Number of records found: 1297
 | 
Citations
 | 
   web
Applications of plasma-liquid systems : a review”. Rezaei F, Vanraes P, Nikiforov A, Morent R, De Geyter N, Materials 12, 2751 (2019). http://doi.org/10.3390/MA12172751
toggle visibility
Ceramide cross-linking leads to pore formation: Potential mechanism behind CAP enhancement of transdermal drug delivery”. Van der Paal J, Fridman G, Bogaerts A, Plasma processes and polymers 16, 1900122 (2019). http://doi.org/10.1002/PPAP.201900122
toggle visibility
Trenchev G (2019) Computational modelling of atmospheric DC discharges for CO2 conversion. 206 p
toggle visibility
Direct methane conversion to methanol on M and MN4 embedded graphene (M = Ni and Si): a comparative DFT study”. Nematollahi P, Neyts EC, Applied surface science 496, 143618 (2019). http://doi.org/10.1016/J.APSUSC.2019.143618
toggle visibility
Van der Paal J (2019) Generation, transport and molecular interactions of reactive species in plasma medicine. 237 p
toggle visibility
Vets C (2020) Growth properties of carbon nanomaterials : towards tuning for electronic applications. 130 p
toggle visibility
Heavily phosphorus doped germanium : strong interaction of phosphorus with vacancies and impact of tin alloying on doping activation”. Vohra A, Khanam A, Slotte J, Makkonen I, Pourtois G, Porret C, Loo R, Vandervorst W, Journal of applied physics 125, 225703 (2019). http://doi.org/10.1063/1.5107503
toggle visibility
How membrane lipids influence plasma delivery of reactive oxygen species into cells and subsequent DNA damage : an experimental and computational study”. Van der Paal J, Hong S-H, Yusupov M, Gaur N, Oh J-S, Short RD, Szili EJ, Bogaerts A, Physical chemistry, chemical physics 21, 19327 (2019). http://doi.org/10.1039/C9CP03520F
toggle visibility
Material relaxation in chalcogenide OTS SELECTOR materials”. Clima S, Garbin D, Devulder W, Keukelier J, Opsomer K, Goux L, Kar GS, Pourtois G, Microelectronic engineering 215, 110996 (2019). http://doi.org/10.1016/J.MEE.2019.110996
toggle visibility
Non-thermal plasma accelerates astrocyte regrowth and neurite regeneration following physical trauma in vitro”. Katiyar KS, Lin A, Fridman A, Keating CE, Cullen DK, Miller V, Applied Sciences 9, 3747 (2019). http://doi.org/10.3390/APP9183747
toggle visibility
Non-thermal plasma-induced immunogenic cell death in cancer”. Khalili M, Daniels L, Lin A, Krebs FC, Snook AE, Bekeschus S, Bownel WB, Miller V, Journal of physics: D: applied physics 52, 423001 (2019). http://doi.org/10.1088/1361-6463/AB31C1
toggle visibility
Reactivity and stability of plasma-generated oxygen and nitrogen species in buffered water solution: a computational study”. Heirman P, Van Boxem W, Bogaerts A, Physical chemistry, chemical physics 21, 12881 (2019). http://doi.org/10.1039/C9CP00647H
toggle visibility
Chuon S (2019) Simulation numérique multi-échelles du procédé de dépôt par pulvérisation cathodique magnétron. 137 p
toggle visibility
The effects of electron surface interactions in geometrically symmetric capacitive RF plasmas in the presence of different electrode surface materials”. Sun J-Y, Wen D-Q, Zhang Q-Z, Liu Y-X, Wang Y-N, Physics of plasmas 26, 063505 (2019). http://doi.org/10.1063/1.5094100
toggle visibility
Electroactivity of superoxide anion in aqueous phosphate buffers analyzed with platinized microelectrodes”. Lefrancois P, Girard-Sahun F, Badets V, Clement F, Arbault S, Electroanalysis (2020). http://doi.org/10.1002/ELAN.202060456
toggle visibility
Vermeiren V (2020) Chemical kinetics modeling of non-equilibrium and thermal effects in vibrationally active CO2 plasmas. 207 p
toggle visibility
Nematollahi P (2020) Density functional theory calculations for understanding gas conversion reactions on single metal atom embedded carbon-based nanocatalysts. 173 p
toggle visibility
Zhang H (2020) Optical diagnostics of spatiotemporal evolution characteristics of nanosecond laser-induced plasma in gases. 117 p
toggle visibility
Heijkers S (2020) Plasma chemistry modelling for CO2 and CH4 conversion in various plasma types. 316 p
toggle visibility
Jafarzadeh A (2020) First-principle studies of plasma-catalyst interactions for greenhouse gas conversion. 163 p
toggle visibility
Identifying alternative ferroelectric materials beyond Hf(Zr)O-₂”. Guo J, Clima S, Pourtois G, Van Houdt J, Applied Physics Letters 117, 262903 (2020). http://doi.org/10.1063/5.0028611
toggle visibility
Investigation of active species in low-pressure capacitively coupled N-2/Ar plasmas”. Liang Y-S, Xue C, Zhang Y-R, Wang Y-N, Physics Of Plasmas 28, 013510 (2021). http://doi.org/10.1063/5.0031120
toggle visibility
Ranjbar S (2020) Mathematical model of plasma therapy on bacterial growth. 95 p
toggle visibility
Modeling the CO2 dissociation in pulsed atmospheric-pressure discharge”. Kolev S, Paunska T, Trenchev G, Bogaerts A, Technologies , 012007 (2020). http://doi.org/10.1088/1742-6596/1492/1/012007
toggle visibility
Modeling the physicochemical properties of natural deep eutectic solvents : a review”. Kovács A, Billen P, Cornet I, Wijnants M, Neyts EC, Chemsuschem 13, 3789 (2020). http://doi.org/10.1002/CSSC.202000286
toggle visibility
Plasma medicine technologies”. Kaushik NK, Bekeschus S, Tanaka H, Lin A, Choi EH, Applied Sciences-Basel 11, 4584 (2021). http://doi.org/10.3390/APP11104584
toggle visibility
Plasma propagation in a single bead DBD reactor at different dielectric constants : insights from fluid modelling”. Wang W, Butterworth T, Bogaerts A, Journal Of Physics D-Applied Physics 54, 214004 (2021). http://doi.org/10.1088/1361-6463/ABE8FF
toggle visibility
Probing the impact of material properties of core-shell SiO₂@TiO₂, spheres on the plasma-catalytic CO₂, dissociation using a packed bed DBD plasma reactor”. Kaliyappan P, Paulus A, D’Haen J, Samyn P, Uytdenhouwen Y, Hafezkhiabani N, Bogaerts A, Meynen V, Elen K, Hardy A, Van Bael MK, Journal Of Co2 Utilization 46, 101468 (2021). http://doi.org/10.1016/J.JCOU.2021.101468
toggle visibility
Uytdenhouwen Y (2020) Tuning the performance of a DBD plasma reactor for CO2 reforming. 303 p
toggle visibility
Breakdown of universal scaling for nanometer-sized bubbles in graphene”. Villarreal R, Lin P-C, Faraji F, Hassani N, Bana H, Zarkua Z, Nair MN, Tsai H-C, Auge M, Junge F, Hofsaess HC, De Gendt S, De Feyter S, Brems S, Ahlgren EH, Neyts EC, Covaci L, Peeters FM, Neek-Amal M, Pereira LMC, Nano Letters 21, 8103 (2021). http://doi.org/10.1021/ACS.NANOLETT.1C02470
toggle visibility