toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Liao, L.; Heylen, S.; Vallaey, B.; Keulemans, M.; Lenaerts, S.; Roeffaers, M.B.J.; Martens, J.A. pdf  doi
openurl 
  Title Photocatalytic carbon oxidation with nitric oxide Type A1 Journal article
  Year 2015 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 166 Issue Pages 374-380  
  Keywords (up) A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The photocatalytic oxidation of carbon black on TiO2 using nitric oxide as an oxidizing agent was investigated. Layer-wise deposited carbon and TiO2 powder was illuminated with UVA light in the presence of NO at parts per million concentrations in dry and hydrated carrier gas at a temperature of 150 degrees C. Carbon was photocatalytically converted mainly into CO2, and NO mainly into N-2. Carbon oxidation rates of 7.2 mu g/h/mgTiO(2) were achieved in the presence of 3000 ppm NO. Under these experimental conditions in the absence of molecular oxygen, formation of surface nitrates causing TiO2 photocatalyst deactivation is suppressed. Addition of water enhances surface nitrate formation and catalyst deactivation. NO and carbon particulate matter are air pollutants emitted by diesel engines. Elimination of soot collected on a diesel particulate filter through oxidation is a demanding reaction requiring temperatures in excess of 250 degrees C. The present study opens perspectives for a low-temperature regeneration strategy for the diesel particulate filter that simultaneously performs DeNO(x) reactions. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000348753400042 Publication Date 2014-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 5 Open Access  
  Notes ; This work was supported by long-term structural funding by the Flemish government (Methusalem). ; Approved Most recent IF: 9.446; 2015 IF: 7.435  
  Call Number UA @ admin @ c:irua:123858 Serial 5977  
Permanent link to this record
 

 
Author Minjauw, M.M.; Solano, E.; Sree, S.P.; Asapu, R.; Van Daele, M.; Ramachandran, R.K.; Heremans, G.; Verbruggen, S.W.; Lenaerts, S.; Martens, J.A.; Detavernier, C.; Dendooven, J. pdf  doi
openurl 
  Title Plasma-enhanced atomic layer deposition of silver using Ag(fod)(PEt3) and NH3-plasma Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 17 Pages 7114-7121  
  Keywords (up) A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A plasma-enhanced atomic layer deposition (ALD) process using the Ag(fod)(PEt3) precursor [(triethylphosphine)(6,6,7,7,8,8,8-heptafluoro-2,2-dimethy1-3,5-octanedionate)silver(I)] in combination with NH3-plasma is reported. The steady growth rate of the reported process (0.24 +/- 0.03 nm/cycle) was found to be 6 times larger than that of the previously reported Ag ALD process based on the same precursor in combination with H-2-plasma (0.04 +/- 0.02 nm/cycle). The ALD characteristics of the H-2-plasma and NH3-plasma processes were verified. The deposited Ag films were polycrystalline face-centered cubic Ag for both processes. The film morphology was investigated by ex situ scanning electron microscopy and grazing-incidence small-angle X-ray scattering, and it was found that films grown with the NH3-plasma process exhibit a much higher particle areal density and smaller particle sizes on oxide substrates compared to those deposited using the H-2-plasma process. This control over morphology of the deposited Ag is important for applications in catalysis and plasmonics. While films grown with the H-2-plasma process had oxygen impurities (similar to 9 atom %) in the bulk, the main impurity for the NH3-plasma process was nitrogen (similar to 7 atom %). In situ Fourier transform infrared spectroscopy experiments suggest that these nitrogen impurities are derived from NH surface groups generated during the NH3-plasma, which interact with the precursor molecules during the precursor pulse. We propose that the reaction of these surface groups with the precursor leads to additional deposition of Ag atoms during the precursor pulse compared to the H-2-plasma process, which explains the enhanced growth rate of the NH3-plasma process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000410868600012 Publication Date 2017-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 9 Open Access  
  Notes ; M.M.M. and J.D. acknowledge the Fonds Wetenschappelijk Onderzoek Vlaanderen (FWO Vlaanderen) for financial support through a personal research grant. We also acknowledge FWO Vlaanderen for providing project funding for this work. We are grateful to the ESRF staff for smoothly running the synchrotron and beamline facilities. We also thank Olivier Janssens for performing the SEM measurements and Stefaan Broekaert for mechanical assistance. J.A.M. acknowledges the Flemish Government for long-term structural funding (Methusalem). ; Approved Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:146757 Serial 5983  
Permanent link to this record
 

 
Author Kirschhock, C.E.A.; Liang, D.; Aerts, A.; Aerts, C.A.; Kremer, S.P.B.; Jacobs, P.A.; Van Tendeloo, G.; Martens, J.A. doi  openurl
  Title On the TEM and AFM evidence of zeosil nanoslabs present during the synthesis of silicalite-1 : reply Type L1 Letter to the editor
  Year 2004 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 43 Issue 35 Pages 4562-4564  
  Keywords (up) L1 Letter to the editor; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000224008400003 Publication Date 2004-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851;1521-3773; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited Open Access  
  Notes Fwo; Iap-Pai Approved Most recent IF: 11.994; 2004 IF: 9.161  
  Call Number UA @ lucian @ c:irua:103253 Serial 2457  
Permanent link to this record
 

 
Author Gagea, B.C.; Liang, D.; Van Tendeloo, G.; Martens, J.A.; Jacobs, P.A. doi  openurl
  Title Synthesis and characterization of nanocrystal zeolite/mesoporous matrix composite material Type P1 Proceeding
  Year 2006 Publication Studies in surface science and catalysis Abbreviated Journal  
  Volume 162 Issue Pages 259-266  
  Keywords (up) P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000283580900033 Publication Date 2007-09-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-2991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 8 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:99275 Serial 3413  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: