy of Pd. This observation is connected to the influence of the Hydrogen on the stacking fault energy of palladium and the high compressive stresses building up during hydriding. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793512]
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000315596700023 Publication Date 2013-02-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 14 Open Access
  Notes (up) Iap Approved Most recent IF: 3.411; 2013 IF: 3.515
  Call Number UA @ lucian @ c:irua:108303 Serial 1462
Permanent link to this record
 

 
Author Colla, M.-S.; Wang, B.; Idrissi, H.; Schryvers, D.; Raskin, J.-P.; Pardoen, T.
  Title High strength-ductility of thin nanocrystalline palladium films with nanoscale twins : on-chip testing and grain aggregate model Type A1 Journal article
  Year 2012 Publication Acta materialia Abbreviated Journal Acta Mater
  Volume 60 Issue 4 Pages 1795-1806
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The mechanical behaviour of thin nanocrystalline palladium films with an ∼30 nm in plane grain size has been characterized on chip under uniaxial tension. The films exhibit a large strain hardening capacity and a significant increase in the strength with decreasing thickness. Transmission electron microscopy has revealed the presence of a moderate density of growth nanotwins interacting with dislocations. A semi-analytical grain aggregate model is proposed to investigate the impact of different contributions to the flow behaviour, involving the effect of twins, of grain size and of the presence of a thin surface layer. This model provides guidelines to optimizing the strength/ductility ratio of the films.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000301989500035 Publication Date 2012-02-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.301 Times cited 38 Open Access
  Notes (up) Iap Approved Most recent IF: 5.301; 2012 IF: 3.941
  Call Number UA @ lucian @ c:irua:94213 Serial 1465
Permanent link to this record
 

 
Author Savchenko, D.V.; Serdan, A.A.; Morozov, V.A.; Van Tendeloo, G.; Ionov, S.G.
  Title Improvement of the oxidation stability and the mechanical properties of flexible graphite foil by boron oxide impregnation Type A1 Journal article
  Year 2012 Publication New carbon materials Abbreviated Journal
  Volume 27 Issue 1 Pages 12-18
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Flexible graphite foil produced by rolling expanded graphite impregnated with boron oxide was analyzed by laser mass spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and thermogravimetry. It was shown that the modification of the graphite foil by boron oxide increases the onset temperature of oxidation by ∼ 150 °C. Impregnation of less than 2 mass% boron oxide also increased the tensile strength of the materials. The observed improvement was attributed to the blocking of active sites by boron oxide, which is probably chemically bonded to the edges of graphene sheets in expanded graphite particles.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000304742100002 Publication Date 2012-03-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1872-5805; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 5 Open Access
  Notes (up) Iap Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:96958 Serial 1569
Permanent link to this record
 

 
Author Tarakina, N.V.; Denisova, T.A.; Maksimova, L.G.; Baklanova, Y.V.; Tyutyunnik, A.P.; Berger, I.F.; Zubkov, V.G.; Van Tendeloo, G.
  Title Investigation of stacking disorder in Li2SnO3 Type A1 Journal article
  Year 2009 Publication Zeitschrift für Kristallographie Abbreviated Journal
  Volume Issue S:30 Pages 375-380
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A crystal structure investigation of the low temperature Li2SnO3 modification has been carried out. X-ray, neutron powder and electron diffraction data showed that this compound crystallizes in a monoclinic unit cell with parameters: a = 5.3033(2)Å, b = 9.1738(3)Å, c = 10.0195(2)Å, β ~ 100.042(2)º and has stacking disorder along the c-axis. Simulation of diffraction patterns with different stacking faults mainly reveal the presence of rotational stacking faults with a probability of about 40% .
  Address
  Corporate Author Thesis
  Publisher Place of Publication München Editor
  Language Wos 000271325700024 Publication Date 2009-08-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0930-486X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 16 Open Access
  Notes (up) Iap Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:79987 Serial 1735
Permanent link to this record
 

 
Author Idrissi, H.; Ryelandt, L.; Veron, M.; Schryvers, D.; Jacques, P.J.
  Title Is there a relationship between the stacking fault character and the activated mode of plasticity of FeMn-based austenitic steels? Type A1 Journal article
  Year 2009 Publication Scripta materialia Abbreviated Journal Scripta Mater
  Volume 60 Issue 11 Pages 941-944
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract By changing the testing temperature, an austenitic FeMnAlSi alloy presents either å-martensite transformation or mechanical twinning during straining. In order to understand the nucleation and growth mechanisms involved in both phenomena, defects and particularly stacking faults, were characterized by transmission electron microscopy. It is observed that the character of the stacking faults also changes (from extrinsic to intrinsic) together with the temperature and the activated mode of plasticity.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000265359900005 Publication Date 2009-02-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.747 Times cited 84 Open Access
  Notes (up) Iap Approved Most recent IF: 3.747; 2009 IF: 2.949
  Call Number UA @ lucian @ c:irua:77276 Serial 1751
Permanent link to this record
 

 
Author Tirry, W.; Coghe, F.; Bouvier, S.; Gasperini, M.; Rabet, L.; Schryvers, D.
  Title A multi-scale characterization of deformation twins in Ti6Al4V sheet material deformed by simple shear Type A1 Journal article
  Year 2010 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct
  Volume 527 Issue 16/17 Pages 4136-4145
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Ti6Al4V sheet material is subjected to simple shear deformation with strain ratio's of 10%, 30% and 50%. Optical microscopy, transmission electron microscopy and electron backscatter diffraction techniques are applied to study the presence and morphology of deformation twins. Only the View the MathML source type of twins seems to be present with a volume fraction below 1%. These View the MathML source twins show a high density of basal stacking faults of the ABABACAC type identified using atomic resolution transmission electron microscopy. A resolved shear stress analysis shows that twins most often occur on those planes with the highest resolved shear stresses, but that the starting texture is not beneficial for the occurrence of twins. It is further suggested that a transitory strain hardening regime observed around 530 MPa might be related with the onset of twinning.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lausanne Editor
  Language Wos 000278766800068 Publication Date 2010-03-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0921-5093; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.094 Times cited 20 Open Access
  Notes (up) Iap Approved Most recent IF: 3.094; 2010 IF: 2.101
  Call Number UA @ lucian @ c:irua:82291 Serial 2212
Permanent link to this record
 

 
Author Chen, L.-H.; Li, X.-Y.; Tian, G.; Li, Y.; Tan, H.-Y.; Van Tendeloo, G.; Zhu, G.-S.; Qiu, S.-L.; Yang, X.-Y.; Su, B.-L.
  Title Multimodal zeolite-beta-based catalysts with a hierarchical, three-level pore structure Type A1 Journal article
  Year 2011 Publication Chemsuschem Abbreviated Journal Chemsuschem
  Volume 4 Issue 10 Pages 1452-1456
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Hole diggers: The hierarchically structured porous solid-acid catalyst described in this report possess a remarkable pore system, encompassing well-defined macrochannels, interconnected mesopores, intracrystalline mesopores, and tunable zeolite micropores. Importantly, the catalyst exhibits very strong acidity and superior catalytic activity for esterification reactions.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000296497400009 Publication Date 2011-08-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1864-5631; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.226 Times cited 33 Open Access
  Notes (up) Iap Approved Most recent IF: 7.226; 2011 IF: 6.827
  Call Number UA @ lucian @ c:irua:93675 Serial 2223
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: