|   | 
Details
   web
Records
Author Marikutsa, A.; Krivetskiy, V.; Yashina, L.; Rumyantseva, M.; Konstantinova, E.; Ponzoni, A.; Comini, E.; Abakumov, A.; Gaskov, A.
Title Catalytic impact of RuOx clusters to high ammonia sensitivity of tin dioxide Type A1 Journal article
Year 2012 Publication Sensors and actuators : B : chemical T2 – 25th Eurosensors Conference, SEP 04-07, 2011, Athens, GREECE Abbreviated Journal Sensor Actuat B-Chem
Volume 175 Issue Pages 186-193
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A comparative study of NH3-sensing performance of blank and modified nanocrystal line SnO2 was performed. Tin dioxide modified by ruthenium displayed the highest ammonia sensitivity with a maximum signal at 200 degrees C. The modifier was shown by XPS and EPR to occur in a mixed valence state of oxidized ruthenium distributed between the surface and bulk of tin dioxide nanocrystals. RuOx clustering on SnO2 surface was detected by means of electron microscopy assisted EDX-mapping. The effect of RuOx on tin dioxide interaction with ammonia was studied by temperature-programmed NH3 desorption, simultaneous Kelvin probe and DC-resistance measurements, EPR spectroscopy and analyses of the gas-solid interaction products. The modifier was shown to promote the materials reactivity to NH3 due to the catalytic activity of RuOx. The interaction with ammonia resulted in dipoles formation on the oxide surface along with reducing the grains net surface charge, established from the electron affinity increase and resistance decrease during NH3 exposure. The RuOx-catalyzed gas-solid interaction was deduced to proceed deeper than in the case of non-modified SnO2 and to yield nitrogen oxides (e.g. NO2), as was suggested by the oxidative character of gaseous products of NH3 interaction with RuOx-modified tin dioxide at 200 degrees C. (C) 2012 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000312358700033 Publication Date 2012-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited 20 Open Access
Notes (up) Approved Most recent IF: 5.401; 2012 IF: 3.535
Call Number UA @ lucian @ c:irua:105985 Serial 293
Permanent link to this record
 

 
Author Gasparotto, A.; Barreca, D.; Fornasiero, P.; Gombac, V.; Lebedev, O.; Maccato, C.; Montini, T.; Tondello, E.; Van Tendeloo, G.; Comini, E.; Sberveglieri, G.
Title Multi-functional copper oxide nanosystems for H2 sustainable production and sensing Type A2 Journal article
Year 2009 Publication ECS transactions Abbreviated Journal
Volume 25 Issue 8 Pages 1169-1176
Keywords A2 Journal article; Electron microscopy for materials research (EMAT)
Abstract This work focuses on the use of tailored copper oxide nanoarchitectures as multi-functional materials for the sustainable production of hydrogen and its on-line detection. An innovative copper(II) precursor, Cu(hfa)2TMEDA, was adopted in the CVD of CuxO (x=1,2) nanosystems under both O2 and O2+H2O atmospheres on Si(100) and Al2O3 substrates. A multi-technique characterization indicates that both the phase composition (from Cu2O to CuO) and morphology (from continuous films to entangled quasi-1D nanosystems) can be tailored by varying the growth temperature and reaction atmosphere. The obtained CuxO nanodeposits are active in the photocatalytic H2 production from aqueous solutions under UV-Vis irradiation and display interesting gas sensing performances towards hydrogen detection even at moderate temperatures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1938-5862 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes (up) Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:81872 Serial 2211
Permanent link to this record
 

 
Author Simon, Q.; Barreca, D.; Bekermann, D.; Gasparotto, A.; Maccato, C.; Comini, E.; Gombac, V.; Fornasiero, P.; Lebedev, O.I.; Turner, S.; Devi, A.; Fischer, R.A.; Van Tendeloo, G.
Title Plasma-assisted synthesis of Ag/ZnO nanocomposites : first example of photo-induced H2 production and sensing Type A1 Journal article
Year 2011 Publication International journal of hydrogen energy Abbreviated Journal Int J Hydrogen Energ
Volume 36 Issue 24 Pages 15527-15537
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Ag/ZnO nanocomposites were developed by a plasma-assisted approach. The adopted strategy exploits the advantages of Plasma Enhanced-Chemical Vapor Deposition (PE-CVD) for the growth of columnar ZnO arrays on Si(100) and Al2O3 substrates, in synergy with the infiltration power of the Radio Frequency (RF)-sputtering technique for the subsequent dispersion of different amounts of Ag nanoparticles (NPs). The resulting composites, both as-prepared and after annealing in air, were thoroughly characterized with particular attention on their morphological organization, structure and composition. For the first time, the above systems have been used as catalysts in the production of hydrogen by photo-reforming of alcoholic solutions, yielding a stable H2 evolution even by the sole use of simulated solar radiation. In addition, Ag/ZnO nanocomposites presented an excellent response in the gas-phase detection of H2, opening attractive perspectives for advanced technological applications.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000297089700006 Publication Date 2011-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-3199; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.582 Times cited 62 Open Access
Notes (up) Esteem 026019; Fwo Approved Most recent IF: 3.582; 2011 IF: 4.054
Call Number UA @ lucian @ c:irua:91901 Serial 2627
Permanent link to this record