toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sun, S. openurl 
  Title Study of carbon dioxide dissociation mechanisms in a gliding arc discharge Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Beihang University, School of Astronautics Place of Publication Beijing Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:149824 Serial 4950  
Permanent link to this record
 

 
Author Bal, K. url  openurl
  Title New ways to bridge the gap between microscopic simulations and macroscopic chemistry Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:154836 Serial 5118  
Permanent link to this record
 

 
Author Verlackt, C. pdf  openurl
  Title The behavior of plasma-generated reactive species in plasma medicine Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:155115 Serial 5079  
Permanent link to this record
 

 
Author Razzokov, J. url  openurl
  Title Molecular level simulations for plasma medicine applications Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 173 p.  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:159654 Serial 5277  
Permanent link to this record
 

 
Author Trenchev, G. pdf  openurl
  Title Computational modelling of atmospheric DC discharges for CO2 conversion Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 206 p.  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:163986 Serial 6290  
Permanent link to this record
 

 
Author Van der Paal, J. url  openurl
  Title Generation, transport and molecular interactions of reactive species in plasma medicine Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 237 p.  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:162591 Serial 6297  
Permanent link to this record
 

 
Author Vets, C. pdf  openurl
  Title Growth properties of carbon nanomaterials : towards tuning for electronic applications Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 130 p.  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:164737 Serial 6299  
Permanent link to this record
 

 
Author Chuon, S. url  openurl
  Title Simulation numérique multi-échelles du procédé de dépôt par pulvérisation cathodique magnétron Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 137 p.  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:166091 Serial 6322  
Permanent link to this record
 

 
Author Vermeiren, V. url  openurl
  Title Chemical kinetics modeling of non-equilibrium and thermal effects in vibrationally active CO2 plasmas Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 207 p.  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:173385 Serial 6468  
Permanent link to this record
 

 
Author Nematollahi, P. url  openurl
  Title Density functional theory calculations for understanding gas conversion reactions on single metal atom embedded carbon-based nanocatalysts Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 173 p.  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169310 Serial 6481  
Permanent link to this record
 

 
Author Zhang, H. file  openurl
  Title Optical diagnostics of spatiotemporal evolution characteristics of nanosecond laser-induced plasma in gases Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 117 p.  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:171436 Serial 6572  
Permanent link to this record
 

 
Author Heijkers, S. url  openurl
  Title Plasma chemistry modelling for CO2 and CH4 conversion in various plasma types Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 316 p.  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:168055 Serial 6582  
Permanent link to this record
 

 
Author Jafarzadeh, A. url  openurl
  Title First-principle studies of plasma-catalyst interactions for greenhouse gas conversion Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 163 p.  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174073 Serial 6765  
Permanent link to this record
 

 
Author Ranjbar, S. file  openurl
  Title Mathematical model of plasma therapy on bacterial growth Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 95 p.  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:175471 Serial 6768  
Permanent link to this record
 

 
Author Uytdenhouwen, Y. url  openurl
  Title Tuning the performance of a DBD plasma reactor for CO2 reforming Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 303 p.  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174026 Serial 6774  
Permanent link to this record
 

 
Author van 't Veer, K.C. url  openurl
  Title Plasma kinetics modelling of nitrogen fixation : ammonia synthesis in dielectric barrier discharges with catalysts Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages 241 p.  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Ammonia (NH3) synthesis is crucial for the production of artificial fertilizer and is carried out through the Haber-Bosch process. With an energy consumption of 30 GJ/t-NH3 and the emission of 2 kg-CO2/kg-NH3, ammonia is the chemical with the largest environmental footprint. Haber-Bosch operates under high pressure and high temperature conditions. Plasma technology potentially allows greener ammonia production. Dielectric barrier discharges are a popular plasma source in which a catalyst is easily incorporated. The combination of plasma and catalyst can circumvent the harsh reaction conditions of the Haber-Bosch process. Plasma kinetics modelling is used to gain insight into the mechanisms of such plasma-catalytic systems. Special attention is given to the instantaneous power absorbed by the electrons, the relevant fraction of the microdischarges and the discharge volumes. The importance of vibrational excitation is investigated. Depending on the exact discharge conditions, it was found that both the strong microdischarges and vibrational excitation can be simultaneously important for the ammonia yield. The temporal behavior of filamentary dielectric barrier discharges was explicitly taken into account. Ammonia was found to decompose during the microdischarges due to electron impact dissociation. At the same time atomic nitrogen and other excited species are created. Those reactive species recombine to ammonia in the afterglow through various elementary Eley-Rideal and Langmuir-Hinshelwood surface reaction steps with a net ammonia gain. Finally, the concept of the fraction of microdischarges was generalized. It directly represents the efficiency with which the applied electric power is transferred to each individual particle in the plasma reactor. It is argued that any type of spatial or temporal non-uniformity of the plasma will cause unequal treatment of the gas molecules in the reactor, corresponding to a lower efficiency at which the power is transferred to the gas molecules. All of those insights aid in an increased understanding of plasma-catalytic ammonia synthesis as a potential green chemistry solution to the synthesis of ammonia on small scale.    
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:188246 Serial 7193  
Permanent link to this record
 

 
Author Zhang, L. openurl 
  Title Characteristic diagnosis of atmospheric discharge plasma and kinetics study of reactive species Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages XVIII, 148 p.  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Low-temperature plasma has received extensive attention due to its promising application prospects in the field of air pollutants degradation and energy conversion. To fulfill the need for particular applications, constructing stable plasma sources and investigating the interaction mechanisms between plasma and substances have been hot research topics. This thesis reports the diagnosis and improvement of plasma sources, diagnosis of the active species in plasma and a modeling study of chemical kinetics processes. The main research contents are as follows: In Chapter 3, a diffuse sine AC dielectric barrier discharge (DBD) is successfully obtained by optimizing the electrode structure. It is found that using double-layer dielectric plates can limit the discharge current intensity and significantly improve the discharge uniformity. The electrical characteristics and gas temperature with different operating time show that the discharge stability is also improved by using double-layer dielectric plates. In Chapter 4, nanosecond pulses are employed to generate diffuse DBD plasmas. Three main discharge stages are distinguished by ICCD images, i.e., the streamer breakdown from the needle tip to the plate electrode, the regime transition from streamer to diffuse plasma, and the propagation of surface discharge on the plate electrode surface. The chapter reveales that in nanosecond pulsed discharges the vibrational temperature of N2 increases with the discharge duration, while the rotational temperature mainly stays constant, which means electron energy is transferred into the vibrational levels, but gas heating is not obvious during the discharge pulse. In Chapter 5, both sine AC DBD and nanosecond pulsed DBD, studied in Chapter 2 and 3, are used for formaldehyde degradation. It is found that nanosecond pulsed DBD has more homogenous characteristics, better stability, and lower plasma gas temperature. Moreover, the energy consumption of nanosecond pulsed DBD is much lower than that of AC DBD. In Chapter 6, a 0D chemical kinetics model is developed to investigate the underlying plasma chemistry of methane dry reforming in a nanosecond pulsed discharge. An overview of the dominant reaction pathways of CO2 and CH4 conversion into the major products is given. Furthermore, most of the CO2 molecules are populated into vibrational states during the pulse. Hence, the vibrational states of CO2 play an important role in its dissociation process. In general, this PhD thesis contributes to a better insight in the mechanisms of sinusoidal AC DBD and nanosecond pulsed DBD plasmas and their applications, i.e., decomposition of formaldehyde and dry reforming of methane.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:183166 Serial 7605  
Permanent link to this record
 

 
Author Heyne, M.H. url  openurl
  Title Chemistry and plasma physics challenges for 2D materials technology Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 167 p.  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Transition-metal dichalcogenides such as MoS2 or WS2 are semiconducting materials with a layered structure. One single layer consists of a plane of metal atoms terminated on the top and bottom by the chalcogen atoms sulfur, selenium, or tellurium. These layers show strong in-plane covalent bonding, whereas the Van-der-Waals bonds in between adjacent layers are weak. Those weak bonds allow the microcleavage and extraction of a monolayer. Transistors built on such monolayer nanosheets are promising due to high electrostatic controllability in comparison to a bulk semiconductor. This is important for fast switching speed and low-power consumption in the OFF-state. Nonetheless, prototypes of such nanosheet transistors show non-idealities due to the fabrication process. Closed films on a large area cannot be obtained by mechanical exfoliation from mm-sized crystals. For wafer-level processing, synthetic growth methods are needed. It is a challenge to obtain a few layer thick crystals with large lateral grains or even without grain boundaries with synthetic growth techniques. This requires pre-conditioned monocrystalline substrates, high-temperature deposition, and polymer-assisted transfer to other target substrates after the growth. Such transfer is a source of cracks in the film and degrades the layers' promising properties by residual polymer from the bond material. Apart from transfer, patterning of the stacked 2D layers is necessary to build devices. The patterning of a 2D material itself or another material on top of it is challenging. The integration of the nanosheets into miniaturized devices cannot be done by conventional continuous-wave dry etching techniques due to the absence of etch stop layers and the vulnerability of these thin layers. To eliminate these issues in growth and integration, we explored the deposition methods on wafer-level and low-damage integration schemes. To this end, we studied the growth of MoS2 by a hybrid physical-chemical vapor deposition for which metal layers were deposited and subsequently sulfurized in H2S to obtain large area 2D layers. The impact of sulfurization temperature, time, partial H2S pressure, and H2 addition on the stoichiometry, crystallinity, and roughness were explored. Furthermore, a selective low-temperature deposition and conversion process at 450 °C for WS2 by the precursors WF6, H2S, and Si was considered. Si was used as a reducing agent for WF6 to deposit thin W films and H2S sulfurized this film in situ. The impact of the reducing agent amount, its surface condition, the temperature window, and the necessary time for the conversion of Si into W and W into WS2 were studied. Further quality improvement strategies on the WS2 were implemented by using extra capping layers in combination with annealing. Capping layers such as Ni and Co for metal-induced crystallization were compared to dielectric capping layers. The impact of the metal capping layer and its thickness on the recrystallization was evaluated. The dielectric capping layer's property to suppress sulfur loss under high temperature was explored. The annealings, which were done by rapid thermal annealing and nanosecond laser annealing, were discussed. Eventually, the fabrication of a heterostack with a MoS2 base layer and selectively grown WS2 was studied. Atomic layer etching was identified as attractive technique to remove the solid precursor Si from MoS2 in a layer-by-layer fashion. The in-situ removal of native SiO2 and the impact towards MoS2 was determined. The created patterned Si on MoS2 was then converted into patterned WS2 on MoS2 by the selective WF6/H2S process developed earlier. This procedure offers an attractive, scalable way to enable the fabrication of 2D devices with CMOS-compatible processes and contributes essential progress in the field 2D materials technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:162027 Serial 7662  
Permanent link to this record
 

 
Author Cui, Z. file  openurl
  Title Experimental and theoretical study on SF6 degradation by packed-bed DBD plasma Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Sulfur hexafluoride (SF6), as a man-made gas, is widely used in power industry, semiconductor industry and metal-processing industry. However, SF6 is a greenhouse gas and its global warming potential is 23500 times that of CO2. Besides, SF6 is very stable, with a lifetime in the atmosphere for more than one thousand years. Under natural conditions, only the ultraviolet light can make it slowly decomposed. Thus, the emission of SF6 has a great threat to the environment. In recent years, with the development of our national economy, the use of SF6 increased dramatically. And 90% of the SF6 emissions come from the power industry. In the meantime, the emission of SF6 exists a ‘hysteresis effect’, as many of the SF6-gas insulation equipment will retire in next decades, the emission of SF6 may increase sharply, and this may put great pressure on the environment. Therefore, it’s necessary to make efforts in controlling and treating the SF6 emission. Among the SF6 abatement technologies, the non-thermal plasma(NTP) represented by the dielectric barrier discharge(DBD) can effectively degrade SF6 and is suitable for large-scale industry applications. However, its energy efficiency still gets room for improvement and this kind of method has a defect that it’s hard to regulate the degradation by-products. Therefore, this paper proposed the combination of the packed bed reactor and the DBD technology to form a packed DBD discharge system for SF6 degradation, so that to further improve the energy efficiency and regulate the selectivity of by-products. By experiment and simulation research, the following innovations have been achieved: (1) Based on the packed bed DBD platform, the power parameter and gas-phase parameters of SF6 degradation were studied. It was found that the discharge process was significantly enhanced with the addition of packing particles, and the discharge energy efficiency was improved. The increase of input voltage can obviously increase the degradation rate, but reduces the energy efficiency. The increase of SF6 initial concentration and gas flow rate can improve the energy efficiency, but reduce the degradation rate. Therefore, both degradation rate and energy efficiency should be considered in deciding basic experimental conditions. (2) Active gases, such as O2, H2O and NH3, could effectively promote the degradation rate of SF6, and changed the product selectivity. In our packed bed DBD system, O2 and H2O have the optimal concentration conditions, which are 2% and 1%, respectively. The addition of O2 can promote the generation of S-O-F products, and inhibit the selectivity of SO2, while the addition of H2O had the opposite effects. In addition, the synergistic degradation of NH3 and SF6 will produce solid products, such as NH3HF, NH4HF2 and elemental S. For gaseous products, the increase of NH3 will lead to the generation of SO2 in the final degradation products and inhibit the generation of S-O-F products. (3) Different kinds of packing materials have great impacts on the degradation system in the discharge parameters, degradation rate and energy efficiency, as well as the products distribution. In the experiment, we compared the degradation results in three systems: glass beads packing, γ-Al2O3 packing and no-packing system. The packing of glass beads effectively improved the discharge voltage amplitude and discharge power, while had a limited effect on the equivalent capacitance of the dielectric. Besides, γ-Al2O3 packing had little effect on voltage amplitude, but obviously increased the equivalent capacitance of the dielectric. Furthermore, the degradation rate and energy efficiency in γ-Al2O3 system was higher than that of glass bead system. For products selectivity, γ-Al2O3 system was more desirable, where S-O-F type of product selectivity was suppressed and the SO2 selectivity increased significantly. By contrast, the glass beads system hardly affected the product selectivity. This results are presumably due to the relatively high dielectric constant of γ-Al2O3 particles and γ-Al2O3 itself may act as a reactant or a catalyst participating in the degradation reactions. (4) The size and status of the packing particles also have significant effects on the degradation process. The systems packed with 1, 2 and 4mm γ-Al2O3 particles for SF6 degradation were compared, and the 2mm system had the best performance, which may because the 2mm system had a good balance between the active contact area and the gas residence time. In addition, the packing pellets suffered from a hydration process slightly reduced the discharge parameters in the γ-Al2O3 packing system and significantly reduced the degradation rate was, which may because the H2O molecules pre-occupied the active sites on the γ-Al2O3 surface and reduced the discharge process. (5) Based on density functional theory (DFT), the degradation process of SF6 in the packed bed DBD system was studied at atomic scale. It was found that the SF6 can occur a physical adsorption at AlⅢ active sites on γ-Al2O3 surface. The activation barrier for the first degradation step of SF6 on γ-Al2O3 surface is much lower than in gas phase, which proved that the SF6 molecule is activated on the γ-Al2O3 surface. In addition, the plasma may affect the γ-Al2O3 surface to generate excess electrons or external electric fields. This two effects can change the adsorbed SF6 molecules from physical adsorption to chemisorption, together with an obvious stretching of S-F bonds, indicating that the plasma surface effects prmote the activation and decomposition of SF6 molecules. Furthermore, the stepwise degradation process of SF6 on γ-Al2O3 surface were investigated. The influence of radicals produced by plasma on the degradation process was analyzed. It was found that via Eley–Rideal (ER) reactions, high-energy radicals could effectively reduce the activation barriers and promote the surface reactions. Finally, the degradation mechanism of SF6 molecules in the packed bed plasma system was summarized, which may provide a theoretical basis for the study of harmless degradation of SF6. Keywords: SF6; Packed Bed DBD; Discharge Parameters; Products Analysis; Degradation Mechanism  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180819 Serial 7946  
Permanent link to this record
 

 
Author Belov, I. url  openurl
  Title Plasma-assisted conversion of carbon dioxide Type Doctoral thesis
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:146275 Serial 8387  
Permanent link to this record
 

 
Author Ghasemitarei, M. url  openurl
  Title Study of the interaction of plasma radicals with malignant tumor cells by means of Molecular Dynamics simulation Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 117 p.  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract abstract not available  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:164763 Serial 8606  
Permanent link to this record
 

 
Author Vervloessem, E. url  openurl
  Title The role of pulsing and humidity in plasma-based nitrogen fixation : a combined experimental and modeling study Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 358 p.  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nitrogen (N) is an indispensable building block for all living organisms as well as for pharmaceutical and chemical industry. In a nutshell, N is needed for plants to grow and beings to live and nitrogen fixation (NF) is the process that makes N available for plants as food by converting N2 into a reactive form, such as ammonia (NH3) or nitrogen oxides (NOx), upon reacting with O2 and H2. The aim of this thesis is to elucidate (wet) plasma-based nitrogen fixation with a focus on (1) the role of pulsing in achieving low energy consumption, (2) the role of H2O as a hydrogen source in nitrogen fixation and (3) elucidation of nitrogen fixation pathways in humid air and humid N2 plasma in a combined experimental and computational study. Furthermore, this thesis aims to take into account the knowledge-gaps and challenges identified in the discussion of the state of the art. Specifically, (1) we put our focus on branching out to another way of introducing water into the plasma system, i.e. H2O vapor, (2) we de-couple the problem for pathway elucidation by starting with characterization of the chosen plasma, next a simpler gas mixture and building up from there, (3) we include modelling, though not under wet conditions and (4) we focus on also analyzing species and performance outside liquid H2O. Firstly, based on the reaction analysis of a validated quasi-1D model, we can conclude that pulsing is indeed the key factor for energy-efficient NOx- formation, due to the strong temperature drop it causes. Secondly, the thesis shows that added H2O vapor, and not liquid H2O, is the main source of H for NH3 generation. Related to this, we discuss how the selectivity of plasma-based NF in humid air and humid N2 can be controlled by changing the humidity in the feed gas. Interestingly, NH3 production can be achieved in both N2 and air plasmas using H2O as a H source. Lastly, we identified a significant loss mechanism for NH3 and HNO2 that occurs in systems where these species are synthesized simultaneously, i.e. downstream from the plasma, HNO2 reacts with NH3 to form NH4NO2, which decomposes into N2 and H2O. This reduces the effective NF when not properly addressed, and should therefore be considered in future works aimed at optimizing plasma-based NF. In conclusion, this thesis adds further to the current state of the art of plasma-based NF both in the presence of H2O and in dry systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:197038 Serial 9088  
Permanent link to this record
 

 
Author Biondo, O. openurl 
  Title Towards a fundamental understanding of energy-efficient, plasma-based CO<sub>2</sub> conversion Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 221 p.  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-based CO2 conversion is worldwide gaining increasing interest. The aim of this work is to find potential pathways to improve the energy efficiency of plasma-based CO2 conversion beyond what is feasible for thermal chemistry. To do so, we use a combination of modeling and experiments to better understand the underlying mechanisms of CO2 conversion, ranging from non-thermal to thermal equilibrium conditions. Zero-dimensional (0D) chemical kinetics modelling, describing the detailed plasma chemistry, is developed to explore the vibrational kinetics of CO2, as the latter is known to play a crucial role in the energy efficient CO2 conversion. The 0D model is successfully validated against pulsed CO2 glow discharge experiments, enabling the reconstruction of the complex dynamics underlying gas heating in a pure CO2 discharge, paving the way towards the study of gas heating in more complex gas mixtures, such as CO2 plasmas with high dissociation degrees. Energy-efficient, plasma-based CO2 conversion can also be obtained upon the addition of a reactive carbon bed in the post-discharge region. The reaction between solid carbon and O2 to form CO allows to both reduce the separation costs and increase the selectivity towards CO, thus, increasing the energy efficiency of the overall conversion process. In this regard, a novel 0D model to infer the mechanism underlying the performance of the carbon bed over time is developed. The model outcome indicates that gas temperature and oxygen complexes formed at the surface of solid carbon play a fundamental and interdependent role. These findings open the way towards further optimization of the coupling between plasma and carbon bed. Experimentally, it has been demonstrated that “warm” plasmas (e.g. microwave or gliding arc plasmas) can yield very high energy efficiency for CO2 conversion, but typically only at reduced pressure. For industrial application, it will be important to realize such good energy efficiency at atmospheric pressure as well. However, recent experiments illustrate that the microwave plasma at atmospheric pressure is too close to thermal conditions to achieve a high energy efficiency. Hence, we use a comprehensive set of advanced diagnostics to characterize the plasma and the reactor performance, focusing on CO2 and CO2/CH4 microwave discharges. The results lead to a deeper understanding of the mechanism of power concentration with increasing pressure, typical of plasmas in most gases, which is of great importance for model validation and understanding of reactor performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:197213 Serial 9108  
Permanent link to this record
 

 
Author Ahmadi Eshtehardi, H. url  doi
openurl 
  Title Combined computational-experimental study on plasma and plasma catalysis for N2 fixation Type Doctoral thesis
  Year 2024 Publication Abbreviated Journal  
  Volume Issue Pages 160 p.  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Humanity feels the urge of shifting to a sustainable society more than at any other time in its history. Electrification of chemical industry plays a key role in this transition. The possibility of producing fertilizers from air using renewable electricity, and simultaneously, no greenhouse gas emission, resulted in an increasing interest toward plasma technology as a solution for electrification of a part of the chemical industry in the past few years. Additionally, the activation of nitrogen molecules by vibrational and electronic excitation reactions in plasma can lead to an energy-efficient process. Last but not least, the modularity (fast on/off characteristic) of plasma technology makes it capable of using intermittent renewable electricity on site for the production of fertilizers using air. All these advantages offered by plasma technology make it a potential solution for the on-site production of fertilizers in small and decentralized plants using air and renewable electricity, which leads to a considerable reduction in fertilizer production and transportation costs. However, industrialization of plasma-based NF suffers from several challenges, including challenges of plasma catalysis for the selective production of desired species, the high energy cost of plasma-based NF compared to current industrial processes, and the design and development of scaled up and energy-efficient plasma reactors for industrial purposes. In the framework of this thesis we have tried to add to the state-of-the-art (SOTA) in plasma-based NOx production and deal with its limitations using a combination of experimental and modelling work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:205246 Serial 9139  
Permanent link to this record
 

 
Author De Luca, F.; Abate, S.; Bogaerts, A.; Centi, G. url  openurl
  Title Electrified CO2 conversion : integrating experimental, computational, and process simulation methods for sustainable chemical synthesis Type Doctoral thesis
  Year 2024 Publication Abbreviated Journal  
  Volume Issue Pages xv, 152 p.  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nowadays, the burning of fossil fuels, particularly petroleum, natural gas, and coal, meets the rising need for power and fuels for automobiles and industries. This has given rise to ecological and climate challenges. This thesis explores these issues from three distinct perspectives: (i) experimental, (ii) computational, and (iii) process simulation, with a focus on studying CO2 as an alternative and economically viable raw material. Firstly, the experimental study is focused on the synthesis, characterization, and testing of novel catalysts for electroreduction of CO2 and oxalic acid, an intermediate product of CO2. Electrocatalysts based on Cu supported by citrus (orange and lemon) peel biomass are prepared. These catalysts exhibit activity in the electrochemical reduction of CO2, emphasizing the effectiveness of biomasses, particularly orange peels, as environmentally friendly precursors for sustainable and efficient electrocatalysts. In addition, graphitic carbon nitrides/TiO2 nanotubes (g-C3N4/TiNT) composites are prepared for the electrocatalytic reduction of oxalic acid to glycolic acid, revealing superior electrocatalytic properties compared to pristine TiNT. Characterization by X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electronic microscopy were performed for all the prepared electrocatalysts. Delving into the reduction of CO2 on Cu catalysts, a computational study about the synthesis of methanol on Cu(111) surface is performed by using the Vienna Ab initio Simulation Package. A systematic study is carried out to define the activation energies of the elementary reactions by using mGGA DF. Consequently, it is shown that the rate-controlling step is CH3O* hydrogenation and the formate pathway on Cu(111) proceeds through the HCOOH* intermediate. Finally, the process simulation, performed by using the software Aspen Plus 11 from AspenTech Inc., is based on the comparison of a catalytic (oxidation of ethylene glycol) and an electrocatalytic process (CO2 electroreduction chain) to synthesize glycolic acid. An economic analysis of the operational and investment costs reveals that the catalytic process is more cost-effective due to the current instability of electrocatalysts and proton exchange membranes, resulting in increased maintenance costs and, consequently, higher prices for the product.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:205262 Serial 9147  
Permanent link to this record
 

 
Author Manaigo, F. url  openurl
  Title Study of a gliding arc discharge for sustainable nitrogen fixation into NOx Type Doctoral thesis
  Year 2024 Publication Abbreviated Journal  
  Volume Issue Pages xxiv, 114 p.  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract With the growth of the world population, the agricultural sector is required to meet an increasing demand for nutrients and currently relies on industrially produced fertilizers. Among them, nitrogen-based fertilizers are the most common choice and require N2 to be converted into more reactive molecules in a process called “nitrogen fixation”. This is mainly performed through the Haber-Bosch process, which, is not ideal since it requires large-scale facilities to be economical and is associated with a high energy cost and high CO2 emissions, resulting in an environmental impact that is pushing for the study of greener alternatives. Among these, plasma-based nitrogen fixation into NOx is promising, and gliding arc plasma, specifically, proved to be suitable for nitrogen fixation. This thesis aims to study plasma-based nitrogen fixation focusing on an atmospheric pressure gliding arc plasma on three different levels. On a fundamental level, an approach dealing with laser-based excitation of separate rotational lines was successfully developed. This method can be implemented on atmospheric discharges that produce rather high NOx densities and, thus, can impose essential restrictions for the use of “classical” laser-induced fluorescence methods. The approach is then implemented, providing a discussion on the two-dimensional distributions of both the gas temperature and the NO ground state density. A clear correlation between these quantities is found and the effects of both the gas temperature and the plasma power on NO and NO2 concentrations are discussed, revealing how the NO oxidation is already significant in the plasma afterglow region and how the gas flow rate is a crucial parameter affecting the temperature gradients. >From a technological level, the conventional approach of introducing external resistors to stabilize the arc is challenged by studying both its performance and its stability replacing the external resistor with an inductor. We conclude that similar stabilization results can be obtained while significantly lowering the overall energy cost, which decreased from up to a maximum of 7.9 MJ/mol N to 3 MJ/mol N. Finally, we study whether a small-scale fertilizer production facility based on a gliding arc plasma can be a local competitive alternative. This is done by proposing a comparative model to understand how capital, operative expenditures and transport costs affect the production costs. The model highlights how, with the current best available technology, plasma-based nitrogen fixation, while being an interesting alternative for NOx synthesis, still requires a more efficient use of H2 for direct NH3 production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:205259 Serial 9175  
Permanent link to this record
 

 
Author Shaw, P. url  openurl
  Title Dual action of reactive species as signal and stress agents in plasma medicine : combined computational and experimental research Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 191 p.  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Reactive oxygen and nitrogen species (RONS) generated by cold atmospheric plasma (CAP) can activate discrete signaling transduction pathways or disrupt redox cellular homeostasis, depending on their concentration. This makes that CAP possesses therapeutic potential towards wound healing, cancer, and other diseases. In order to effectively use CAP in the clinic, a clear understanding of the interaction of RONS with biomolecules (lipids, proteins and nucleic acids) from the atomic to the macro scale, and their biological significance, is needed. In this work, I have therefore studied the dual role of CAP-derived RONS, i.e., (i) in the signaling pathways involved in wound healing, and (ii) in their reaction with biomolecules to cause oxidation-mediated damage. I performed computer simulations to provide fundamental insight about the occurring processes that are difficult or even impossible to obtain experimentally. Furthermore, next to computational studies, I used both 2D and 3D tissue cultures. 3D model allows proliferation in a more physiologically relevant geometry that stimulates the production of extracellular matrix proteins. I investigated the treatment of human gingival fibroblasts with low doses of CAP-generated RONS. This treatment demonstrated that it can inhibit colony formation but does not induce cell death, induce the expression of metalloprotease proteins, induce extracellular matrix degradation, and promote cell migration, which could result in enhanced wound healing. In contrast, at high concentrations, RONS can disrupt the cell membrane integrity and induce cancer cell death through oxidative stress-mediated pathways. I discovered how oxidation of the cell membrane (lipid-peroxidation) can facilitate the access of a drug (Melittin) into cancer cells, and in this way, reduce the required therapeutic dose of Melittin in melanoma and breast cancer cells (demonstrated using in vitro, in ovo and in silico approaches). Furthermore, I studied how excessive lipid-oxidation in chemoresistant pancreatic cancer cells promotes ferroptotic cell death. This was due to the stimulation of the iron-dependent Fenton reaction by targeting a redox specific signaling network. However, upon oxidative stress, cells protect themselves via a sophisticated intracellular antioxidant system that involves the regulation of glutathione/glutathione peroxidase 4 (lipid repair enzyme). Cancer cells exhibited increased levels of intracellular RONS due to their hyper metabolism, leading to high expression of anti-oxidant systems. I therefore focus on the effect of reactive species on the intracellular anti-oxidant system and corresponding DNA damages in both temozolomide-sensitive as well as temozolomide-resistant glioblastoma spheroids, in a 3-dimensional tumor model with a more complex tumor microenvironment than cell monolayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:183751 Serial 7828  
Permanent link to this record
 

 
Author Van Loenhout, J. url  openurl
  Title Targeting pancreatic ductal adenocarcinoma and glioblastoma with oxidative stress-mediated treatment strategies : focus on tumor cell death and modulation of the tumor microenvironment Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 167 p.  
  Keywords (up) Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Pancreatic ductal adenocarcinoma (PDAC) and glioblastoma multiforme (GBM) are two of the most malignant solid tumor types with poor survival rates, which underscore the urgency of novel and efficacious treatment strategies. Within the last decade, immunotherapy has been established as a breakthrough in cancer therapy. This mainly has been driven by the clinical data and approval associated with several immune checkpoint inhibitors (e.g. anti-CTLA-4 and anti-PD-1/L1). Despite the clinical benefit in specific tumor types, these inhibitors have not yet fulfilled their promise in low immunogenic tumors such as PDAC and GBM. Oxidative stress in cancer cells due to elevated reactive oxygen species (ROS) and an inability to balance intracellular redox state has recently been highlighted as promising target for anticancer treatment strategies with possible immunogenic effects. In this PhD dissertation, I investigated novel oxidative stress-mediated treatment approaches to target PDAC and GBM and to enhance immunogenicity by inducing immunogenic cell death (ICD). In the first part of this thesis (chapter 2), I reviewed the mechanistic responses of cancer cells towards different oxidative stress-inducing treatment strategies and their immunomodulating effects. The resulting literature demonstrated that different exogenous and endogenous ROS-inducing therapies show direct and indirect immunomodulating effects, which can be either immunostimulatory or immunosuppressive. One of the indirect immunostimulatory effects of the ROS-mediating therapies is the capacity of inducing immunogenic cell death (ICD) in tumor cells, which can increase the immunogenicity and consequently can trigger an antitumoral immune response. In chapter 3, I investigated a novel exogenous ROS-inducing treatment method, namely cold atmospheric plasma, to determine the therapeutic and ICD-inducing effects in PDAC, in vitro. I revealed that plasma-treated PBS (pPBS) has the potential to induce ICD in pancreatic cancer cells (PCCs) and to reduce the immunosuppressive tumor microenvironment (TME) by attacking the tumor supportive pancreatic stellate cells (PSCs). Although the cell death induced in PSCs was non-immunogenic as seen by the lack of danger-associated molecular patterns (DAMPs) emission and DC activation, I showed that pPBS could disrupt the physical barrier and lower the immunosuppressive secretion profile (lower TGF-β) of PSCs. In contrast, DAMPs were released by PCCs after treatment with pPBS which resulted in activation and maturation of DCs and a more immunostimulatory secretion profile (higher TNF-α, IFN-γ). Hence, indirect plasma treatment via pPBS has the potential to enhance immunogenicity in PDAC by triggering ICD and by attacking the immunosuppressive PSCs. Tumor cells can evolve adaptation mechanisms to protect themselves against intrinsic oxidative stress by upregulation of pro-survival molecules and their antioxidant defense system to maintain the redox balance. As such, tumor cells can become resistant towards exogenous ROS-inducing therapies, like plasma. Dual targeting of the redox balance of tumor cells by increasing exogenous levels of ROS and inhibiting the antioxidant defense system can maximally exploit ROS-mediated cell death mechanisms as therapeutic anticancer strategy. In this regard, cold atmospheric plasma was combined with auranofin, a thioredoxin reductase inhibitor, in GBM (chapter 4). A synergistic effect was shown after this combination treatment in 2D and 3D, however, in 3D only high concentrations of auranofin synergized with plasma treatment. I confirmed a ROS-mediated response after combination treatment, which was able to induce distinct cell death mechanisms, specifically apoptosis and ferroptosis. Additionally, the auranofin and plasma combined treatment strategy induced cell death, which resulted in an increased release of DAMPs. Together with the observed DC maturation, these results indicates the potential increase in immunogenicity, though, the phagocytotic capacity of DCs was inhibited by auranofin. In chapter 5, I evaluated this promising oxidative stress combination therapy in GBM, in vivo. A decrease in tumor kinetics and an increased survival in GBM-bearing mice was observed when auranofin was sequentially combined with direct plasma treatment. No T cell infiltration was observed after auranofin monotherapy. However, further characterization of the TME after the combination therapy is necessary to provide more insight in the immunogenic effects in vivo. In conclusion, this PhD dissertation comprises novel and important therapeutic and immunogenic insights in cold atmospheric plasma and auranofin as promising oxidative stress-mediated treatment strategies for low immunogenic tumors, like PDAC and GBM. These preclinical results provide a solid basis for future research towards combinations with immunotherapeutic approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181309 Serial 8643  
Permanent link to this record
 

 
Author Conti, S. url  openurl
  Title Multi-band superfluidity and BEC-BCS crossover in novel ultrathin materials Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 123 p.  
  Keywords (up) Doctoral thesis; Sociology; History; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169036 Serial 6565  
Permanent link to this record
 

 
Author Muys, M. openurl 
  Title Microbial protein as sustainable feed and food ingredient : production and nutritional quality of phototrophs and aerobic heterotrophs Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 262 p.  
  Keywords (up) Doctoral thesis; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In iets meer dan 30 jaar moeten we tot 50% meer eiwit produceren, terwijl onze conventionele lineaire voedselproductieketen reeds de grenzen van duurzaamheid overschrijdt. Microbieel eiwit (MP), de eiwitrijke biomassa van micro-organismen, werd onderzocht als nieuw voeder en voedselingrediënt in een circulaire eiwitproductieketen. MP-productie kan gebaseerd zijn op primaire grondstoffen om zo de inefficiënte stappen in de huidige eiwitproductie over te slaan, of de productie kan gebaseerd zijn op secundaire grondstoffen afkomstig van de verliezen in de conventionele productieketen (bijvoorbeeld afvalwater). Zowel indirecte als directe strategiën voor nutriëntenherwinning kunnen geïdentificeerd worden. Indirecte nutriëntenherwinning werd onderzocht door struviet toe te passen als fosfor- en stikstofbron voor MP-productie. Struviet, een herwinningsproduct in de afvalwaterzuivering, bleek een hoge zuiverheidsgraad te hebben waardoor het een uitstekende selectieve barrière vormt tussen afvalstroom en MP productie. Oplossingssnelheden en MP groei-experimenten toonden aan dat struviet gemakkelijk gedoseerd kan worden in functie van de microbiële nutriëntenbehoeftes, waarnaast problemen vermeden worden gerelateerd aan de turbiditeit van nevenstromen, wat de productie van fototrofe MP mogelijk maakt. Daarnaast werd ook directe nutriëntenherwinning onderzocht. Hierbij werden de voedingswaarde en veiligheid geanalyseerd van biomassa bestaande uit aerobe heterotrofe bacteriën (AHB) afkomstig van effluentzuivering van 25 bedrijven in de voedings- en drankensector. Verder werd ook de temporele variabiliteit in kaart gebracht. Er werd een veelbelovend eiwitgehalte geobserveerd waarvan de variabiliteit aanzienlijke was. Verder werd aangetoond dat het eiwitgehalte positief gecorreleerd was met stikstofbelasting en negatief met slibverblijftijd, wat een indicatie is dat de implementatie van een geoptimaliseerd productieproces, de biomassakwaliteit gevoelig kan verhogen. Bovendien was de veiligheid als veevoeder gegarandeerd op vlak van de meeste contaminanten. In het daarop volgende hoofdstuk werd de variabiliteit in voedingswaarde en veiligheid bestudeerd van commerciële fototrofe MP (de microalgen Chlorella en Spirulina), gekweekt op primaire grondstoffen. De waargenomen variabiliteit in voedingswaarde vereist verdere optimalisatie van het productieproces. Er werd ook waargenomen dat een hoog eiwitgehalte geen hoge totale voedingswaarde impliceert, omdat de verteerbaarheid en de eiwitkwaliteit nog steeds ongunstig kunnen zijn. Op basis van gemeten contaminanten geeft een veilige consumptiedosis aan dat microalgen perfect kunnen worden geconsumeerd als volwaardige eiwitbron in plaats van als supplement, hun huidige hoofdtoepassing. In een laatste experimenteel hoofdstuk werd onderzocht hoe de variabiliteit in biomassakwaliteit van microalgen kan worden gereduceerd en hoe een stabiele, hoogwaardige biomassaproductie kan worden bekomen. De invloed van oogsttijd, operationele modus en fotoperiode werd bepaald op de productiviteit van biomassa, eiwit en essentiële aminozuren en er werden optimale productieparameters geïdentificeerd. Samengevat is MP-productie op basis van indirecte en directe nutriëntenherwinning veelbelovend. Verdere technologische ontwikkelingen en het verhogen van bewustwording en sociale acceptatie, moeten een verdere introductie van MP in de voeder- en voedingsmarkt faciliteren. Hier kan MP een belangrijke oplossing vertegenwoordigen om de exponentieel groeiende wereldbevolking op een duurzame manier te voeden.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:160717 Serial 8244  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: