|   | 
Details
   web
Records
Author Karakulina, O.
Title Quantitative electron diffraction tomography for structure characterization of cathode materials for Li-ion batteries Type Doctoral thesis
Year 2018 Publication Abbreviated Journal
Volume Issue Pages
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:151805 Serial 5039
Permanent link to this record
 

 
Author Korneychuk, S.
Title Local study of the band gap and structure of diamond-based nanomaterials by analytical transmission electron microscopy Type Doctoral thesis
Year 2018 Publication Abbreviated Journal
Volume Issue Pages
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:154653 Serial 5112
Permanent link to this record
 

 
Author Winckelmans, N.
Title Advanced electron tomography to investigate the growth of homogeneous and heterogeneous nanoparticles Type Doctoral thesis
Year 2018 Publication Abbreviated Journal
Volume Issue Pages
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:153855 Serial 5077
Permanent link to this record
 

 
Author Claes, N.
Title 3D characterization of coated nanoparticles and soft-hard nanocomposites Type Doctoral thesis
Year 2018 Publication Abbreviated Journal
Volume Issue Pages
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:154146 Serial 5075
Permanent link to this record
 

 
Author Cautaerts, N.
Title Nanoscale study of ageing and irradiation induced precipitates in the DIN 1.4970 alloy Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 306 p.
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:161997 Serial 5392
Permanent link to this record
 

 
Author Fatermans, J.
Title Quantitative atom detection from atomic-resolution transmission electron microscopy images Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 155 p.
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:162101 Serial 5394
Permanent link to this record
 

 
Author Yao, X.
Title An advanced TEM study on quantification of Ni4Ti3 precipitates in low temperature aged Ni-Ti shape memory alloy Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 149 p.
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:164987 Serial 6284
Permanent link to this record
 

 
Author Callaert, C.
Title Characterization of defects, modulations and surface layers in topological insulators and structurally related compounds Type Doctoral thesis
Year 2020 Publication Abbreviated Journal
Volume Issue Pages 180 p.
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:165867 Serial 6288
Permanent link to this record
 

 
Author Pourbabak, S.
Title Influence of nano and microstructural features and defects in finegrained NiTi on the thermal and mechanical reversibility of the martensitic transformation Type Doctoral thesis
Year 2020 Publication Abbreviated Journal
Volume Issue Pages 166 p.
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:165919 Serial 6305
Permanent link to this record
 

 
Author Lumbeeck, G.
Title Mechanisms of nano-plasticity in as-deposited and hydrided nanocrystalline Pd and Ni thin films Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 130 p.
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:164918 Serial 6309
Permanent link to this record
 

 
Author Hendrickx, M.
Title Study of the effect of cation substitution on the local structure and the properties of perovskites and Li-ion battery cathode materials Type Doctoral thesis
Year 2020 Publication Abbreviated Journal
Volume Issue Pages 208 p.
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:173128 Serial 6618
Permanent link to this record
 

 
Author Milagres de Oliveira, T.
Title Three-dimensional characterisation of nanomaterials : from model-like systems to real nanostructures Type Doctoral thesis
Year 2020 Publication Abbreviated Journal
Volume Issue Pages 230 p.
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:170020 Serial 6627
Permanent link to this record
 

 
Author Vanrompay, H.
Title Toward fast and dose efficient electron tomography Type Doctoral thesis
Year 2020 Publication Abbreviated Journal
Volume Issue Pages 207 p.
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:169852 Serial 6632
Permanent link to this record
 

 
Author Skorikov, A.
Title Fast approaches for investigating 3D elemental distribution in nanomaterials Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages 143 p.
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:178855 Serial 6795
Permanent link to this record
 

 
Author Pedrazo Tardajos, A.
Title Advanced graphene supports for 3D in situ transmission electron microscopy Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages 247 p.
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract Transmission electron microscopy (TEM) is an ideal tool to investigate nanomaterials. The information from TEM experiments allows us to link the structure and composition of nanomaterials to their intrinsic physical properties. However, despite the significant evolution of the TEM field during the last two decades, major progress is still possible through the development of optimal TEM techniques and supports. The results presented in this thesis focus on the optimization of sample supports and their application. Among the different options, graphene has previously been reported as useful sample support for electron microscopy due to its unparalleled properties, for example, it is the thinnest known support and provides a protective effect to the sample under investigation. Unfortunately, commercial graphene grids show poor quality, in terms of intactness and cleanness, inhibiting their wide application within the field. Therefore, this thesis focuses on the application of optimized graphene TEM grids, obtained by transferring high quality graphene using an advanced procedure. This improvement on the transfer has enabled the visualization of materials with low contrast and high sensitivity towards the electron beam, such as surface ligands capping gold nanoparticles or metal halide perovskites. Furthermore, the implemented protocol is not only of interest for conventional TEM grids but also a major benefit for in situ TEM studies, where the sample is investigated in real time under certain stimuli. Hence, the same graphene transfer technology can be also applied to advanced in situ MEMS holders dedicated for both heating and gas experiments, where the thickness and insulating nature of the silicon nitride (Si3N4) support may hamper some applications. By engineering periodic arrays of holes in their Si3N4 membrane by focused ion beam, onto which the graphene is transferred, it has been possible to get proof-of-concept 3D in situ investigations of heat-induced morphological and compositional transformations of complex nanosystems. As an example, it has enabled the investigation of the possible phase-transition of metal halide perovskites upon heating using 2D and 3D structural characterization. Moreover, it has allowed the study of in situ three-dimensional nanoparticle dynamics during gas phase catalysis as well as the first steps that would lead towards the design and creation of the first Graphene Gas Cell. Consequently, implementation of the advanced graphene transfer technology described in this thesis is envisaged to impact a broad range of future experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:181143 Serial 6836
Permanent link to this record
 

 
Author Velazco Torrejón, A.
Title Alternative scan strategies for high resolution STEM imaging Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages 131 p.
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract Currently, a large variety of materials are studied by transmission electron microscopy (TEM) as it offers the possibility to perform structural and elemental analysis at a local scale. Relatively recent advances in aberration correctors and electron sources allow the instrument to achieve atomic resolution. Along with these advances, a state-of-the-art technology has been reached in TEM. However, the instrument is far from being perfect and imperfections or external sources can make the interpretation of information troublesome. Environmental factors such as acoustic and mechanical vibrations, temperature fluctuations, etc., can induce sample drift and create image distortions. These distortions are enhanced in scanning operation because of the serial acquisition of the information, which are more apparent at atomic resolution as small field of views are imaged. In addition, scanning distortions are induced due to the finite time response of the scan coils. These types of distortions would reduce precision in atomic-scale strain analysis, for instance, in semiconductors. Most of the efforts to correct these distortions are focused on data processing techniques post-acquisition. Another limitation in TEM is beam damage effects. Beam damage arises because of the energy transferred to the sample in electron-sample interactions. In scanning TEM, at atomic resolution, the increased electron charge density (electron dose) carried on a sub-Å size electron probe may aggravate beam damage effects. Soft materials such as zeolites, organic, biological materials, etc., can be destroyed under irradiation limiting the amount of information that can be acquired. Current efforts to circumvent beam damage are mostly based on low electron dose acquisitions and data processing methods to maximize the signal at low dose conditions. In this thesis, a different approach is given to address drift and scanning distortions, as well as beam damage effects. Novel scan strategies are proposed for that purpose, which are shown to substantially overcome these issues compared to the standard scan method in TEM.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:180973 Serial 6852
Permanent link to this record
 

 
Author De wael, A.
Title Model-based quantitative scanning transmission electron microscopy for measuring dynamic structural changes at the atomic scale Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages xiv, 146 p.
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract Nanomaterialen kunnen uiterst interessante eigenschappen vertonen voor een verscheidenheid aan veelbelovende toepassingen, gaande van zonnecrème tot batterijen voor elektrische auto’s. Een nanometer is een miljard keer kleiner dan een meter. Op deze schaal kunnen de materiaaleigenschappen volledig verschillen van bulkmaterialen op grotere schaal. Bovendien hangen de eigenschappen van nanomaterialen sterk af van hun exacte grootte en vorm. Kleine verschillen in de posities van de atomen, in de grootte-orde van een picometer (nog eens duizend maal kleiner dan een nanometer), kunnen de fysische eigenschappen al drastisch beïnvloeden. Daarom is een betrouwbare kwantificering van de atomaire structuur van kritisch belang om de evolutie naar materiaalontwerp mogelijk te maken en inzicht te verwerven in de relatie tussen de fysische eigenschappen en de structuur van nanomaterialen. Daarnaast kan de atomaire structuur van nanomaterialen ook veranderen in de loop van de tijd ten gevolge van verschillende fysische processen. Het onderzoek dat in deze thesis gepresenteerd wordt, maakt het mogelijk om de dynamische structuurveranderingen van nanomaterialen betrouwbaar te kwantificeren op atomaire schaal door gebruik te maken van raster transmissie elektronenmicroscopie (STEM). Ik heb dit gerealiseerd door methodes te ontwikkelen waarmee ik het aantal atomen “achter elkaar” kan tellen in elke atoomkolom van een nanomateriaal, en dit op basis van beelden opgenomen met een elektronenmicroscoop. Een belangrijk verschil met telmethodes voor de analyse van een enkel beeld is het schatten van de kans dat een atoomkolom atomen zal verliezen of bijkrijgen van het ene naar het andere beeld in de tijdreeks. Deze kwantitatieve methode kan het ontrafelen van de tijdsafhankelijke structuur-eigenschappen relatie van een nanomateriaal mogelijk maken, wat uiteindelijk kan leiden tot efficiënter design en productie van nanomaterialen voor innovatieve toepassingen.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:179514 Serial 6870
Permanent link to this record
 

 
Author Jannis, D.
Title Novel detection schemes for transmission electron microscopy Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages iv, 208 p.
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract Electron microscopy is an excellent tool which provides resolution down to the atomic scale with up to pm precision in locating atoms. The characterization of materials in these length scales is of utmost importance to answer questions in biology, chemistry and material science. The successful implementation of aberration-corrected microscopes made atomic resolution imaging relatively easy, this could give the impression that the development of novel electron microscopy techniques would stagnate and only the application of these instruments as giant magnifying tools would continue. This is of course not true and a multitude of problems still exist in electron microscopy. Two of such issues are discussed below. One of the biggest problems in electron microscopy is the presence of beam damage which occurs due the fact that the highly energetic incoming electrons have sufficient kinetic energy to change the structure of the material. The amount of damage induced depends on the dose, hence minimizing this dose during an experiment is beneficial. This minimizing of the total dose comes at the expense of more noise due to the counting nature of the electrons. For this reason, the implementation of four dimensional scanning transmission electron microscopy (4D STEM) experiments has reduced the total dose needed per acquisition. However, the current cameras used to measure the diffraction patterns are still two orders of magnitude slower than to the conventional STEM methods. Improving the acquisition speed would make the 4D STEM technique more feasible and is of utmost importance for the beam sensitive materials since less dose is used during the acquisition. In TEM there is not only the possibility to perform imaging experiments but also spectroscopic measurements. There are two frequently used methods: electron energy-loss spectroscopy (EELS) and energy dispersive x-ray spectroscopy (EDX). EELS measures the energy-loss spectrum of the incoming electron which gives information on the available excitations in the material providing elemental sensitivity. In EDX, the characteristic x-rays, arising from the decay of an atom which is initially excited due to the incoming electrons, are detected providing similar elemental analysis. Both methods are able to provide comparable elemental information where in certain circumstances one outperforms the other. However, both methods have a detection limit of approximately 100-1000 ppm which is not sufficient for some materials. In this thesis, two novel techniques which can make significant progress for the two problems discussed above.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:182404 Serial 6872
Permanent link to this record
 

 
Author Arslan Irmak, E.
Title Modelling three-dimensional nanoparticle transformations based on quantitative transmission electron microscopy Type Doctoral thesis
Year 2022 Publication Abbreviated Journal
Volume Issue Pages 169 p.
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract Nanomaterials are materials that have at least one dimension in the nanometer length scale, which corresponds to a billionth of a meter. When three dimensions are confined to the nanometer scale, these materials are referred to as nanoparticles. These materials are of great interest since they exhibit unique physical and chemical properties that cannot be observed for bulk systems. Due to their unique and often superior properties, nanomaterials have become central in the field of electronics, catalysis, and medicine. Moreover, they are expected to be one of the most promising systems to tackle many challenges that our society is facing, such as reducing the emission of greenhouse gases and finding effective treatments for cancer. The unique properties of nanomaterials are linked to their size, shape, structure, and composition. If one is able to measure the positions of the atoms, their chemical nature, and the bonding between them, it becomes possible to predict the physicochemical properties of nanomaterials. In this manner, the development of novel nanostructures can be triggered. However, the morphology and structure of nanomaterials are highly sensitive to the conditions for relevant applications, such as elevated temperatures or intense light illumination. Furthermore, any small change in the local structure at higher temperatures or pressures may significantly modify their performance. Hence, three-dimensional (3D) characterization of nanomaterials under application-relevant conditions is important in designing them with desired functional properties for specific applications. Among different structural characterization approaches, transmission electron microscopy (TEM) is one of the most efficient and versatile tools to investigate the structure and composition of nanomaterials since it can provide atomically resolved images, which are sensitive to the local 3D structure of the investigated sample. However, TEM only provides two-dimensional (2D) images of the 3D nanoparticle, which may lead to an incomplete understanding of their structure-property relationship. The most known and powerful technique for the 3D characterization of nanomaterials is electron tomography, where the images of a nanostructured material taken from different directions are mathematically combined to retrieve its 3D structure. Although these experiments are already state-of-the-art, 3D characterization by TEM is typically performed under ultra-high vacuum conditions and at room temperature. Such conditions are unfortunately not sufficient to understand transformations during synthesis or applications of nanomaterials. This limitation can be overcome by in situ TEM where external stimuli, such as heat, gas, and liquids, can be controllably introduced inside the TEM using specialized holders. However, there are some technical limitations to successful perform 3D in situ electron tomography experiments. For example, the long acquisition time required to collect a tilt series limits this technique when one wants to observe 3D dynamic changes with atomic resolution. A solution for this problem is the estimation of the 3D structure of nanomaterials from 2D projection images acquired along a single viewing direction. For this purpose, annular dark field scanning TEM (ADF STEM) imaging mode provides a valuable tool for quantitative structural investigation of nanomaterials from single 2D images due to its thickness and mass sensitivity. For quantitative analysis, an ADF STEM image is considered as a 2D array of pixels where relative variation of pixel intensity values is proportional to the total number of atoms and the atomic number of the elements in the sample. By applying advanced statistical approaches to these images, structural information, such as the number or types of atoms, can be retrieved with high accuracy and precision. The outcome can then be used to build a 3D starting model for energy minimization by atomistic simulations, for example, molecular dynamics simulations or the Monte Carlo method. However, this methodology needs to be further evaluated for in situ experiments. This thesis is devoted to presenting robust approaches to accurately define the 3D atomic structure of nanoparticles under application-relevant conditions and understand the mechanism behind the atomic-scale dynamics in nanoparticles in response to environmental stimuli.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:188295 Serial 7063
Permanent link to this record
 

 
Author Yang, T.
Title Characterization of Laves phase structural evolution and regulation of its precipitation behavior in Al-Zn-Mg based alloys Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages ii, 106 p.
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract Al-Zn-Mg-based high strength alloys are widely used in aerospace applications due to their low density and excellent mechanical properties. A systematic study of the structural evolution of the nano-precipitation phase and its growth mechanism is an important guide for the design of new high-strength alloys. In this work, the Laves structure precipitates in Al-Zn-Mg(-Cu/Y) alloy was systematically characterized. Based on the structure evolution, the structure of submicron Laves particles and quasicrystalline particles in the alloy at microscale, as well as the regulation of the precipitation behavior after adding Y at nanoscale were further investigated. The main innovative results are summarized as follows: (1) Investigation on coexistence of defect structures in Laves structural nanoprecipitates. Three types of Laves structures can coexist within the η-MgZn2 precipitates: C14, C15 and C36, and the Laves structure transition sequence of C14→C36→C15 in this system was determined. Meanwhile, it was found that there are diverse defect structures in the MgZn2 phase, including stacking faults, planar defects and five-fold domain structures, which have significant effects on relieving the internal stress/strain of the precipitates. (2) Investigation on multiple phase transition of Laves structural nanoprecipitates from C14 to C36 and from C14 to quasicrystal clusters. It is found that C14 precipitates can be completely transformed into the C36 precipitates. And it is also found that the C14 Laves phase structure can also transform into quasicrystalline clusters. These investigations on various phase transition mechanisms among Laves phases provide theoretical support for the microstructural characterization of materials containing multi-scale Laves phases. (3) Characterization of Laves and quasicrystal structural particles in submicron scale. Submicron-scale quasicrystal particles were obtained in conventional casting Al-Zn-Mg-Cu alloys for the first time. Industrial impurity elements Fe and Ni can induce the formation of quasicrystalline particles. When there is no Fe/Ni enriched in particles, the structure is characterized as C15-Laves phase. When Fe/Ni is as quasicrystalline core, a stable core-shell quasicrystalline structure with Al-Fe-Ni nucleus and Mg-Cu-Zn shell can be formed. (4) Investigation on the regulation of nanoscale Laves precipitates’ growth. To regulate the defect structure of the precipitates, rare earth element Y was added in Al-Zn-Mg alloys and its influence on the precipitation behavior was investigated. The addition of Y element can dynamically combine with different alloying elements during aging process, which can refine the size of precipitate and further improve the nucleation rate and precipitation rate of the precipitates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:196404 Serial 7631
Permanent link to this record
 

 
Author Samaee, V.
Title In-situ transmission electron microscopic nanomechanical investigations of Ni Type Doctoral thesis
Year 2018 Publication Abbreviated Journal
Volume Issue Pages 172 p.
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:156143 Serial 8075
Permanent link to this record
 

 
Author Friedrich, T.
Title Quantifying atomic structures using neural networks from 4D scanning transmission electron microscopy (STEM) datasets Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 127 p.
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract Nanoscience and nanotechnologies are of immense importance across many fields of science and for numerous practical applications. In this context, scanning transmission electron microscopy (STEM) and 4D-STEM are among the most powerful characterization methods at the atomic scale. Annular dark-field (ADF)-STEM can be used to quantify atomic structures in 3D by counting atoms based on a single projection image. In 4D-STEM a full diffraction pattern is recorded at each scan step, which enables more dose efficient imaging and the utilization of various advanced imaging modalities, which can however be complex and slow. Both, STEM and 4D-STEM suffer from noise and distortions. In the first section of this work the most important of these distortions are discussed and it is shown how image restoration with a dedicated convolutional neural network (CNN) can be beneficial for atomic structure quantifications in ADF-STEM. In the second part, a new 4D-STEM imaging method real-time-integrated-centre-of-mass (riCOM) is introduced, which is a very dose-efficient and fast algorithm that enables unprecedented live-imaging capabilities for 4D-STEM. It is based on the integrated centre-of-mass approach, but is reformulated with variable integration ranges and optional filters, which allows for a tunable contrast transfer function. This enables the imaging of light and heavy elements simultaneously at very low doses. In the third part another new 4D-STEM method, coined AIRPI (AI-assisted rapid phase imaging) is introduced, which uses a CNN to retrieve a patch of the specimen's phase image for each scan position, based on the diffraction patterns in the probe's immediate surroundings. This allows also live imaging in principle and surpasses comparable state-of-the-art algorithms in terms of resolution also at low doses. Different atomic columns can be reliably distinguished over a wide range of atomic numbers, enabling a very good image interpretability. Further, AIRPI can recover low frequency image components, which preserves thickness information. This is a unique and important feature which could make quantitative 4D-STEM feasible.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:196826 Serial 8919
Permanent link to this record
 

 
Author Mychinko, M.
Title Advanced Electron Tomography to Investigate the Growth and Stability of Complex Metal Nanoparticles = Geavanceerde Elektronentomografie om de Groei en Stabiliteit van Complexe Metallische Nanodeeltjes te Onderzoeken Type Doctoral thesis
Year 2024 Publication Abbreviated Journal
Volume Issue Pages 227 p.
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract During the past decades, metallic nanoparticles (NPs) have attracted great attention in materials science due to their specific optical properties based on surface plasmon resonances. Because of these phenomena, plasmonic NPs (or nanoplasmonics) are very promising for application in biosensing, photocatalysts, medicine, data storage, solar energy conversion, etc. Currently, colloidal synthesis techniques enable scientists to routinely produce mono and bimetallic NPs of various shapes, sizes, composition, and elemental distribution, with superior properties for plasmonic applications. Two primary directions for further advancing nanoplasmonic-based technologies include synthesizing novel morphologies, such as highly asymmetric chiral NPs, and gaining deeper insights into the factors affecting the stability of produced nanoplasmonics. With the increasing complexity of nanoplasmonics morphologies and higher stability requirements, there is a pressing need for thorough investigations into their 3D structures and their evolution under different conditions, with high resolution. Electron tomography (ET) emerges as an ideal tool to retrieve shape and element-sensitive information about individual nanoparticles in 3D, achieving resolutions down to the atomic level. Moreover, ET techniques can be combined with in situ holders, enabling detailed studies of processes mimicking real applications of nanoplasmonic-based devices. The first part of this thesis will focus on detailed studies of chiral Au NPs, promising for spectroscopy techniques based on the differential absorption of left- and right-handed circularly polarized light. Specifically, I will discuss the primary strategies for wet-colloidal growth of the various types of intrinsically chiral Au NPs. Advanced ET methods will be demonstrated as powerful tools for characterizing the final helical morphologies of the produced Au NPs and for studying the chiral growth mechanisms by examining intermediate structures obtained during chiral growth. The second part will focus on the heat-induced stability of various Au@Ag core-shell NPs. Operating in real conditions, such as elevated temperatures, may cause particle reshaping and redistribution of metals between the core and shell, gradually altering nanoplasmonics properties. Hence, a thorough understanding of the influence of size, shape, and defects on these processes is crucial for further developments. Recently developed techniques, combining fast ET with in-situ heating holders, have allowed me to evaluate the influence of various parameters (size, shape, defect structure) on heat-induced elemental redistribution in Au@Ag core-shell nanoparticles qualitatively and quantitatively. Additionally, I will discuss the prospects of high-resolution ET for visualizing the diffusion of individual atoms within complex nanostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:202976 Serial 9001
Permanent link to this record
 

 
Author Poppe, R.
Title Refining short-range order parameters from diffuse electron scattering Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages iv, 150 p.
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract Electrons, X-rays and neutrons that pass through a thin crystalline sample will be diffracted. Diffraction patterns of crystalline materials contain Bragg reflections (sharp discrete intensity maxima) and diffuse scattering (a weak continuous background). The Bragg reflections contain information about the average crystal structure (the type of atoms and the average atomic positions), whereas the diffuse scattering contains information about the short-range order (deviations from the average crystal structure that are ordered on a local scale). Because the properties of many materials depend on the short-range order, refining short-range order parameters is essential for understanding and optimizing material properties. The refinement of short-range order parameters has previously been applied to the diffuse scattering in single-crystal X-ray and single-crystal neutron diffraction data but not yet to the diffuse scattering in single-crystal electron diffraction data. In this work, we will verify the possibility to refine short-range order parameters from the diffuse scattering in single-crystal electron diffraction data. Electron diffraction allows to acquire data on submicron-sized crystals, which are too small to be investigated with single-crystal X-ray and single-crystal neutron diffraction. In the first part of this work, we will refine short-range order parameters from the one-dimensional diffuse scattering in electron diffraction data acquired on the lithium-ion battery cathode material Li1.2Ni0.13Mn0.54Co0.13O2. The number of stacking faults and the twin percentages will be refined from the diffuse scattering using a Monte Carlo refinement. We will also describe a method to determine the spinel/layered phase ratio from the intensities of the Bragg reflections in electron diffraction data. In the second part of this work, we will refine short-range order parameters from the three-dimensional diffuse scattering in both single-crystal electron and single-crystal X-ray diffraction data acquired on Nb0.84CoSb. The correlations between neighbouring vacancies and the displacements of Sb and Co atoms will be refined from the diffuse scattering using a Monte Carlo refinement and a three-dimensional difference pair distribution function refinement. The effect of different experimental parameters on the spatial resolution of the observed diffuse scattering will also be investigated. Finally, the model of the short-range Nb-vacancy order in Nb0.84CoSb will also be applied to LiNi0.5Sn0.3Co0.2O2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:200610 Serial 9084
Permanent link to this record
 

 
Author Vlasov, E.
Title Exploiting secondary electrons in transmission electron microscopy for 3D characterization of nanoparticle morphologies Type Doctoral thesis
Year 2024 Publication Abbreviated Journal
Volume Issue Pages x, 118 p.
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract Electron tomography (ET) is an indispensable tool for determining the three-dimensional (3D) structure of nanomaterials in (scanning) transmission electron microscopy ((S)TEM). ET enables 3D characterization of a variety of nanomaterials across different fields, including life sciences, chemistry, solid-state physics, and materials science down to atomic resolution. However, the acquisition of a conventional tilt series for ET is a time-consuming process and thus cannot capture fast transformations of materials in realistic conditions. Moreover, only a limited number of nanoparticles (NPs) can be investigated, hampering a general understanding of the average properties of the material. Therefore, alternative characterization techniques that allow for high-resolution characterization of the surface structure without the need to acquire a full tilt series in ET are required which would enable a more time-efficient investigation with better statistical value. In the first part of this work, an alternative technique for the characterization of the morphology of NPs to improve the throughput and temporal resolution of ET is presented. The proposed technique exploits surface-sensitive secondary electron (SE) imaging in STEM employed using a modification of electron beam-induced current (EBIC) setup. The time- and dose efficiency of SEEBIC are tested in comparison with ET and superior spatial resolution is shown compared to conventional scanning electron microscopy. Finally, contrast artefacts arising in SEEBIC images are described, and their origin is discussed. The second part of my thesis focuses on real applications of the proposed technique and introduces a high-throughput methodology that combines images acquired by SEEBIC with quantitative image analysis to retrieve information about the helicity of gold nanorods. It shows that SEEBIC imaging overcomes the limitation of ET providing a general understanding of the connection between structure and chiroptical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:204905 Serial 9149
Permanent link to this record
 

 
Author Martínez Alanis, G.T.
Title Quantitative model-based high angle annular dark field scanning transmission electron microscopy Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords (up) Doctoral thesis; Electron microscopy for materials research (EMAT); Engineering Management (ENM)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:122528 Serial 2759
Permanent link to this record
 

 
Author Saviuc, I.
Title Assessment of electric residential microgrids in the EU context : role of energy storage, interactions with the main grid, and policy scenarios Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages 158 p.
Keywords (up) Doctoral thesis; Engineering Management (ENM)
Abstract As decentralized electricity generation plays an important role in the reform of the energy system in the EU, electric residential microgrids merit an assessment of their position and potential. The work on this dissertation focuses on the synergy between the development of microgrids that are powered by PV panels, and the adoption of energy storage, with the aim to identify shortcomings and propose solutions. Techno-economic assessment indicates that, for a microgrid that aims to maximize its self-consumption, the electricity pricing mechanisms that are current practice across the EU are detrimental to the economic viability of using energy storage. Case studies and simulations in Belgium, Greece, Denmark, Italy, Finland, Spain and Germany show conclusively how existing tariff structures (Net-Metering, Time-of-Use, Feed-in Tariff, with or without the option of a Capacity tariff) are suitable for stimulating renewable generation, but not storage. Another underlying reason that affects the economic viability of a residential microgrid in the current context relates to the technology losses, which cannot be compensated by electricity pricing mechanisms. Having established the need for a different approach in order to improve the economic viability of microgrids with storage, this work investigated whether a form of direct support to the microgrid operator can be envisioned. A cost-benefit analysis revealed that the benefits coming from decentralized energy generation toward the main electricity grid can be compared with the cost of including and operating energy storage, and therefore a direct support from the network operator and the public can be justified in order to attain the economic viability of a microgrid with storage. This way, the electricity network can benefit from an increased number of flexible, enriched microgrids within the system, the microgrid operators are incentivized to include energy storage, and the society contributes towards a sturdier energy supply with more engaged prosumers and less polluting emissions. Entrepreneurial diversity: a career motives’ perspective – Ilse D
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:177112 Serial 6915
Permanent link to this record
 

 
Author De Weerdt, L.
Title An inquiry into the market acceptance of circular plastics Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages xii, 154 p.
Keywords (up) Doctoral thesis; Engineering Management (ENM)
Abstract Closing material loops and reducing resource extraction is considered to be the foundation of the circular economy that delivers environmental gains. Today, certain materials with large environmental impacts, such as plastics, are placed high on the circularity agenda. In this thesis, the market acceptance of circular plastics is analyzed. Firstly, the current – mostly linear – market for plastics in the European Union is analyzed. We find that market failure and uncertainties lead to postponed and scaled down private investments in recycling facilities for plastics. As a consequence, we conclude the failing and uncertain market needs government intervention. Secondly, potential government interventions that alleviate the market failure and reduce the present uncertainties are analyzed. Government intervention can be either incentive-based or regulatory-based. The Flemish government already acts as an incentivizer. For more than two decades already, a tax is levied on the incineration of plastic waste. We find that this tax reduces industrial plastic waste generation, but fails to elicit investments in recycling facilities. Regulatory-based policies are expected to gain in importance in the pursuit of a circular economy. Indeed, in the European Commission’s latest circularity action plan, a policy to mandate the use of recycled plastics is signaled. Mandating the use of recycled plastics can enable the circularity of plastics effectively. However, it would also generate a shock wave on the market, especially because, i.a. the implementation time of such a policy is uncertain. We investigate how firms can invest optimally in the use of recycled plastics under the presence of policy uncertainty. We conclude that the European market will be able to successfully adopt circular plastics. However, stimulating policies, both incentive-based and regulatory-based, turn out to be essential in this adoption process. Therefore, there will be a need for a combination of policies in order to prevent the incessant mass single-use consumption of plastics, which harms the environment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:178913 Serial 6930
Permanent link to this record
 

 
Author Admasu, W.F.
Title Socioeconomic and environmental impact of expropriation of agricultural land for urbanisation in Ethiopia Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages 162 p.
Keywords (up) Doctoral thesis; Engineering Management (ENM)
Abstract Globally, incorporation of agricultural lands into the urban boundary has been a common phenomenon. Governments use various alternatives to access the required land, including land expropriation procedures, which refers to the compulsorily taking of land from the landholders without their consent by paying compensation. In Ethiopia, the urban population is growing rapidly which resulted into an increase in the demand for urban land for housing construction, public services provision, and infrastructure developments. As the Ethiopian constitution prohibits sale of landholders, governments, at various levels, have been expropriating land from the surrounding farmers to meet the demand for urban land. The general objective of this thesis is to improve the understanding of the impacts of local land deals for urbanization on socioeconomics of farmers and the environment. The findings of this thesis revealed that there are gaps in the current practices of land expropriation for urban expansion that should be improved. The results showed that the compensation paid to the affected farmers is found to be economically inappropriate, i.e., not enough to restore the affected farmers’ livelihoods, in contrast with the land laws that allows a compensation amount that would put previous land users in a better or the same wellbeing as before the land expropriation. In addition, it is indicated that the land expropriation process does not take into account the value of ecosystem services, which are benefits obtain from the land, and important for the wellbeing of the society. We conclude that while land expropriation is an important tool to obtain land from the landholders when it is needed for public purposes, the practices in the study area show it is adversely affecting the socioeconomics of farmers and the environment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:177909 Serial 6944
Permanent link to this record
 

 
Author Van Schoubroeck, S.
Title A techno-sustainability assessment framework : indicator selection and integrated method for sustainability analysis of biobased chemicals Type Doctoral thesis
Year 2020 Publication Abbreviated Journal
Volume Issue Pages 195 p.
Keywords (up) Doctoral thesis; Engineering Management (ENM)
Abstract Biobased chemistry has gained interest and has the potential to tackle some of the sustainability challenges the chemical industry must endure. Sustainability impacts need to be evaluated and monitored to highlight the advantages and pitfalls of different biobased routes over the product life cycle. A better understanding of the potential sustainability of emerging biobased technologies and products is essential to guide additional research and further technology development. This PhD thesis aims to develop a framework for a techno-sustainability assessment (TSA), while accounting for technological as well as economic, environmental, and social aspects in an integrated approach. First, a review of the state-of-the-art sustainability indicators for biobased chemicals was conducted and a gap analysis was performed to identify indicator development needs. Afterwards, a Delphi study was performed to select sustainability indicators specifically for biobased chemical assessment and to reach consensus among experts on a prioritization of these indicators. Next, the selected sustainability indicators were quantified while integrating technological and country-specific data with environmental characterization factors, economic values and social data. Finally, a stochastic, hierarchical multi-criteria decision analysis (MCDA) integrates the independent techno-sustainability indicators expressed in different units, taking into account stochastic and flexible method options. The developed integrated TSA framework was applied to a case for which a production and harvesting plant of microalgae-based food colorants is assessed. The final aim of the integrated TSA is to compare the potential sustainability performance of different scenarios and to make better-informed choices between alternatives by evaluating environmental, economic and social sustainability impacts in one holistic model. Integrated TSA offers a novel framework where decision makers can assess sustainability already in early technology development stages by identifying potential hurdles and opportunities to guide R&D and make sustainable investment decisions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:174826 Serial 6947
Permanent link to this record