|   | 
Details
   web
Records
Author Milošević, M.V.; Mandrus, D.
Title 2D quantum materials : magnetism and superconductivity Type A1 Journal article
Year 2021 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 130 Issue 18 Pages 180401
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000720289900004 Publication Date 2021-11-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.068 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.068
Call Number UA @ admin @ c:irua:184090 Serial 6963
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Naseri, M.; Fadlallah, M.M.; Faraji, M.; Ghergherehchi, M.; Gogova, D.; Feghhi, S.A.H.
Title Effect of electric field and vertical strain on the electro-optical properties of the MoSi2N4 bilayer : a first-principles calculation Type A1 Journal article
Year 2021 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 129 Issue 15 Pages 155103
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recently, a two-dimensional (2D) MoSi 2N 4 (MSN) structure has been successfully synthesized [Hong et al., Science 369(6504), 670-674 (2020)]. Motivated by this result, we investigate the structural, electronic, and optical properties of MSN monolayer (MSN-1L) and bilayer (MSN-2L) under the applied electric field (E-field) and strain using density functional theory calculations. We find that the MSN-2L is a semiconductor with an indirect bandgap of 1.60 (1.80)eV using Perdew-Burke-Ernzerhof (HSE06). The bandgap of MSN-2L decreases as the E-field increases from 0.1 to 0.6V/angstrom and for larger E-field up to 1.0V/angstrom the bilayer becomes metallic. As the vertical strain increases, the bandgap decreases; more interestingly, a semiconductor to a metal phase transition is observed at a strain of 12 %. Furthermore, the optical response of the MSN-2L is in the ultraviolet (UV) region of the electromagnetic spectrum. The absorption edge exhibits a blue shift by applying an E-field or a vertical compressive strain. The obtained interesting properties suggest MSN-2L as a promising material in electro-mechanical and UV opto-mechanical devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000640620400003 Publication Date 2021-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.068
Call Number UA @ admin @ c:irua:178233 Serial 6981
Permanent link to this record
 

 
Author Osca, J.; Sorée, B.
Title Torque field and skyrmion motion by spin transfer torque in a quasi-2D interface in presence of strong spin-orbit interaction Type A1 Journal article
Year 2021 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 130 Issue 13 Pages 133903
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the torque field and skyrmion motion at an interface between a ferromagnet hosting a skyrmion and a material with a strong spin-orbit interaction. We analyze both semiconductor materials and topological insulators using a Hamiltonian model that includes a linear term. The spin torque-inducing current is considered to flow in the single band limit; therefore, a quantum model of current is used. Skyrmion motion due to spin transfer torque proves to be more difficult in the presence of a spin-orbit interaction in the case where only interface in-plane currents are present. However, edge effects in narrow nanowires can be used to drive the skyrmion motion and to exert a limited control on its motion direction. We also show the differences and similarities between torque fields due to electric current in the many and single band limits. Published under an exclusive license by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000755090400003 Publication Date 2021-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.068
Call Number UA @ admin @ c:irua:186452 Serial 7034
Permanent link to this record
 

 
Author Ozden, A.; Ay, F.; Sevik, C.; Perkgoz, N.K.
Title CVD growth of monolayer MoS2: Role of growth zone configuration and precursors ratio Type A1 Journal article
Year 2017 Publication Japanese journal of applied physics Abbreviated Journal
Volume 56 Issue 6s:[1] Pages 06gg05
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)
Abstract Single-layer, large-scale two-dimensional material growth is still a challenge for their wide-range usage. Therefore, we carried out a comprehensive study of monolayer MoS2 growth by CVD investigating the influence of growth zone configuration and precursors ratio. We first compared the two commonly used approaches regarding the relative substrate and precursor positions, namely, horizontal and face-down configurations where facedown approach is found to be more favorable to obtain larger flakes under identical growth conditions. Secondly, we used different types of substrate holders to investigate the influence of the Mo and S vapor confinement on the resulting diffusion environment. We suggest that local changes of the S to Mo vapor ratio in the growth zone is a key factor for the change of shape, size and uniformity of the resulting MoS2 formations, which is also confirmed by performing depositions under different precursor ratios. Therefore, to obtain continuous monolayer films, the S to Mo vapor ratio is needed to be kept within a certain range throughout the substrate. As a conclusion, we obtained monolayer triangles with a side length of 90 mu m and circles with a diameter of 500 mu m and continuous films with an area of 85 0 mu m x 1 cm when the S-to-Mo vapor ratio is optimized. (C) 2017 The Japan Society of Applied Physics
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000401059800003 Publication Date 2017-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-4922; 1347-4065 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:193783 Serial 7747
Permanent link to this record
 

 
Author Karaaslan, Y.; Haskins, J.B.; Yapicioglu, H.; Sevik, C.
Title Influence of randomly distributed vacancy defects on thermal transport in two-dimensional group-III nitrides Type A1 Journal article
Year 2021 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 129 Issue 22 Pages 224304
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)
Abstract Efficient thermal transport control is a fundamental issue for electronic device applications such as information, communication, and energy storage technologies in modern electronics in order to achieve desired thermal conditions. Structural defects in materials provide a mechanism to adjust the thermal transport properties of these materials on demand. In this context, the effect of structural defects on lattice thermal conductivities of two-dimensional hexagonal binary group-III nitride (XN, X = B, Al, and Ga) semiconductors is systematically investigated by means of classical molecular dynamics simulations performed with recently developed transferable inter-atomic potentials accurately describing defect energies. Here, two different Green-Kubo based approaches and another approach based on non-equilibrium molecular dynamics are compared in order to get an overall understanding. Our investigation clearly shows that defect concentrations of 3% decrease the thermal conductivity of systems containing these nitrites up to 95%. Results hint that structural defects can be used as effective adjustment parameters in controlling thermal transport properties in device applications associated with these materials. Published under an exclusive license by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000692024300001 Publication Date 2021-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.068
Call Number UA @ admin @ c:irua:181618 Serial 8096
Permanent link to this record
 

 
Author Saiz, F.; Karaaslan, Y.; Rurali, R.; Sevik, C.
Title Interatomic potential for predicting the thermal conductivity of zirconium trisulfide monolayers with molecular dynamics Type A1 Journal article
Year 2021 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 129 Issue 15 Pages 155105
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present here a new interatomic potential parameter set to predict the thermal conductivity of zirconium trisulfide monolayers. The generated Tersoff-type force field is parameterized using data collected with first-principles calculations. We use non-equilibrium molecular dynamics simulations to predict the thermal conductivity. The generated parameters result in very good agreement in structural, mechanical, and dynamical parameters. The room temperature lattice thermal conductivity ( kappa) of the considered crystal is predicted to be kappa x x = 25.69Wm – 1K – 1 and kappa y y = 42.38Wm – 1K – 1, which both agree well with their corresponding first-principles values with a discrepancy of less than 5%. Moreover, the calculated kappa variation with temperature (200 and 400 K) are comparable within the framework of the accuracy of both first-principles and molecular dynamics simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000641993600001 Publication Date 2021-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.068
Call Number UA @ admin @ c:irua:178234 Serial 8112
Permanent link to this record
 

 
Author Sun, J.; Li, Y.; Karaaslan, Y.; Sevik, C.; Chen, Y.
Title Misfit dislocation structure and thermal boundary conductance of GaN/AlN interfaces Type A1 Journal article
Year 2021 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 130 Issue 3 Pages 035301
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)
Abstract The structure and thermal boundary conductance of the wurtzite GaN/AlN (0001) interface are investigated using molecular dynamics simulation. Simulation results with three different empirical interatomic potentials have produced similar misfit dislocation networks and dislocation core structures. Specifically, the misfit dislocation network at the GaN/AlN interface is found to consist of pure edge dislocations with a Burgers vector of 1/3(1 (2) over bar 10) and the misfit dislocation core has an eight-atom ring structure. Although different interatomic potentials lead to different dislocation properties and thermal conductance values, all have demonstrated a significant effect of misfit dislocations on the thermal boundary conductance of the GaN/AlN (0001) interface. Published under an exclusive license by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000694725800001 Publication Date 2021-07-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.068
Call Number UA @ admin @ c:irua:181623 Serial 8254
Permanent link to this record
 

 
Author Duran, T.A.; Yayak, Y.O.; Aydin, H.; Peeters, F.M.; Yagmurcukardes, M.
Title A perspective on the state-of-the-art functionalized 2D materials Type A1 Journal article
Year 2023 Publication Journal of applied physics Abbreviated Journal
Volume 134 Issue 12 Pages 120901-120929
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional (2D) ultra-thin materials are more crucial than their bulk counterparts for the covalent functionalization of their surface owing to atomic thinness, large surface-to-volume ratio, and high reactivity of surface atoms having unoccupied orbitals. Since the surface of a 2D material is composed of atoms having unoccupied orbitals, covalent functionalization enables one to improve or precisely modify the properties of the ultra-thin materials. Chemical functionalization of 2D materials not only modifies their intrinsic properties but also makes them adapted for nanotechnology applications. Such engineered materials have been used in many different applications with their improved properties. In the present Perspective, we begin with a brief history of functionalization followed by the introduction of functionalized 2D materials. Our Perspective is composed of the following sections: the applications areas of 2D graphene and graphene oxide crystals, transition metal dichalcogenides, and in-plane anisotropic black phosphorus, all of which have been widely used in different nanotechnology applications. Finally, our Perspectives on the future directions of applications of functionalized 2D materials are given. The present Perspective sheds light on the current progress in nanotechnological applications of engineered 2D materials through surface functionalization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001087770500008 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.2 Times cited Open Access
Notes Approved Most recent IF: 3.2; 2023 IF: 2.068
Call Number UA @ admin @ c:irua:201281 Serial 9000
Permanent link to this record
 

 
Author Liu, J.; Xu, W.; Xiao, Y.M.; Ding, L.; Li, H.W.; Peeters, F.M.
Title Optical spectrum of n-type and p-type monolayer MoS₂ in the presence of proximity-induced interactions Type A1 Journal article
Year 2023 Publication Journal of applied physics Abbreviated Journal
Volume 134 Issue 22 Pages 224301-224307
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this paper, we examined the effects of proximity-induced interactions such as Rashba spin-orbit coupling and effective Zeeman fields (EZFs) on the optical spectrum of n-type and p-type monolayer (ML)-MoS2. The optical conductivity is evaluated using the standard Kubo formula under random-phase approximation by including the effective electron-electron interaction. It has been found that there exist two absorption peaks in n-type ML-MoS2 and two knife shaped absorptions in p-type ML-MoS2, which are contributed by the inter-subband spin-flip electronic transitions within conduction and valence bands at valleys K and K ' with a lifted valley degeneracy. The optical absorptions in n-type and p-type ML-MoS 2 occur in THz and infrared radiation regimes and the position, height, and shape of them can be effectively tuned by Rashba parameter, EZF parameters, and carrier density. The interesting theoretical predictions in this study would be helpful for the experimental observation of the optical absorption in infrared to THz bandwidths contributed by inter-subband spin-flip electronic transitions in a lifted valley degeneracy monolayer transition metal dichalcogenides system. The obtained results indicate that ML-MoS2 with the platform of proximity interactions make it a promising infrared and THz material for optics and optoelectronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001135684400003 Publication Date 2023-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.2 Times cited Open Access
Notes Approved Most recent IF: 3.2; 2023 IF: 2.068
Call Number UA @ admin @ c:irua:202777 Serial 9069
Permanent link to this record
 

 
Author Sargin, G.O.; Sarikurt, S.; Sevincli, H.; Sevik, C.
Title The peculiar potential of transition metal dichalcogenides for thermoelectric applications : a perspective on future computational research Type A1 Journal article
Year 2023 Publication Journal of applied physics Abbreviated Journal
Volume 133 Issue 15 Pages 150902-150937
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)
Abstract The peculiar potential transition metal dichalcogenides in regard to sensor and device applications have been exhibited by both experimental and theoretical studies. The use of these materials, thermodynamically stable even at elevated temperatures, particularly in nano- and optoelectronic technology, is about to come true. On the other hand, the distinct electronic and thermal transport properties possessing unique coherency, which may result in higher thermoelectric efficiency, have also been reported. However, exploiting this potential in terms of power generation and cooling applications requires a deeper understanding of these materials in this regard. This perspective study, concentrated with this intention, summarizes thermoelectric research based on transition metal dichalcogenides from a broad perspective and also provides a general evaluation of future theoretical investigations inevitable to shed more light on the physics of electronic and thermal transport in these materials and to lead future experimental research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001079329000001 Publication Date 2023-04-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.2 Times cited Open Access
Notes Approved Most recent IF: 3.2; 2023 IF: 2.068
Call Number UA @ admin @ c:irua:200351 Serial 9105
Permanent link to this record
 

 
Author Reijniers, J.; Peeters, F.M.
Title Diffusive transport in the hybrid Hall effect device Type A1 Journal article
Year 2000 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 87 Issue Pages 8088-8092
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT); Engineering Management (ENM)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000087067400075 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 12 Open Access
Notes Approved Most recent IF: 2.068; 2000 IF: 2.180
Call Number UA @ lucian @ c:irua:28516 Serial 703
Permanent link to this record
 

 
Author Ariskin, D.A.; Schweigert, I.V.; Alexandrov, A.L.; Bogaerts, A.; Peeters, F.M.
Title Modeling of chemical processes in the low pressure capacitive radio frequency discharges in a mixture of Ar/C2H2 Type A1 Journal article
Year 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 105 Issue 6 Pages 063305,1-063305,9
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We study the properties of a capacitive 13.56 MHz discharge with a mixture of Ar/C<sub>2</sub>H<sub>2</sub> taking into account the plasmochemistry and growth of heavy hydrocarbons. A hybrid model was developed to combine the kinetic description for electron motion and the fluid approach for negative and positive ion transports and plasmochemical processes. A significant change in plasma parameters related to injection of 5.8% portion of acetylene in argon was observed and analyzed. We found that the electronegativity of the mixture is about 30%. The densities of negatively and positively charged heavy hydrocarbons are sufficiently large to be precursors for the formation of nanoparticles in the discharge volume.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000264774000059 Publication Date 2009-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 21 Open Access
Notes Approved Most recent IF: 2.068; 2009 IF: 2.072
Call Number UA @ lucian @ c:irua:74496 Serial 2121
Permanent link to this record
 

 
Author Schoeters, B.; Leenaerts, O.; Pourtois, G.; Partoens, B.
Title Ab-initio study of the segregation and electronic properties of neutral and charged B and P dopants in Si and Si/SiO2 nanowires Type A1 Journal article
Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 118 Issue 118 Pages 104306
Keywords (up) A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We perform first-principles calculations to investigate the preferred positions of B and P dopants, both neutral and in their preferred charge state, in Si and Si/SiO2 core-shell nanowires (NWs). In order to understand the observed trends in the formation energy, we isolate the different effects that determine these formation energies. By making the distinction between the unrelaxed and the relaxed formation energy, we separate the impact of the relaxation from that of the chemical environment. The unrelaxed formation energies are determined by three effects: (i) the effect of strain caused by size mismatch between the dopant and the host atoms, (ii) the local position of the band edges, and (iii) a screening effect. In the case of the SiNW (Si/SiO2 NW), these effects result in an increase of the formation energy away from the center (interface). The effect of relaxation depends on the relative size mismatch between the dopant and host atoms. A large size mismatch causes substantial relaxation that reduces the formation energy considerably, with the relaxation being more pronounced towards the edge of the wires. These effects explain the surface segregation of the B dopants in a SiNW, since the atomic relaxation induces a continuous drop of the formation energy towards the edge. However, for the P dopants, the formation energy starts to rise when moving from the center but drops to a minimum just next to the surface, indicating a different type of behavior. It also explains that the preferential location for B dopants in Si/SiO2 core-shell NWs is inside the oxide shell just next to the interface, whereas the P dopants prefer the positions next to the interface inside the Si core, which is in agreement with recent experiments. These preferred locations have an important impact on the electronic properties of these core-shell NWs. Our simulations indicate the possibility of hole gas formation when B segregates into the oxide shell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000361636900031 Publication Date 2015-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 3 Open Access
Notes This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish government and the Universiteit Antwerpen. Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number c:irua:128729 Serial 4056
Permanent link to this record
 

 
Author Li, D.Y.; Zeng, Y.J.; Pereira, L.M.C.; Batuk, D.; Hadermann, J.; Zhang, Y.Z.; Ye, Z.Z.; Temst, K.; Vantomme, A.; Van Bael, M.J.; Van Haesendonck, C.;
Title Anisotropic magnetism and spin-dependent transport in Co nanoparticle embedded ZnO thin films Type A1 Journal article
Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 114 Issue 3 Pages 033909-6
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Oriented Co nanoparticles were obtained by Co ion implantation in crystalline ZnO thin films grown by pulsed laser deposition. Transmission electron microscopy revealed the presence of elliptically shaped Co precipitates with nanometer size, which are embedded in the ZnO thin films, resulting in anisotropic magnetic behavior. The low-temperature resistance of the Co-implanted ZnO thin films follows the Efros-Shklovskii type variable-range-hopping. Large negative magnetoresistance (MR) exceeding 10% is observed in a magnetic field of 1 T at 2.5K and the negative MR survives up to 250K (0.3%). The negative MR reveals hysteresis as well as anisotropy that correlate well with the magnetic properties, clearly demonstrating the presence of spin-dependent transport. (C) 2013 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000322202700071 Publication Date 2013-07-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 10 Open Access
Notes Approved Most recent IF: 2.068; 2013 IF: 2.185
Call Number UA @ lucian @ c:irua:110765 Serial 126
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A.
Title Bond length variation in Ga1-xInxAs crystals from the Tersoff potential Type A1 Journal article
Year 2007 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 101 Issue 12 Pages 123508,1-4
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000247625700034 Publication Date 2007-06-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 19 Open Access
Notes Approved Most recent IF: 2.068; 2007 IF: 2.171
Call Number UA @ lucian @ c:irua:67460 Serial 247
Permanent link to this record
 

 
Author Schattschneider, P.; Ennen, I.; Stoger-Pollach, M.; Verbeeck, J.
Title Circular dichroism in the electron microscope: progress and applications (invited) Type A1 Journal article
Year 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 107 Issue 9 Pages 09d311,1-09d311,6
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract According to theory, x-ray magnetic circular dichroism in a synchrotron is equivalent to energy loss magnetic chiral dichroism (EMCD) in a transmission electron microscope (TEM). After a synopsis of the development of EMCD, the theoretical background is reviewed and recent results are presented, focusing on the study of magnetic nanoparticles for ferrofluids and Heusler alloys for spintronic devices. Simulated maps of the dichroic strength as a function of atom position in the crystal allow evaluating the influence of specimen thickness and sample tilt on the experimental EMCD signal. Finally, the possibility of direct observation of chiral electronic transitions with atomic resolution in a TEM is discussed.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000277834300276 Publication Date 2010-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 28 Open Access
Notes Esteem Approved Most recent IF: 2.068; 2010 IF: 2.079
Call Number UA @ lucian @ c:irua:83653UA @ admin @ c:irua:83653 Serial 361
Permanent link to this record
 

 
Author Comrie, C.M.; Ahmed, A.; Smeets, D.; Demeulemeester, J.; Turner, S.; Van Tendeloo, G.; Detavernier, C.; Vantomme, A.
Title Effect of high temperature deposition on CoSi2 phase formation Type A1 Journal article
Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 113 Issue 23 Pages 234902-234908
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This paper discusses the nucleation behaviour of the CoSi to CoSi2 transformation from cobalt silicide thin films grown by deposition at elevated substrate temperatures ranging from 375 °C to 600 °C. A combination of channelling, real-time Rutherford backscattering spectrometry, real-time x-ray diffraction, and transmission electron microscopy was used to investigate the effect of the deposition temperature on the subsequent formation temperature of CoSi2, its growth behaviour, and the epitaxial quality of the CoSi2 thus formed. The temperature at which deposition took place was observed to exert a significant and systematic influence on both the formation temperature of CoSi2 and its growth mechanism. CoSi films grown at the lowest temperatures were found to increase the CoSi2 nucleation temperature above that of CoSi2 grown by conventional solid phase reaction, whereas the higher deposition temperatures reduced the nucleation temperature significantly. In addition, a systematic change in growth mechanism of the subsequent CoSi2 growth occurs as a function of deposition temperature. First, the CoSi2 growth rate from films grown at the lower reactive deposition temperatures is substantially lower than that grown at higher reactive deposition temperatures, even though the onset of growth occurs at a higher temperature, Second, for deposition temperatures below 450 °C, the growth appears columnar, indicating nucleation controlled growth. Elevated deposition temperatures, on the other hand, render the CoSi2 formation process layer-by-layer which indicates enhanced nucleation of the CoSi2 and diffusion controlled growth. Our results further indicate that this observed trend is most likely related to stress and changes in microstructure introduced during reactive deposition of the CoSi film. The deposition temperature therefore provides a handle to tune the CoSi2 growth mechanism.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000321011700077 Publication Date 2013-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 2 Open Access
Notes Fwo; Countatoms Approved Most recent IF: 2.068; 2013 IF: 2.185
Call Number UA @ lucian @ c:irua:109266 Serial 815
Permanent link to this record
 

 
Author Hezareh, T.; Razavi, F.S.; Kremer, R.K.; Habermeier, H.-U.; Lebedev, O.I.; Kirilenko, D.; Van Tendeloo, G.
Title Effect of PbZr0.52Ti0.48O3 thin layer on structure, electronic and magnetic properties of La0.65Sr0.35MnO3 and La0.65Ca0.30MnO3 thin-films Type A1 Journal article
Year 2011 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 109 Issue 11 Pages 113707,1-113707,8
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Epitaxial thin film heterostructures of high dielectric PbZr<sub>1-x</sub>Ti<sub>x</sub>O<sub>3</sub> (PZT) and La<sub>1-x</sub>A<sub>x</sub>MnO<sub>3</sub> (A-divalent alkaline earth metals such as Sr (LSMO) and Ca (LCMO)) were grown on SrTiO<sub>3</sub> substrates and their structure, temperature dependence of electrical resistivity, and magnetization were investigated as a function of the thickness of the LSMO(LCMO) layer. The microstructures of the samples were analyzed by TEM. By applying an electric field across the PZT layer, we applied a ferrodistortive pressure on the manganite layer and studied the correlations between lattice distortion and electric transport and magnetic properties of the CMR materials.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000292214700069 Publication Date 2011-06-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 4 Open Access
Notes Approved Most recent IF: 2.068; 2011 IF: 2.168
Call Number UA @ lucian @ c:irua:90964 Serial 843
Permanent link to this record
 

 
Author Malakho, A.; Fargin, E.; Lahaye, M.; Lazoryak, B.; Morozov, V.; Van Tendeloo, G.; Rodriguez, V.; Adamietz, F.
Title Enhancement of second harmonic generation signal in thermally poled glass ceramic with NaNbO3 nanocrystals Type A1 Journal article
Year 2006 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 100 Issue 6 Pages 063103,1-5
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Glass ceramic composites were prepared by bulk crystallization of NaNbO3 in sodium niobium borate glasses. A homogeneous bulk crystallization of the NaNbO3 phase takes place during heat treatments that produces visible-near infrared transparent materials with similar to 30 nm NaNbO3 nanocrystallites. Upon thermal poling, a strong Na+ depleted nonlinear optical thin layer is observed at the anode side that should induce a large internal static electric field. In addition, the chi((2)) response of the poled glass ceramic composites increases from 0.2 up to 1.9 pm/V with the rate of crystallization. Two mechanisms may be considered: a pure structural chi((2)) process connected with the occurrence of a spontaneous ferroelectric polarization or an increase of the chi((3)) response of the nanocrystallites that enhances the electric field induced second harmonic generation process. (c) 2006 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000240876600003 Publication Date 2006-10-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 13 Open Access
Notes Approved Most recent IF: 2.068; 2006 IF: 2.316
Call Number UA @ lucian @ c:irua:61005 Serial 1063
Permanent link to this record
 

 
Author Buschmann, V.; Rodewald, M.; Fuess, H.; Van Tendeloo, G.; Schäffer, C.
Title High resolution electron microscopy study of molecular beam epitaxy grown CoSi2/Si1-xGex/Si(100) heterostructurs Type A1 Journal article
Year 1999 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 85 Issue 4 Pages 2119-2123
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Two CoSi2/Si1-xGex/Si(100) heterostructures, with different Ge content, made by molecular beam epitaxy are characterized by high resolution electron microscopy. In general, the interface between the CoSi2 thin film and the Si1-xGex layer is of a high structural quality and the strained Si1-xGex layer exhibits few defects. For both samples, different interface structures are present, although the dominant interfacial configuration is similar to the unreconstructed interface present at the CoSi2/Si(100) interface. Only occasionally (2x1) reconstructed interface regions are found which are just a few nanometers in length. Phenomena such as Ge segregation and the introduction of defects are also observed in the Si1-xGex layer. We attribute the minimal presence of the reconstructed interface to both the (2x8):Si1-xGex(100) surface reconstruction and the Ge segregation that takes place. (C) 1999 American Institute of Physics. [S0021-8979(99)02104-0].
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000078403000017 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 6 Open Access
Notes Approved Most recent IF: 2.068; 1999 IF: 2.275
Call Number UA @ lucian @ c:irua:103977 Serial 1455
Permanent link to this record
 

 
Author Teodorescu, V.; Nistor, L.; Bender, H.; Steegen, A.; Lauwers, A.; Maex, K.; van Landuyt, J.
Title In situ transmission electron microscopy study of Ni silicide phases formed on (001) Si active lines Type A1 Journal article
Year 2001 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 90 Issue 1 Pages 167-174
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The formation of Ni silicides is studied by transmission electron microscopy during in situ heating experiments of 12 nm Ni layers on blanket silicon, or in patterned structures covered with a thin chemical oxide. It is shown that the first phase formed is the NiSi2 which grows epitaxially in pyramidal crystals. The formation of NiSi occurs quite abruptly around 400 degreesC when a monosilicide layer covers the disilicide grains and the silicon in between. The NiSi phase remains stable up to 800 degreesC, at which temperature the layer finally fully transforms to NiSi2. The monosilicide grains show different epitaxial relationships with the Si substrate. Ni2Si is never observed. (C) 2001 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000169361100023 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 97 Open Access
Notes Approved Most recent IF: 2.068; 2001 IF: 2.128
Call Number UA @ lucian @ c:irua:102855 Serial 1587
Permanent link to this record
 

 
Author Das, A.; Gordon, I.; Wagner, P.; Cannaerts, M.; Moshchalkov, V.V.; Bruynseraede, Y.; Schuddinck, W.; Van Tendeloo, G.; Borghs, G.
Title Influence of the morphology on the magneto-transport properties of laser-ablated ultrathin La0.7Ba0.3MnO3 films Type A1 Journal article
Year 2001 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 90 Issue 3 Pages 1429-1435
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000169868300052 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 2 Open Access
Notes Approved Most recent IF: 2.068; 2001 IF: 2.128
Call Number UA @ lucian @ c:irua:54816 Serial 1649
Permanent link to this record
 

 
Author Shapoval, O.; Huehn, S.; Verbeeck, J.; Jungbauer, M.; Belenchuk, A.; Moshnyaga, V.
Title Interface-controlled magnetism and transport of ultrathin manganite films Type A1 Journal article
Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 113 Issue 17 Pages 17c711-3
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report ferromagnetic, T-C = 240 K, and metallic, T-MI = 250 K, behaviors of a three unit cell thick interface engineered lanthanum manganite film, grown by metalorganic aerosol deposition technique on SrTiO3(100) substrates. Atomically resolved electron microscopy and chemical analysis show that ultrathin manganite films start to grow with La-O layer on a strongly Mn/Ti-intermixed interface, engineered by an additional deposition of 2 u.c. of Sr-Mn-O. Such interface engineering results in a hole-doped manganite layer and stabilizes ferromagnetism and metallic conductivity down to the thickness of d = 3 u.c. The films with d = 8 u.c. demonstrate a bulk-like transport behavior with T-MI similar to T-C = 310 – 330 K. (C) 2013 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000319292800195 Publication Date 2013-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 7 Open Access
Notes Ifox; Countatoms; Vortex; Esteem2; esteem2jra3 ECASJO; Approved Most recent IF: 2.068; 2013 IF: 2.185
Call Number UA @ lucian @ c:irua:109009UA @ admin @ c:irua:109009 Serial 1692
Permanent link to this record
 

 
Author Maignan, A.; Singh, K.; Simon, C.; Lebedev, O.I.; Martin, C.; Tan, H.; Verbeeck, J.; Van Tendeloo, G.
Title Magnetic and magnetodielectric properties of erbium iron garnet ceramic Type A1 Journal article
Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 113 Issue 3 Pages 033905-5
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract An Er3Fe5O12 ceramic has been sintered in oxygen atmosphere at 1400 °C for dielectric measurements. Its structural quality at room temperature has been checked by combining transmission electron microscopy and X-ray diffraction. It crystallizes in the cubic space group Ia3d with a = 12.3488(1). The dielectric permittivity ([variantgreekepsilon]′) and losses (tan δ) measurements as a function of temperature reveal the existence of two anomalies, a broad one between 110 K and 80 K, attributed to the Er3+ spin reorientation, and a second sharper feature at about 45 K associated to the appearance of irreversibility on the magnetic susceptibility curves. In contrast to the lack of magnetic field impact on [variantgreekepsilon]′ for the former anomaly, a complex magnetic field effect has been evidenced below 45 K. The isothermal [variantgreekepsilon]′(H) curves show the existence of positive magnetodielectric effect, reaching a maximum of 0.14% at 3 T and 10 K. Its magnitude decreases as H is further increased. Interestingly, for the lowest H values, a linear regime in the [variantgreekepsilon]′(H) curve is observed. From this experimental study, it is concluded that the [variantgreekepsilon]′ anomaly, starting above the compensation temperature Tc (75 K) and driven by the internal magnetic field, is not sensitive to an applied external magnetic field. Thus, below 45 K, it is the magnetic structure which is responsible for the coupling between spin and charge in this iron garnet.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000313670600042 Publication Date 2013-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 15 Open Access
Notes Vortex; Countatoms ECASJO_; Approved Most recent IF: 2.068; 2013 IF: 2.185
Call Number UA @ lucian @ c:irua:106182UA @ admin @ c:irua:106182 Serial 1861
Permanent link to this record
 

 
Author Laffez, P.; Van Tendeloo, G.; Seshadri, R.; Hervieu, M.; Martin, C.; Maignan, A.; Raveau, B.
Title Microstructural and physical properties of layered manganite oxides related to the magnetoresistive perovskites Type A1 Journal article
Year 1996 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 80 Issue Pages 5850-5856
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos A1996VU98700045 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.183 Times cited 36 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:17848 Serial 2039
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A.
Title Modified atomic scattering amplitudes and size effects on the 002 and 220 electron structure factors of multiple Ga1-xInxAs/GaAs quantum wells Type A1 Journal article
Year 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 105 Issue 8 Pages 084310,1-084310,8
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The modified atomic scattering amplitudes (MASAs) of mixed Ga<sub>1-x</sub>In<sub>x</sub>As, GaAs<sub>1-x</sub>N<sub>x</sub>, and InAs<sub>1-x</sub>N<sub>x</sub> are calculated using the density functional theory approach and the results are compared with those of the binary counterparts. The MASAs of N, Ga, As, and In for various scattering vectors in various chemical environments and in the zinc-blende structure are compared with the frequently used Doyle and Turner values. Deviation from the Doyle and Turner results is found for small scattering vectors (s<0.3 Å<sup>-1</sup>) and for these scattering vectors the MASAs are found to be sensitive to the orientation of the scattering vector and on the chemical environment. The chemical environment sensitive MASAs are used within zero pressure classical Metropolis Monte Carlo, finite temperature calculations to investigate the effect of well size on the electron 002 and 220 structure factors (SFs). The implications of the use of the 002 (200) spot for the quantification of nanostructured Ga<sub>1-x</sub>In<sub>x</sub>As systems are examined while the 220 SF across the well is evaluated and is found to be very sensitive to the in-plane static displacements.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000268064700149 Publication Date 2009-04-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record
Impact Factor 2.068 Times cited Open Access
Notes Fwo G.0425.05; Esteem 026019 Approved Most recent IF: 2.068; 2009 IF: 2.072
Call Number UA @ lucian @ c:irua:78282 Serial 2160
Permanent link to this record
 

 
Author Dobrynin, A.N.; Temst, K.; Lievens, P.; Margueritat, J.; Gonzalo, J.; Afonso, C.N.; Piscopiello, E.; Van Tendeloo, G.
Title Observation of Co/CoO nanoparticles below the critical size for exchange bias Type A1 Journal article
Year 2007 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 101 Issue 11 Pages 113913-113917
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We compare the magnetic properties of pure and oxidized Co nanoparticles embedded in an amorphous Al2O3 matrix. Nanoparticles with diameters of 2 or 3 nm were prepared by alternate pulsed laser deposition in high vacuum conditions, and some of them were exposed to O-2 after production and before being embedded. The nanoparticles are organized in layers, the effective edge-to-edge in-depth separation being 5 or 10 nm. The lower saturation magnetizations per Co atom for the samples containing oxidized nanoparticles provide evidence for the formation of antiferromagnetic CoO shells in the nanoparticles. None of the samples with Co/CoO nanoparticles show exchange bias, while vertical hysteresis loop shifts and enhanced coercivities (as compared to samples with pure Co nanoparticles) are observed. This constitutes evidence for the nanoparticles size being in all cases smaller than the critical size for exchange bias. The difference in coercivity versus temperature dependences for the samples with pure and oxidized Co nanoparticles shows that the exchange anisotropy in Co/CoO nanoparticles appears at temperatures lower than 50 K. (c) 2007 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000247306000098 Publication Date 2007-06-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 27 Open Access
Notes Approved Most recent IF: 2.068; 2007 IF: 2.171
Call Number UA @ lucian @ c:irua:103596 Serial 2415
Permanent link to this record
 

 
Author Gryse, O.D.; Clauws, P.; van Landuyt, J.; Lebedev, O.; Claeys, C.; Simoen, E.; Vanhellemont, J.
Title Oxide phase determination in silicon using infrared spectroscopy and transmission electron microscopy techniques Type A1 Journal article
Year 2002 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 91 Issue 4 Pages 2493-2498
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Infrared absorption spectra of polyhedral and platelet oxygen precipitates in silicon are analyzed using a modified Day-Thorpe approach [J. Phys.: Condens. Matter 11, 2551 (1999)]. The aspect ratio of the precipitates is determined by transmission electron microscopy analysis. The reduced spectral function and the stoichiometry of the precipitate are extracted from the absorption spectra and the amount of precipitated interstitial oxygen. The experimental absorption spectra can be divided in a set with a Frohlich frequency of around 1100 cm(-1) and in a set with a Frohlich frequency between 1110 and 1120 cm(-1). It is shown that the shift in the Frohlich frequency is not due to a differing stoichiometry, but to the detailed structure of the reduced spectral function. Inverse modeling of the spectra suggests that the oxide precipitates consist of substoichiometric SiOgamma with gamma=1.17+/-0.14. (C) 2002 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000173553800114 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 27 Open Access
Notes Approved Most recent IF: 2.068; 2002 IF: 2.281
Call Number UA @ lucian @ c:irua:103372 Serial 2542
Permanent link to this record
 

 
Author Wouters, J.; Lebedev, O.I.; Van Tendeloo, G.; Yamada, H.; Sato, N.; Vanacken, J.; Moshchalkov, V.V.; Verbiest, T.; Valev, V.K.
Title Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt-processing can induce an in-plane magnetic anisotropy Type A1 Journal article
Year 2011 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 109 Issue 7 Pages 076105-076105,3
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Faraday rotation has been used to investigate a series of polymer films doped with magnetic iron oxide nanoparticles. The films have been prepared by spin-coating and melt-processing. In each case, upon varying the angle of optical incidence on the films, an in-plane magnetic anisotropy is observed. The effect of such an anisotropy on the Faraday rotation as a function of the angle of optical incidence is verified by comparison with magnetically poled films. These results demonstrate that care should be taken upon analyzing the magnetic behavior of such films on account of the sample preparation techniques themselves being able to affect the magnetization.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000289949000166 Publication Date 2011-04-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 10 Open Access
Notes Fwo; Iap; Iwt Approved Most recent IF: 2.068; 2011 IF: 2.168
Call Number UA @ lucian @ c:irua:89917 Serial 2709
Permanent link to this record
 

 
Author Salman, O.U.; Finel, A.; Delville, R.; Schryvers, D.
Title The role of phase compatibility in martensite Type A1 Journal article
Year 2012 Publication Journal of applied physics T2 – 22nd International Symposium on Integrated Functionalities (ISIF), JUN 13-16, 2010, San Juan, PR Abbreviated Journal J Appl Phys
Volume 111 Issue 10 Pages 103517
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Shape memory alloys inherit their macroscopic properties from their mesoscale microstructure originated from the martensitic phase transformation. In a cubic to orthorhombic transition, a single variant of martensite can have a compatible (exact) interface with the austenite for some special lattice parameters in contrast to conventional austenite/twinned martensite interface with a transition layer. Experimentally, the phase compatibility results in a dramatic drop in thermal hysteresis and gives rise to very stable functional properties over cycling. Here, we investigate the microstructures observed in Ti50Ni50-xPdx alloys that undergo a cubic to orthorhombic martensitic transformation using a three-dimensional phase field approach. We will show that the simulation results are in very good agreement with transmission electron microscopy observations. However, the understanding of the drop in thermal hysteresis requires the coupling of phase transformation with plastic activity. We will discuss this point within the framework of thermoelasticity, which is a generic feature of the martensitic transformation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4712629]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000305363700053 Publication Date 2012-05-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 11 Open Access
Notes Approved Most recent IF: 2.068; 2012 IF: 2.210
Call Number UA @ lucian @ c:irua:100310 Serial 2919
Permanent link to this record