|   | 
Details
   web
Records
Author Vanmeert, F.; Van der Snickt, G.; Legrand, S.; Janssens, K.
Title Velázquez? A portrait of Pope Innocent X : an X-ray imaging investigation (II) Type H3 Book chapter
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 132-141 T2 - Velázquez : Anregungen, Vorschläge, L
Keywords (up) H3 Book chapter; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Encompassing a broad spectrum of methodological approaches and aims, the scholars contributing to this volume offer renewed perspectives on the multifaceted oeuvre of Diego Velázquez. The seventeenth-century artist’s exceptional religious works as well as his numerous portraits are examined within the social and historical context of Velázquez’s milieu which included both the Spanish court as well as circles comprising important intellectual figures of his time. Following a close investigation of his works, which also includes the results of recent technological examinations on his paintings, the contributors to this volume offer new, exciting findings and discussions on the inspirations, sources and possible intentions of Velázquez.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-3-99020-155-8 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:190783 Serial 8736
Permanent link to this record
 

 
Author Nord, M.; Verbeeck, J.
Title Towards Reproducible and Transparent Science of (Big) Electron Microscopy Data Using Version Control Type P1 Proceeding
Year 2019 Publication Microscopy and microanalysis T2 – Microscopy & Microanalysis 2019, 4-8 August, 2019, Portland, Oregon Abbreviated Journal Microsc Microanal
Volume 25 Issue S2 Pages 232-233
Keywords (up) P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record
Impact Factor 1.891 Times cited Open Access
Notes Approved Most recent IF: 1.891
Call Number EMAT @ emat @c:irua:164058 Serial 5377
Permanent link to this record
 

 
Author Peeters, B.; Safdar, S.; Carlier, B.; Spasic, D.; Daems, D.; Lammertyn, J.
Title PCR amplified DNAzyme-amplicons for generic solid-phase antimicrobial resistance screening Type P1 Proceeding
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 971-974 T2 - Transducers 2019 : Eurosensors XXXIII
Keywords (up) P1 Proceeding; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Fiber optic surface plasmon resonance (FO-SPR) has shown its potential for the detection of nucleic acids and more recently the technology has been combined with catalytic active strands such as DNAzymes. In this work, an innovative, generic solid-phase DNA sensor concept is presented, based on FO-SPR and PCR amplified DNAzyme activity. Improved levels of specificity and sensitivity were obtained down to picomolar concentrations. Moreover, the FO-SPR sensor concept enables AuNP amplified DNA target detection, independent of the target sequence length. The FO-SPR sensor was demonstrated for the screening of the mobile colistin resistance (MCR-2) gene, a gene important for the antimicrobial resistance in Gram-negative species such as E. Coli.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000539487000245 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:166108 Serial 8367
Permanent link to this record
 

 
Author Mescia, L.; Lamacchia, C.M.; Chiapperino, M.A.; Bia, P.; Gielis, J.; Caratelli, D.
Title Design of irregularly shaped lens antennas including supershaped feed Type P1 Proceeding
Year 2019 Publication Progress in Electromagnetic Research Symposium (PIERS) T2 – 2019 PhotonIcs & Electromagnetics Research Symposium – Spring (PIERS-Spring), 17-20 June, 2019, Rome, Italy Abbreviated Journal
Volume Issue Pages 169-173
Keywords (up) P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract A new class of irregularly shaped dielectric lens antennas with a supershaped microstrip antenna feeder is presented and detailed in this work. The surface of the lens antenna and the feeder shape have been modelled by using the three and two-dimensional Gielis formula, respectively. The antenna design has been carried out by integrating an home-made software tool with the CST Microwave Studio®. The radiation properties of the whole antenna system have been evaluated using a dedicated high-frequency technique based on the tube tracing approximation. Moreover, the effects due to the multiple internal reflections have been properly modeled. The proposed model was applied to study unusual and complex lens antenna systems with the aim to design special radiation characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000550769300021 Publication Date 2020-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-72813-403-1; 978-1-72813-404-8; 978-1-72813-403-1 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169169 Serial 7766
Permanent link to this record
 

 
Author Mescia, L.; Chiapperino, M.A.; Bia, P.; Lamacchia, C.M.; Gielis, J.; Caratelli, D.
Title Multiphysics modelling of membrane electroporation in irregularly shaped cells Type P1 Proceeding
Year 2019 Publication Progress in Electromagnetic Research Symposium (PIERS) T2 – 2019 PhotonIcs & Electromagnetics Research Symposium – Spring (PIERS-Spring), 17-20 June 2019, Rome, Italy Abbreviated Journal
Volume Issue Pages 2992-2998
Keywords (up) P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Electroporation is a non-thermal electromagnetic phenomenon widely used in medical diseases treatment. Different mathematical models of electroporation have been proposed in literature to study pore evolution in biological membranes. This paper presents a nonlinear dispersive multiphysic model of electroporation in irregular shaped biological cells in which the spatial and temporal evolution of the pores size is taken into account. The model solves Maxwell and asymptotic Smoluchowski equations and it describes the dielectric dispersion of cell media using a Debye-based relationship. Furthermore, the irregular cell shape has been modeled using the Gielis superformula. Taking into account the cell in mitosis phase, the electroporation process has been studied comparing the numerical results pertaining the model with variable pore radius with those in which the pore radius is supposed constant. The numerical analysis has been performed exposing the biological cell to a rectangular electric pulse having duration of 10 μs. The obtained numerical results highlight considerable differences between the two different models underling the need to include into the numerical algorithm the differential equation modeling the spatial and time evolution of the pores size.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000550769302159 Publication Date 2020-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-72813-404-8; 978-1-72813-403-1 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169170 Serial 8288
Permanent link to this record
 

 
Author Mescia, L.; Chiapperino, M.A.; Bia, P.; Lamacchia, C.M.; Gielis, J.; Caratelli, D.
Title Relevance of the cell membrane modelling for accurate analysis of the pulsed electric field-induced electroporation Type P1 Proceeding
Year 2019 Publication Progress in Electromagnetic Research Symposium (PIERS) T2 – 2019 PhotonIcs & Electromagnetics Research Symposium – Spring (PIERS-Spring), 17-20 June 2019, Rome, Italy Abbreviated Journal
Volume Issue Pages 2985-2991
Keywords (up) P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In this work, a nonlinear dispersive multiphysic model based on Maxwell and asymptotic Smoluchowsky equations has been developed to analyze the electroporation phenomenon induced by pulsed electric field on biological cells. The irregular plasma membrane geometry has been modeled by incorporating in the numerical algorithm the Gielis superformula as well as the dielectric dispersion of the plasma membrane has been modeled using the multi-relaxation Debye-based relationship. The study has been carried out with the aim to compare our model implementing a thin plasma membrane with the simplified model in which the plasma membrane is modeled as a distributed impedance boundary condition. The numerical analysis has been performed exposing the cell to external electric pulses having rectangular shapes. By an inspection of the obtained results, significant differences can be highlighted between the two models confirming the need to incorporate the effective thin membrane into the numerical algorithm to well predict the cell response to the pulsed electric fields in terms of transmembrane voltages and pore densities, especially when the cell is exposed to external nanosecond pulses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000550769302158 Publication Date 2020-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-72813-404-8; 978-1-72813-403-1 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169171 Serial 8469
Permanent link to this record
 

 
Author Paunska, T.; Trenchev, G.; Bogaerts, A.; Kolev, S.
Title A 2D model of a gliding arc discharge for CO2conversion Type P1 Proceeding
Year 2019 Publication AIP conference proceedings T2 – 10th Jubilee Conference of the Balkan-Physical-Union (BPU), AUG 26-30, 2018, Sofia, BULGARIA Abbreviated Journal
Volume Issue Pages
Keywords (up) P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The study presents a 2D fluid plasma model of a gliding arc discharge for dissociation of CO2 which allows its subsequent conversion into value-added chemicals. The model is based on the balance equations of charged and neutral particles, the electron energy balance equation, the gas thermal balance equation and the current continuity equation. By choosing the modeling domain to be the plane perpendicular to the arc current, the numerical calculations are significantly simplified. Thus, the model allows us to explore the influence of the gas instabilities (turbulences) on the energy efficiency of CO2 conversion. This paper presents results for plasma parameters at different values of the effective turbulent thermal conductivity leading to enhanced energy transport.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472653800069 Publication Date 2019-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume 2075 Series Issue Edition
ISSN 978-0-7354-1803-5; 978-0-7354-1803-5; 0094-243x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:161422 Serial 6281
Permanent link to this record
 

 
Author Rutten, I.; Safdar, S.; Ven, K.; Daems, D.; Spasic, D.; Lammertyn, J.
Title A DNA nanotechnology toolbox for mix-and-match biosensor design Type P3 Proceeding
Year 2019 Publication Abbreviated Journal
Volume Issue Pages
Keywords (up) P3 Proceeding; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:166107 Serial 7819
Permanent link to this record
 

 
Author Nord, M.; Verbeeck, J.
Title Open Source Development Tools for Robust and Reproducible Electron Microscopy Data Analysis Type P3
Year 2019 Publication Microscopy And Microanalysis Abbreviated Journal Microsc Microanal
Volume 25 Issue S2 Pages 138-139
Keywords (up) P3; Electron Microscopy for Materials Science (EMAT) ;
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links
Impact Factor 1.891 Times cited Open Access
Notes Approved Most recent IF: 1.891
Call Number EMAT @ emat @ Serial 5378
Permanent link to this record