|   | 
Details
   web
Records
Author De Bock, A.; Belmans, B.; Vanlanduit, S.; Blom, J.; Alvarado Alvarado, A.A.; Audenaert, A.
Title A review on the leaf area index (LAI) in vertical greening systems Type A1 Journal article
Year 2023 Publication Building and environment Abbreviated Journal
Volume 229 Issue Pages 109926-14
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Sustainable Pavements and Asphalt Research (SuPAR); Energy and Materials in Infrastructure and Buildings
Abstract The leaf area index (LAI) is a key dynamic parameter in Vertical Greening Systems (VGS). It quantifies the total amount of leaf area in the canopy and largely determines the extent of co-benefits of VGS. Whereas many studies on VGS discuss the importance of the LAI, only few elaborate on the parameter itself, how it is determined and what the current limitations are in VGS. Moreover, although there is scientific consensus on the importance of LAI in VGS, specific non-destructive monitoring techniques for continuous LAI monitoring appear to be absent, which results in limited overall data on the LAI of VGS under different spatial and temporal conditions and problems in quantifying the benefits of VGS in practice. To fill these gaps, this paper specifically focuses on the LAI of VGS and its monitoring techniques. An overview of existing LAI monitoring techniques in the field of VGS is presented. To arrive at dedicated techniques, this is complemented by a thorough analysis of LAI monitoring techniques used in other research fields, e.g. agriculture and forestry. It is established that two indirect techniques for LAI monitoring are currently available in the VGS sector, but a proper standardized sampling methodology currently lacks. Monitoring techniques used in other sectors offer opportunities for developing dedicated monitoring methods for VGS, but require further research due to the specific features of VGS systems. Furthermore, guidelines are proposed for a more standardized LAI determination of reporting of LAI values in VGS.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000950866100001 Publication Date 2022-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-1323 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access
Notes Approved Most recent IF: 7.4; 2023 IF: 4.053
Call Number UA @ admin @ c:irua:194575 Serial 9085
Permanent link to this record
 

 
Author Voordeckers, D.; Meysman, F.J.R.; Billen, P.; Tytgat, T.; Van Acker, M.
Title The impact of street canyon morphology and traffic volume on NO₂ values in the street canyons of Antwerp Type A1 Journal article
Year 2021 Publication Building And Environment Abbreviated Journal Build Environ
Volume 197 Issue Pages 107825-10
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Research Group for Urban Development; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Air pollution remains a major environmental and health concern in urban environments, especially in street canyons that show increased pollution levels due to a lack of natural ventilation. Previous studies have investigated the relationship between street canyon morphology and in-canyon pollution levels. However, these studies are typically limited to the scale of a single street canyon and city-wide assessments on this matter are scarce. In 2018, NO2 concentrations were measured in 321 street canyons in the city of Antwerp (Belgium) as part of the large-scale citizen-science project “CurieuzeNeuzen”. In our research, this data was used to study the correlation between morphological indices (e.g. aspect ratio (AR), lateral aspect ratio (LAR), presence of trees) and the traffic volumes on a city-wide scale. The maximum hourly traffic volume (TVmax) and AR correlated significantly with the measured NO2 values, making them useful indicators for air quality in street canyons. For street canyons with AR > 0.65, a TVmax of 300 vehicles/hour was found as a threshold value to guarantee acceptable air quality. No significant correlations were found for the other parameters. Finally, a number of typical street canyon types were defined, which can be of fundamental interest for further research and spatial policy making.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000663167900003 Publication Date 2021-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-1323 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.053 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.053
Call Number UA @ admin @ c:irua:176925 Serial 8064
Permanent link to this record
 

 
Author Sakarika, M.; Spiller, M.; Baetens, R.; Donies, G.; Vanderstuyf, J.; Vinck, K.; Vrancken, K.C.; Van Barel, G.; Du Bois, E.; Vlaeminck, S.E.
Title Proof of concept of high-rate decentralized pre-composting of kitchen waste : optimizing design and operation of a novel drum reactor Type A1 Journal article
Year 2019 Publication Waste management Abbreviated Journal
Volume 91 Issue Pages 20-32
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Product development
Abstract Each ton of organic household waste that is collected, transported and composted incurs costs (€75/ton gate fee). Reducing the mass and volume of kitchen waste (

KW) at the point of collection can diminish transport requirements and associated costs, while also leading to an overall reduction in gate fees for final processing. To this end, the objective of this research was to deliver a proof of concept for the so-called “urban pre-composter”; a bioreactor for the decentralized, high-rate pre-treatment of KW, that aims at mass and volume reduction at the point of collection. Results show considerable reductions in mass (33%), volume (62%) and organic solids (32%) of real KW, while provision of structure material and separate collection of leachate was found to be unnecessary. The temperature profile, C/N ratio (12) and VS/TS ratio (0.69) indicated that a mature compost can be produced in 68  days (after pre-composting and main composting). An economic Monte Carlo simulation yielded that the urban pre-composter concept is not more expensive than the current approach, provided its cost per unit is €8,000–€14,500 over a 10-year period (OPEX and CAPEX, in 80% of the cases). The urban pre-composter is therefore a promising system for the efficient pre-treatment of organic household waste in an urban context.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000473378700003 Publication Date 2019-04-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-053x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:159579 Serial 8426
Permanent link to this record
 

 
Author Maes, R.R.; Potters, G.; Fransen, E.; Geuens, J.; Van Schaeren, R.; Lenaerts, S.
Title Can we find an optimal fatty acid composition of biodiesel in order to improve oxidation stability? Type A1 Journal article
Year 2023 Publication Sustainability Abbreviated Journal
Volume 15 Issue 13 Pages 10310-10
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Medical Genetics (MEDGEN)
Abstract Air quality currently poses a major risk for human health. Currently, diesel is widely used as fuel and is a significant source of nitrogen oxides (NOx) and particulate matter (PM), both hazardous to human health. A good alternative for mineral diesel is biodiesel, not only for the improvement of hazardous components in the exhaust gases but also because it can be produced in view of a circular economy. Biodiesel consists of a mix of different fatty acid methyl esters, which can react with oxygen. As a consequence, the oxidation stability of biodiesel has to be studied, because the oxidation of biodiesel could affect the performance of the engine due to the wear of injectors and fuel pumps. The oxidation stability could also affect the quality of the exhaust gases due to increases in NOx and PM. The basic question we try to answer in this communication is: 'Can we find an optimal fatty acid composition in order to have a maximal oxidation stability?' In this article, we try to find the optimal fatty acid composition according to the five most common fatty acid methyl esters present in biodiesel in order to reach a maximal oxidation stability. The measurements and statistical analysis show, however, that there is no useful regression model because there are statistically significant two- and three-way interactions among the different fatty acids.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001028597300001 Publication Date 2023-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.9; 2023 IF: 1.789
Call Number UA @ admin @ c:irua:198241 Serial 8839
Permanent link to this record
 

 
Author Fret, J.; Roef, L.; Diels, L.; Tavernier, S.; Vyverman, W.; Michiels, M.
Title Combining medium recirculation with alternating the microalga production strain : a laboratory and pilot scale cultivation test Type A1 Journal article
Year 2020 Publication Algal Research-Biomass Biofuels And Bioproducts Abbreviated Journal Algal Res
Volume 46 Issue Pages 101763
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Reuse of growth medium after biomass harvesting is a cost-saving approach to improve the economic feasibility of algae mass cultivation. Algal exudates, cell debris and varying amounts of residual nutrients, impose challenges to the recycling of spent medium. In this study, the potential of combining reused medium from different algae species for growing monocultures of other algal strains was evaluated by making use of three successive cultivation setups with increasing volume; 400 mL in turbidostat mode, 2.6 L and 220 L in semi-continuous mode. Cultivation on replenished medium derived from Nannochloropsis sp. and Tisochrysis lutea, had no adverse effect on the productivity of either of the strains, regardless of whether they were grown in their own recycled medium or that of the other alga. Microfiltration of the reused medium proved to be sufficient to avoid cross-contamination. Moreover, a substantial average reduction in water footprint (77%) and nutrient cost (68% or 9 (sic).kg(-1) dry biomass) was achieved. Extension and validation of the medium recycling approach to other economically interesting algae species can contribute to improving the economic feasibility of large scale microalgae production systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000512364900013 Publication Date 2020-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-9264 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.1 Times cited 4 Open Access
Notes ; This work was financially supported by the Agency for Innovation by Science and Technology, Flanders (IWT Baekeland mandatory Jorien Fret, project no. 100678). We thank Kayawe Valentine Mubiana from the Systemic Physiological and Ecotoxicological Research group, University of Antwerp, for the assistance in the analysis of the trace elements. ; Approved Most recent IF: 5.1; 2020 IF: 3.994
Call Number UA @ admin @ c:irua:167742 Serial 6471
Permanent link to this record
 

 
Author Sui, Y.; Jiang, Y.; Moretti, M.; Vlaeminck, S.E.
Title Harvesting time and biomass composition affect the economics of microalgae production Type A1 Journal article
Year 2020 Publication Journal Of Cleaner Production Abbreviated Journal J Clean Prod
Volume 259 Issue Pages 120782-10
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Engineering Management (ENM)
Abstract Cost simulations provide a strong tool to render the production of microalgae economically viable. This study evaluated the unexplored effect of harvesting time and the corresponding microalgal biomass composition on the overall production cost, under both continuous light and light/dark regime using techno-economic analysis (TEA). At the same time, the TEA gives evidence that a novel product “proteinaceous salt” from Dunaliella microalgae production is a promising high-value product for commercialization with profitability. The optimum production scenario is to employ natural light/dark regime and harvest microalgal biomass around late exponential phase, obtaining the minimum production cost of 11 €/kg and a profitable minimum selling price (MSP) of 14.4 €/kg for the “proteinaceous salt”. For further optimization of the production, increasing microalgal biomass concentration is the most effective way to reduce the total production cost and increase the profits of microalgae products.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000530695500009 Publication Date 2020-02-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.1 Times cited 5 Open Access
Notes ; This work was supported by the China Scholarship Council (File No. 201507650015) and the MIP i-Cleantech Flanders (Milieu-innovatieplatform; Environment innovation platform) project Microbial Nutrients on Demand (MicroNOD). ; Approved Most recent IF: 11.1; 2020 IF: 5.715
Call Number UA @ admin @ c:irua:166802 Serial 6531
Permanent link to this record
 

 
Author Muys, M.; Phukan, R.; Brader, G.; Samad, A.; Moretti, M.; Haiden, B.; Pluchon, S.; Roest, K.; Vlaeminck, S.E.; Spiller, M.
Title A systematic comparison of commercially produced struvite : quantities, qualities and soil-maize phosphorus availability Type A1 Journal article
Year 2021 Publication Science Of The Total Environment Abbreviated Journal Sci Total Environ
Volume 756 Issue Pages 143726-12
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Engineering Management (ENM)
Abstract Production of struvite (MgNH4PO4·6H2O) from waste streams is increasingly implemented to recover phosphorus (P), which is listed as a critical raw material in the European Union (EU). To facilitate EU-wide trade of P-containing secondary raw materials such as struvite, the EU issued a revised fertilizer regulation in 2019. A comprehensive overview of the supply of struvite and its quality is presently missing. This study aimed: i) to determine the current EU struvite production volumes, ii) to evaluate all legislated physicochemical characteristics and pathogen content of European struvite against newly set regulatory limits, and iii) to compare not-regulated struvite characteristics. It is estimated that in 2020, between 990 and 1250 ton P are recovered as struvite in the EU. Struvite from 24 European production plants, accounting for 30% of the 80 struvite installations worldwide was sampled. Three samples failed the physicochemical legal limits; one had a P content of <7% and three exceeded the organic carbon content of 3% dry weight (DW). Mineralogical analysis revealed that six samples had a struvite content of 80–90% DW, and 13 samples a content of >90% DW. All samples showed a heavy metal content below the legal limits. Microbiological analyses indicated that struvite may exceed certain legal limits. Differences in morphology and particle size distribution were observed for struvite sourced from digestate (rod shaped; transparent; 82 mass% < 1 mm), dewatering liquor (spherical; opaque; 65 mass% 1–2 mm) and effluent from upflow anaerobic sludge blanket reactor processing potato wastewater (spherical; opaque; 51 mass% < 1 mm and 34 mass% > 2 mm). A uniform soil-plant P-availability pattern of 3.5–6.5 mg P/L soil/d over a 28 days sampling period was observed. No differences for plant biomass yield were observed. In conclusion, the results highlight the suitability of most struvite to enter the EU fertilizer market.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000603487500029 Publication Date 2020-11-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.9
Call Number UA @ admin @ c:irua:173944 Serial 8638
Permanent link to this record
 

 
Author Spiller, M.; Muys, M.; Papini, G.; Sakarika, M.; Buyle, M.; Vlaeminck, S.E.
Title Environmental impact of microbial protein from potato wastewater as feed ingredient : comparative consequential life cycle assessment of three production systems and soybean meal Type A1 Journal article
Year 2020 Publication Water Research Abbreviated Journal Water Res
Volume 171 Issue Pages 115406
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Energy and Materials in Infrastructure and Buildings (EMIB)
Abstract Livestock production is utilizing large amounts of protein-rich feed ingredients such as soybean meal. The proven negative environmental impacts of soybean meal production incentivize the search for alternative protein sources. One promising alternative is Microbial Protein (MP), i.e. dried microbial biomass. To date, only few life cycle assessments (LCAs) for MP have been carried out, none of which has used a consequential modelling approach nor has been investigating the production of MP on food and beverage wastewater. Therefore, the objective of this study is to evaluate the environmental impact of MP production on a food and beverage effluent as a substitute for soybean meal using a consequential modelling approach. Three different types of MP production were analysed, namely consortia containing Aerobic Heterotrophic Bacteria (AHB), Microalgae and AHB (MaB), and Purple Non-Sulfur Bacteria (PNSB). The production of MP was modelled for high-strength potato wastewater (COD = 10 kg/m3) at a flow rate of 1,000 m3/day. LCA results were compared against soybean meal production for the endpoint impact categories human health, ecosystems, and resources. Soybean meal showed up to 52% higher impact on human health and up to 87% higher impact on ecosystems than MP. However, energy-related aspects resulted in an 8–88% higher resource exploitation for MP. A comparison between the MP production systems showed that MaB performed best when considering ecosystems (between 13 and 14% better) and resource (between 71 and 80% better) impact categories, while AHB and PNSB had lower values for the impact category human health (8–12%). The sensitivity analysis suggests that the conclusions drawn are robust as in the majority of 1,000 Monte Carlo runs the initial results are confirmed. In conclusion, it is suggested that MP is an alternative protein source of comparatively low environmental impact that should play a role in the future protein transition, in particular when further process improvements can be implemented and more renewable or waste energy sources will be used.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000514748900032 Publication Date 2019-12-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1354 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.8 Times cited 10 Open Access
Notes ; The authors would like to thank (i) the MIP i-Cleantech Flanders (Milieu innovatieplatform; Environment innovation platform) project Microbial Nutrients on Demand (MicroNOD; 150360) for financial support, (ii) the Research Foundation Flanders (FWO-Vlaanderen) for supporting Gustavo Papini with a doctoral fellowship (strategic basic research; 1S38917N), (iii) Research Foundation Flanders (FWO-Vlaanderen) for supporting Matthias Buyle with a post-doctoral fellowship (Postdoctoral Fellow junior; 1207520N), and (iv) Bo Weidema, Abbas Alloul, Yixing Sui and Tim Van Winckel for their insightful discussions. ; Approved Most recent IF: 12.8; 2020 IF: 6.942
Call Number UA @ admin @ c:irua:164944 Serial 6509
Permanent link to this record
 

 
Author Rocha Segundo, I.; Landi Jr., S.; Margaritis, A.; Pipintakos, G.; Freitas, E.; Vuye, C.; Blom, J.; Tytgat, T.; Denys, S.; Carneiro, J.
Title Physicochemical and rheological properties of a transparent asphalt binder modified with nano-TiO₂ Type A1 Journal article
Year 2020 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 10 Issue 11 Pages 2152
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Energy and Materials in Infrastructure and Buildings (EMIB)
Abstract Transparent binder is used to substitute conventional black asphalt binder and to provide light-colored pavements, whereas nano-TiO2 has the potential to promote photocatalytic and self-cleaning properties. Together, these materials provide multifunction effects and benefits when the pavement is submitted to high solar irradiation. This paper analyzes the physicochemical and rheological properties of a transparent binder modified with 0.5%, 3.0%, 6.0%, and 10.0% nano-TiO2 and compares it to the transparent base binder and conventional and polymer modified binders (PMB) without nano-TiO2. Their penetration, softening point, dynamic viscosity, master curve, black diagram, Linear Amplitude Sweep (LAS), Multiple Stress Creep Recovery (MSCR), and Fourier Transform Infrared Spectroscopy (FTIR) were obtained. The transparent binders (base and modified) seem to be workable considering their viscosity, and exhibited values between the conventional binder and PMB with respect to rutting resistance, penetration, and softening point. They showed similar behavior to the PMB, demonstrating signs of polymer modification. The addition of TiO2 seemed to reduce fatigue life, except for the 0.5% content. Nevertheless, its addition in high contents increased the rutting resistance. The TiO2 modification seems to have little effect on the chemical functional indices. The best percentage of TiO2 was 0.5%, with respect to fatigue, and 10.0% with respect to permanent deformation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000593731700001 Publication Date 2020-10-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.3 Times cited Open Access
Notes Approved Most recent IF: 5.3; 2020 IF: 3.553
Call Number UA @ admin @ c:irua:172621 Serial 6580
Permanent link to this record
 

 
Author Alvarado-Alvarado, A.A.; De Bock, A.; Ysebaert, T.; Belmans, B.; Denys, S.
Title Modeling the hygrothermal behavior of green walls in Comsol Multiphysics® : validation against measurements in a climate chamber Type A1 Journal article
Year 2023 Publication Building and environment Abbreviated Journal
Volume 238 Issue Pages 110377-12
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Energy and Materials in Infrastructure and Buildings
Abstract Green walls (GW) can diminish building's surface temperature through shading, insulation, and evapotranspiration mechanisms. These can be analyzed by computer models that account for heat and mass transfer phenomena. However, most previous models were one-dimensional thermal simulations in which boundary conditions (BC), like convective moisture transport, were not or only partly considered. The present work proposes a more comprehensive way to predict GW's hygrothermal behavior by integrating a 3D multiphysics model that couples heat and moisture transport in Comsol Multiphysics®. The air cavity that usually separates the GW from the building was also considered. Heat sink terms were added to represent plants' transpiration and substrates' evaporation, considering the leaf area density (LAD) and substrate's water saturation (Sr). The model was validated against experiments where four green wall-test panels (GW-TPs) were evaluated in a climate chamber under steady-state conditions. This provides a much sounder approach for validation than what currently exists (r = 0.97; RMSE = 0.33 °C). The four GW-TPs decreased the masonry's surface temperature in the range of 0.89–1.14 °C (0.97 ± 0.11 SD °C). The average contribution of the evapotranspiration effect was 30%, whereas the contribution of the air cavity was 60.7 ± 0.09%. The temperature at the substrate's rear was reduced on average by 0.57 ± 0.15 SD °C. When solar radiation was considered as a BC, the GW-TPs decreased the building's surface temperature by 10 °C. Lastly, high values of LAD and Sr translated into increased temperature reduction values.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001001412600001 Publication Date 2023-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-1323 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 7.4; 2023 IF: 4.053
Call Number UA @ admin @ c:irua:196467 Serial 8899
Permanent link to this record
 

 
Author Blommaerts, N.; Hoeven, N.; Arenas Esteban, D.; Campos, R.; Mertens, M.; Borah, R.; Glisenti, A.; De Wael, K.; Bals, S.; Lenaerts, S.; Verbruggen, S.W.; Cool, P.
Title Tuning the turnover frequency and selectivity of photocatalytic CO2 reduction to CO and methane using platinum and palladium nanoparticles on Ti-Beta zeolites Type A1 Journal article
Year 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J
Volume 410 Issue Pages 128234
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A Ti-Beta zeolite was used in gas phase photocatalytic CO2 reduction to reduce the charge recombination rate and increase the surface area compared to P25 as commercial benchmark, reaching 607 m2 g-1. By adding Pt nanoparticles, the selectivity can be tuned toward CO, reaching a value of 92% and a turnover frequency (TOF) of 96 µmol.gcat-1.h-1, nearly an order of magnitude higher in comparison with P25. By adding Pd nanoparticles the selectivity can be shifted from CO (70% for a bare Ti-Beta zeolite), toward CH4 as the prevalent species (60%). In this way, the selectivity toward CO or CH4 can be tuned by either using Pt or Pd. The TOF values obtained in this work outperform reported state-of-the-art values in similar research. The improved activity by adding the nanoparticles was attributed to an improved charge separation efficiency, together with a plasmonic contribution of the metal nanoparticles under the applied experimental conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000623394200004 Publication Date 2021-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 15 Open Access OpenAccess
Notes N.B., S.L., S.W.V. and P.C. wish to thank the Flemish government and Catalisti for financial support and coordination in terms of a sprint SBO in the context of the moonshot project D2M. N.H. thanks the Flanders Innovation and Entrepreneurship (VLAIO) for the financial support. The Systemic Physiological and Ecotoxicological Research (SPHERE) group, R. Blust, University of Antwerp is acknowledged for the ICP-MS measurements. Approved Most recent IF: 6.216
Call Number EMAT @ emat @c:irua:174591 Serial 6662
Permanent link to this record
 

 
Author Geerts, R.; Vandermoere, F.; Van Winckel, T.; Halet, D.; Joos, P.; Van Den Steen, K.; Van Meenen, E.; Blust, R.; Borregán-Ochando, E.; Vlaeminck, S.E.
Title Bottle or tap? Toward an integrated approach to water type consumption Type A1 Journal article
Year 2020 Publication Water Research Abbreviated Journal Water Res
Volume 173 Issue Pages 115578-10
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Centre for Research on Environmental and Social Change
Abstract While in many countries, people have access to cheap and safe potable tap water, the global consumption of bottled water is rising. Flanders, Belgium, where this study is located, has an exceptionally high consumption of bottled water per capita. However, in the interest of resource efficiency and global environmental challenges, the consumption of tap water is preferable. To our knowledge, an integrated analysis of the main reasons why people consume tap and bottled water is absent in Flanders, Belgium. Using Flemish survey data (N = 2309), we first compared tap and bottled water consumers through bivariate correlation analysis. Subsequently, path modelling techniques were used to further investigate these correlations. Our results show that bottled water consumption in Flanders is widespread despite environmental and financial considerations. For a large part, this is caused by negative perceptions about tap water. Many consumers consider it unhealthy, unsafe and prefer the taste of bottled water. Furthermore, we found that the broader social context often inhibits the consumption of tap water. On the one hand, improper infrastructures (e.g. lead piping) can limit access to potable tap water. On the other hand, social norms exist that promote bottled water. Lastly, results suggest that the consumption of bottled water is most common among men, older people and less educated groups. We conclude that future research and policy measures will benefit from an approach that integrates all behavioural aspects associated with water type consumption. This will enable both governments and tap water companies to devise more effective policies to manage and support tap water supply networks.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000523569000012 Publication Date 2020-01-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1354 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.8 Times cited 2 Open Access
Notes ; This was supported by a grant from Water-link. ; Approved Most recent IF: 12.8; 2020 IF: 6.942
Call Number UA @ admin @ c:irua:165873 Serial 6464
Permanent link to this record
 

 
Author Van Winckel, T.; Cools, J.; Vlaeminck, S.E.; Joos, P.; Van Meenen, E.; Borregán-Ochando, E.; Van Den Steen, K.; Geerts, R.; Vandermoere, F.; Blust, R.
Title Towards harmonization of water quality management : a comparison of chemical drinking water and surface water quality standards around the globe Type A1 Journal article
Year 2021 Publication Journal Of Environmental Management Abbreviated Journal J Environ Manage
Volume 298 Issue Pages 113447-12
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Centre for Research on Environmental and Social Change
Abstract Water quality standards (WQS) set the legal definition for safe and desirable water. WQS impose regulatory concentration limits to act as a jurisdiction-specific legislative risk-management tool. Despite its importance in shaping a universal definition of safe, clean water, little information exists with respect to (dis)similarity of chemical WQS worldwide. Therefore, this paper compares chemical WQS for drinking and surface water matrices in eight jurisdictions representing a global geographic distribution: Australia, Brazil, Canada, China, the European Union, the region of Flanders in Belgium, the United States of America, and South Africa. The World Health Organization's list is used as a reference for drinking water standards. Sørensen–Dice indices (SDI) showed little qualitative similarity in the compounds that are regulated in drinking water (median SDI = 40%) and surface water (median SDI = 33%), indicating that the heterogeneity within a matrix is substantial at the level of the standard. Quantitative similarity for matching standards was higher than the qualitative per Kendall correlation (median = 0.73 and 0.58 for drinking water and surface water respectively), yet variance observed within standards remained inexplicably high for organic compounds. Variations in WQS were more pronounced for organic compounds. Most differences cannot be easily explained from a toxicological or risk-based point-of-view. Historical development, ease of measurement, and (toxicological) knowledge gaps on the risk of a vast number of organic compounds are theorized to be the drivers. Therefore, this study argues for a more tailored, risk-based approach in which standards incorporated into water safety plans are dynamically set for compounds that are persistent and could pose a risk for human health and/or aquatic ecosystems. Global variations in WQS should therefore not necessarily be avoided but rather globally harmonized with enough flexibility to ensure a global, up-to-date definition of safe and desirable water everywhere.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000700577400005 Publication Date 2021-08-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4797 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.01 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.01
Call Number UA @ admin @ c:irua:180765 Serial 8681
Permanent link to this record
 

 
Author Sóti, V.; Jacquet, N.; Apers, S.; Richel, A.; Lenaerts, S.; Cornet, I.
Title Monitoring the laccase reaction of vanillin and poplar hydrolysate Type A1 Journal article
Year 2016 Publication Journal of chemical technology and biotechnology Abbreviated Journal J Chem Technol Biot
Volume 91 Issue 6 Pages 1914-1922
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract BACKGROUND Laccase is an intensively researched enzyme for industrial use. Except for decolorisation measurements, HPLC analysis is the conventional method for monitoring the phenolic removal during laccase enzyme reaction. This paper reports an investigation of the continuous UV absorbance follow-up of the laccase reaction with steam pretreated poplar hydrolysate. RESULTS Vanillin was used as a model substrate and lignocellulose xylose rich fraction (XRF) as a biologically complex substrate for laccase detoxification. The reaction was followed by HPLC-UV as well as by UV spectrometric measurements. Results suggest that the reaction can be successfully monitored by measuring the change of UV absorbance at 280 nm, without previous compound separation. In case of XRF experiments the spectrophotometric follow-up is especially useful, as HPLC analysis takes a long time and provides less information than in case of single substrates. The method seems to be suitable for optimization and process control. CONCLUSION The obtained results can help to construct a fast, easy and straightforward monitoring system for laccase-phenolic substrate reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000375768300040 Publication Date 2015-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-2575; 1097-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.135 Times cited 3 Open Access
Notes ; This research is financed by the University of Antwerp (project number 15 FA100 002). ; Approved Most recent IF: 3.135
Call Number UA @ admin @ c:irua:127694 Serial 5972
Permanent link to this record
 

 
Author Sóti, V.; Lenaerts, S.; Cornet, I.
Title Of enzyme use in cost-effective high solid simultaneous saccharification and fermentation processes Type A1 Journal article
Year 2018 Publication Journal of biotechnology Abbreviated Journal J Biotechnol
Volume 270 Issue 270 Pages 70-76
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract Enzyme cost is considered to be one of the most significant factors defining the final product price in lignocellulose hydrolysis and fermentation. Enzyme immobilization and recycling can be a tool to decrease costs. However, high solid loading is a key factor towards high product titers, and recovery of immobilized enzymes from this thick liquid is often overlooked. This paper aims to evaluate the economic feasibility of immobilized enzymes in simultaneous saccharification and fermentation (SSF) of lignocellulose biomass in general, as well as the recuperation of magnetic immobilized enzymes (m-CLEAs) during high solid loading in simultaneous saccharification, detoxification and fermentation processes (SSDF) of lignocellulose biomass. Enzyme prices were obtained from general cost estimations by Klein-Marcuschamer et al. [Klein-Marcuschamer et al. (2012) Biotechnol. Bioeng. 109, 10831087]. During enzyme cost analysis, the influence of inoculum recirculation as well as a shortened fermentation time was explored. Both resulted in 15% decrease of final enzyme product price. Enzyme recuperation was investigated experimentally and 99.5 m/m% of m-CLEAs was recovered from liquid medium in one step, while 88 m/m% could still be recycled from a thick liquid with high solid concentrations (SSF fermentation broth). A mathematical model was constructed to calculate the cost of immobilized and free enzyme utilization and showed that, with current process efficiencies and commercial enzyme prices, the cost reduction obtained by enzyme immobilization can reach around 60% compared to free enzyme utilization, while lower enzyme prices will result in a lower percentage of immobilization related savings, but overall enzyme costs will decrease significantly. These results are applied in a case study, estimating the viability of shifting from sugar to lignocellulose substrate for a 100 t lactic acid fermentation batch. It was concluded that it will only be economically feasible if the enzymes are produced at the most optimistic variable cost and either the activity of the immobilized catalyst or the recovery efficiency is further increased.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000427556400009 Publication Date 2018-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1656 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.599 Times cited 6 Open Access
Notes ; This research is financed by the University of Antwerp [project number 15 FA100 002]. ; Approved Most recent IF: 2.599
Call Number UA @ admin @ c:irua:149006 Serial 5974
Permanent link to this record
 

 
Author Wittner, N.; Slezsák, J.; Broos, W.; Geerts, J.; Gergely, S.; Vlaeminck, S.E.; Cornet, I.
Title Rapid lignin quantification for fungal wood pretreatment by ATR-FTIR spectroscopy Type A1 Journal article
Year 2023 Publication Spectrochimica acta: part A: molecular and biomolecular spectroscopy Abbreviated Journal
Volume Issue Pages 121912
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract Lignin determination in lignocellulose with the conventional two-step acid hydrolysis method is highly laborious and time-consuming. However, its quantification is crucial to monitor fungal pretreatment of wood, as the increase of acid-insoluble lignin (AIL) degradation linearly correlates with the achievable enzymatic saccharification yield. Therefore, in this study, a new attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy method was developed to track fungal delignification in an easy and rapid manner. Partial least square regression (PLSR) with cross-validation (CV) was applied to correlate the ATR-FTIR spectra with the AIL content (19.9%–27.1%). After variable selection and normalization, a PLSR model with a high coefficient of determination (
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000985309100010 Publication Date 2022-09-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-1425 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.4; 2023 IF: 2.536
Call Number UA @ admin @ c:irua:190328 Serial 7201
Permanent link to this record
 

 
Author Verreydt, G.; Annable, M.D.; Kaskassian, S.; van Keer, I.; Bronders, J.; Diels, L.; Vanderauwera, P.
Title Field demonstration and evaluation of the passive flux meter on a CAH groundwater plume Type A1 Journal article
Year 2013 Publication Environmental Science and Pollution Research Abbreviated Journal
Volume 20 Issue 7 Pages 4621-4634
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract This study comprises the first application of the Passive Flux Meter (PFM) for the measurement of chlorinated aliphatic hydrocarbon (CAH) mass fluxes and Darcy water fluxes in groundwater at a European field site. The PFM was originally developed and applied to measurements near source zones. The focus of the PFM is extended from near source to plume zones. For this purpose, 48 PFMs of 1.4 m length were constructed and installed in eight different monitoring wells in the source and plume zone of a CAH-contaminated field site located in France. The PFMs were retrieved, sampled, and analyzed after 3 to 11 weeks of exposure time, depending on the expected contaminant flux. PFM evaluation criteria include analytical, technical, and practical aspects as well as conditions and applicability. PFM flux data were compared with so-called traditional soil and groundwater concentration data obtained using active sampling methods. The PFMs deliver reasonable results for source as well as plume zones. The limiting factor in the PFM applicability is the exposure time together with the groundwater flux. Measured groundwater velocities at the field site range from 2 to 41 cm/day. Measured contaminant flux data raise up to 13 g/m(2)/day for perchloroethylene in the plume zone. Calculated PFM flux averaged concentration data and traditional concentration data were of similar magnitude for most wells. However, both datasets need to be compared with reservation because of the different sampling nature and time. Two important issues are the PFM tracer loss during installation/extraction and the deviation of the groundwater flow field when passing the monitoring well and PFM. The demonstration of the PFM at a CAH-contaminated field site in Europe confirmed the efficiency of the flux measurement technique for source as well as plume zones. The PFM can be applied without concerns in monitoring wells with European standards. The acquired flux data are of great value for the purpose of site characterization and mass discharge modeling, and can be used in combination with traditional soil and groundwater sampling methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000321126700030 Publication Date 2013-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0944-1344; 1614-7499 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:109817 Serial 7965
Permanent link to this record
 

 
Author Wittner, N.; Gergely, S.; Slezsák, J.; Broos, W.; Vlaeminck, S.E.; Cornet, I.
Title Follow-up of solid-state fungal wood pretreatment by a novel near-infrared spectroscopy-based lignin calibration model Type A1 Journal article
Year 2023 Publication Journal of microbiological methods Abbreviated Journal
Volume 208 Issue Pages 106725-106727
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract Lignin removal plays a crucial role in the efficient bioconversion of lignocellulose to fermentable sugars. As a delignification process, fungal pretreatment has gained great interest due to its environmental friendliness and low energy consumption. In our previous study, a positive linear correlation between acid-insoluble lignin degradation and the achievable enzymatic saccharification yield has been found, hereby highlighting the importance of the close follow-up of lignin degradation during the solid-state fungal pretreatment process. However, the standard quantification of lignin, which relies on the two-step acid hydrolysis of the biomass, is highly laborious and time-consuming. Vibrational spectroscopy has been proven as a fast and easy alternative; however, it has not been extensively researched on lignocellulose subjected to solid-state fungal pretreatment. Therefore, the present study examined the suitability of near-infrared spectroscopy (NIR) for the rapid and easy assessment of lignin content in poplar wood pretreated with Phanerochaete chrysosporium. Furthermore, the predictive power of the obtained calibration model and the recently published ATR-FTIR spectroscopy-based model were compared for the first time using the same fungus-treated wood data set. PLSR was used to correlate the NIR spectra to the acid-insoluble lignin contents (19.9%-27.1%) of pretreated wood. After normalization and second derivation, a PLSR model with a good coefficient of determination (RCV2 = 0.89) and a low root mean square error (RMSECV = 0.55%) were obtained despite the heterogeneous nature of the fungal solid-state fermentation. The performance of this PLSR model was comparably good to the one obtained by ATR-FTIR (RCV2 = 0.87) while it required more extensive spectral pre-processing. In conclusion, both methods will be highly useful for the high-throughput and user-friendly monitoring of lignin degradation in a solid-state fungal pretreatment-based biorefinery concept.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000983287400001 Publication Date 2023-04-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-7012 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.2 Times cited Open Access
Notes Approved Most recent IF: 2.2; 2023 IF: 1.79
Call Number UA @ admin @ c:irua:195814 Serial 9038
Permanent link to this record
 

 
Author Broos, W.; Wittner, N.; Dries, J.; Vlaeminck, S.E.; Gunde-Cimerman, N.; Cornet, I.
Title Rhodotorula kratochvilovae outperforms Cutaneotrichosporon oleaginosum in the valorisation of lignocellulosic wastewater to microbial oil Type A1 Journal article
Year 2024 Publication Process biochemistry (1991) Abbreviated Journal
Volume 137 Issue Pages 229-238
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract Rhodotorula kratochvilovae has shown to be a promising species for microbial oil production from lignin-derived compounds. Yet, information on R. kratochvilovae’s detoxification and microbial oil production is scarce. This study investigated the growth and microbial oil production on the phenolic-containing effluent from poplar steam explosion and its detoxification with five R. kratochvilovae strains (EXF11626, EXF9590, EXF7516, EXF3697, EXF3471) and compared them with Cutaneotrichosporon oleaginosum. The R. kratochvilovae strains reached a maximum growth rate up to four times higher than C. oleaginosum. Furthermore, all R. kratochvilovae strains generally degraded phenolics more rapidly and to a larger extent than C. oleaginosum. However, the diluted substrate limited the lipid production by all strains as the maximum lipid content and titre were 10.5% CDW and 0.40 g/L, respectively. Therefore, future work should focus on increasing lipid production by using advanced fermentation strategies and stimulating the enzyme excretion by the yeasts for complex substrate breakdown.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-01-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-5113 ISBN Additional Links UA library record
Impact Factor 4.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 4.4; 2024 IF: 2.497
Call Number UA @ admin @ c:irua:202365 Serial 9087
Permanent link to this record
 

 
Author Asapu, R.; Ciocarlan, R.-G.; Claes, N.; Blommaerts, N.; Minjauw, M.; Ahmad, T.; Dendooven, J.; Cool, P.; Bals, S.; Denys, S.; Detavernier, C.; Lenaerts, S.; Verbruggen, S.W.
Title Plasmonic Near-Field Localization of Silver Core–Shell Nanoparticle Assemblies via Wet Chemistry Nanogap Engineering Type A1 Journal article
Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 9 Issue 9 Pages 41577-41585
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Silver nanoparticles are widely used in the field of plasmonics because of their unique optical properties. The wavelength-dependent surface plasmon resonance gives rise to a strongly enhanced electromagnetic field, especially at so-called hot spots located in the nanogap in-between metal nanoparticle assemblies. Therefore, the interparticle distance is a decisive factor in plasmonic applications, such as surface-enhanced Raman spectroscopy (SERS). In this study, the aim is to engineer this interparticle distance for silver nanospheres using a convenient wet-chemical approach and to predict and quantify the corresponding enhancement factor using both theoretical and experimental tools. This was done by building a tunable ultrathin polymer shell around the nanoparticles using the layer-by-layer method, in which the polymer shell acts as the separating interparticle spacer layer. Comparison of different theoretical approaches and corroborating the results with SERS analytical experiments using silver and silver−polymer core−shell nanoparticle clusters as SERS substrates was also done. Herewith, an approach is provided to estimate the extent of plasmonic near-field enhancement both theoretically as well as experimentally.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000417005900057 Publication Date 2017-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 29 Open Access OpenAccess
Notes financial support through a research fellowship. C.D. wishes to thank the Hercules foundation for the financial support (SPINAL). P.C. and R.-G.C. acknowledge financial support by FWO Vlaanderen (project no. G038215N). N.C. and S.B. acknowledge the financial support from the European Research Council (ERC starting grant #335078-COLOURATOM). (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 7.504
Call Number EMAT @ emat @c:irua:147243 Serial 4804
Permanent link to this record
 

 
Author Verbruggen, S.W.; Lenaerts, S.; Denys, S.
Title Analytic versus CFD approach for kinetic modeling of gas phase photocatalysis Type A1 Journal article
Year 2015 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 262 Issue Pages 1-8
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In this work two methods for determining the LangmuirHinshelwood kinetic parameters for a slit-shaped flat bed photocatalytic reactor are compared: an analytic mass transfer based model adapted from literature and a computational fluid dynamics (CFD) approach that was used in conjunction with a simplex optimization routine. Despite the differences between both approaches, similar values for the kinetic parameters and similar trends in terms of their UV intensity dependence were found. Using an effectiveness-NTU (number of transfer units) approach, the analytic mass transfer based method could quantify the relative contributions of the rate limiting steps through a reaction effectiveness parameter. The numeric CFD approach on the other hand could yield the two kinetic parameters that determine the photocatalytic reaction rate simultaneously. Furthermore, it proved to be more accurate as it accounts for the spatial variation of flow rate, reaction rate and concentrations at the surface of the photocatalyst. We elaborate this dual kinetic analysis with regard to the photocatalytic degradation of acetaldehyde in air over a silicon wafer coated with a layer of TiO2 P25 (Evonik) and study the usefulness and limitations of both strategies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000347577700001 Publication Date 2014-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 30 Open Access
Notes ; S.W.V. acknowledges the Research Foundation of Flanders (FWO) for financial support. ; Approved Most recent IF: 6.216; 2015 IF: 4.321
Call Number UA @ admin @ c:irua:119724 Serial 5927
Permanent link to this record
 

 
Author Van Eynde, E.; Tytgat, T.; Smits, M.; Verbruggen, S.W.; Hauchecorne, B.; Lenaerts, S.
Title Biotemplated diatom silica-titania materials for air purification Type A1 Journal article
Year 2013 Publication Photochemical & photobiological sciences Abbreviated Journal Photoch Photobio Sci
Volume 12 Issue 4 Pages 690-695
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract We present a novel manufacture route for silicatitania photocatalysts using the diatom microalga Pinnularia sp. Diatoms self-assemble into porous silica cell walls, called frustules, with periodic micro-, meso- and macroscale features. This unique hierarchical porous structure of the diatom frustule is used as a biotemplate to incorporate titania by a solgel methodology. Important material characteristics of the modified diatom frustules under study are morphology, crystallinity, surface area, pore size and optical properties. The produced biosilicatitania material is evaluated towards photocatalytic activity for NOx abatement under UV radiation. This research is the first step to obtain sustainable, well-immobilised silicatitania photocatalysts using diatoms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000316572500016 Publication Date 2012-10-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1474-905x; 1474-9092 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.344 Times cited 18 Open Access
Notes ; ; Approved Most recent IF: 2.344; 2013 IF: 2.939
Call Number UA @ admin @ c:irua:106625 Serial 5930
Permanent link to this record
 

 
Author van Walsem, J.; Verbruggen, S.W.; Modde, B.; Lenaerts, S.; Denys, S.
Title CFD investigation of a multi-tube photocatalytic reactor in non-steady-state conditions Type A1 Journal article
Year 2016 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 304 Issue Pages 808-816
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract A novel multi-tube photoreactor is presented with a high efficiency (over 90% conversion) toward the degradation of acetaldehyde in air under UV conditions with an incident intensity of 2.1 mW cm−2. A CFD model was developed to simulate the transient adsorption and photocatalytic degradation processes of acetaldehyde in this reactor design and to estimate the corresponding kinetic parameters through an optimization routine using the experimentally determined outlet concentration profiles. The CFD model takes into account the entire reactor geometry and all relevant flow parameters, in contrast to analytical methods that often oversimplify the physical and chemical process characteristics. Using CFD, we show that both adsorption and desorption rate constants increase by respectively one and two orders of magnitude when the UV light is switched on, which clearly affects the transient behavior. The agreement of the experimental and modelled concentration profiles is excellent as evidenced by a coefficient of determination of at least 0.965. To demonstrate the reliability and accuracy of all parameters obtained from the modelling approach, an ultimate validation test was performed using other conditions than the ones used for estimating the kinetic parameters. The model was able to accurately simulate simultaneous adsorption, desorption and photocatalytic degradation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384777200089 Publication Date 2016-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 10 Open Access
Notes ; J.V.W. acknowledges the Agentschap Innoveren & Ondernemen for a PhD fellowship. S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. ; Approved Most recent IF: 6.216
Call Number UA @ admin @ c:irua:139620 Serial 5933
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; van Walsem, J.; Tytgat, T.; Lenaerts, S.; Denys, S.
Title CFD modeling of transient adsorption/desorption behavior in a gas phase photocatalytic fiber reactor Type A1 Journal article
Year 2016 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 292 Issue Pages 42-50
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract We present the use of computational fluid dynamics (CFD) for accurately determining the adsorption parameters of acetaldehyde on photocatalytic fiber filter material, integrated in a continuous flow system. Unlike the traditional analytical analysis based on Langmuir adsorption, not only steady-state situations but also transient phenomena can be accounted for. Air displacement effects in the reactor and gas detection cell are investigated and inherently made part of the model. Incorporation of a surface aldol condensation reaction in the CFD analysis further improves the accuracy of the model which enables to extract precise, intrinsic adsorption parameters for situations in which analytical analysis would otherwise fail.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000373648000005 Publication Date 2016-02-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 12 Open Access
Notes ; S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. M.K. acknowledges the IWT for a Ph.D. fellowship. Konstantina Kalafata and Ioanna Fasaki are greatly thanked for providing the NanoPhos suspension. Bioscience Engineering bachelor students M. Gerritsma, J. Helsen and Y. Riahi Drif are thanked for their assistance in performing the adsorption experiments. ; Approved Most recent IF: 6.216
Call Number UA @ admin @ c:irua:130876 Serial 5934
Permanent link to this record
 

 
Author Tytgat, T.; Hauchecorne, B.; Smits, M.; Verbruggen, S.; Lenaerts, S.
Title Concept and validation of a fully automated photocatalytic test setup Type A1 Journal article
Year 2012 Publication Journal of laboratory automation Abbreviated Journal Jala-J Lab Autom
Volume 17 Issue 2 Pages 134-143
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Photocatalytic activity can be studied by several methods, each with its own strengths and weaknesses. To study photocatalytic activity in an easy, user-friendly, and realistic way, a completely new setup has been built. The setup is modularly constructed around Fourier transform infrared spectroscopy (FTIR) spectroscopy at the heart of it, resulting in great versatility. Complementary software has been written for automatic control of the setup and for processing the generated data. Two pollutants, oil and n-octane, are tested to validate the performance of the setup. These validation experiments confirm the usefulness and added value of the setup in general and of the FTIR detection methodology as well. It becomes clear that a system of online measurements with good repeatability, accuracy, and user-friendliness has been created.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000304775300006 Publication Date 2014-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-0682 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.85 Times cited 15 Open Access
Notes ; The authors disclosed receipt of the following financial support for the research and/or authorship of this article: This work was supported by a Ph.D. grant (T. Tytgat) funded by the Institute of Innovation by Science and Technology in Flanders (IWT) and by a Ph.D. grant (S. Verbruggen) from the Research Foundation of Flanders (FWO). Other funding was made possible by the University of Antwerp. ; Approved Most recent IF: 2.85; 2012 IF: 1.457
Call Number UA @ admin @ c:irua:96649 Serial 5935
Permanent link to this record
 

 
Author Deng, S.; Verbruggen, S.W.; Lenaerts, S.; Martens, J.A.; Van den Berghe, S.; Devloo-Casier, K.; Devulder, W.; Dendoover, J.; Deduytsche, D.; Detavernier, C.
Title Controllable nitrogen doping in as deposited TiO2 film and its effect on post deposition annealing Type A1 Journal article
Year 2014 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A
Volume 32 Issue 1 Pages 01a123
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In order to narrow the band gap of TiO2, nitrogen doping by combining thermal atomic layer deposition (TALD) of TiO2 and plasma enhanced atomic layer deposition (PEALD) of TiN has been implemented. By altering the ratio between TALD TiO2 and PEALD TiN, the as synthesized TiOxNy films showed different band gaps (from 1.91 eV to 3.14 eV). In situ x-ray diffraction characterization showed that the crystallization behavior of these films changed after nitrogen doping. After annealing in helium, nitrogen doped TiO2 films crystallized into rutile phase while for the samples annealed in air a preferential growth of the anatase TiO2 along (001) orientation was observed. Photocatalytic tests of the degradation of stearic acid were done to evaluate the effect of N doping on the photocatalytic activity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000335847600023 Publication Date 2013-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0734-2101 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.374 Times cited 10 Open Access
Notes ; The authors wish to thank the Research Foundation-Flanders (FWO) for financial support. The authors acknowledge the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement Nos. 239865-COCOON and 246791-COUNTATO. The authors also acknowledge the support from UGENT-GOA-01G01513 and IWT-SBO SOSLion. J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem). J.D. acknowledges the Flemisch FWO for a postdoctoral fellowship. ; Approved Most recent IF: 1.374; 2014 IF: 2.322
Call Number UA @ admin @ c:irua:117296 Serial 5936
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W.
Title Coupled plasmon modes in 2D gold nanoparticle clusters and their effect on local temperature control Type A1 Journal article
Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 123 Issue 50 Pages 30594-30603
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Assemblies of closely separated gold nanoparticles exhibit a strong collective plasmonic response due to coupling of the plasmon modes of the individual nanostructures. In the context of self-assembly of nanoparticles, close-packed two-dimensional (2D) clusters of spherical nanoparticles present an important composite system that promises numerous applications. The present study probes the collective plasmonic characteristics and resulting photothermal behavior of close-packed 2D Au nanoparticle clusters to delineate the effects of the cluster size, interparticle distance, and particle size. Smaller nanoparticles (20 and 40 nm in diameter) that exhibit low individual scattering and high absorption were considered for their relevance to photothermal applications. In contrast to typical literature studies, the present study compares the optical response of clusters of different sizes ranging from a single nanoparticle up to large assemblies of 61 nanoparticles. Increasing the cluster size induces significant changes to the spectral position and optophysical characteristics. Based on the model outcome, an optimal cluster size for maximum absorption per nanoparticle is also determined for enhanced photothermal effects. The effect of the particle size and interparticle distance is investigated to elucidate the nature of interaction in terms of near-field and far-field coupling. The photothermal effect resulting from absorption is compared for different cluster sizes and interparticle distances considering a homogeneous water medium. A strong dependence of the steady-state temperature of the nanoparticles on the cluster size, particle position in the cluster, incident light polarization, and interparticle distance provides new physical insight into the local temperature control of plasmonic nanostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000503919500061 Publication Date 2019-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access
Notes Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:164530 Serial 5938
Permanent link to this record
 

 
Author Hofman, J.; Samson, R.; Joosen, S.; Blust, R.; Lenaerts, S.
Title Cyclist exposure to black carbon, ultrafine particles and heavy metals : an experimental study along two commuting routes near Antwerp, Belgium Type A1 Journal article
Year 2018 Publication Environmental research Abbreviated Journal
Volume 164 Issue 164 Pages 530-538
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Urban environments typically exhibit large atmospheric pollution variation, in both space and time. In contrast to traditional monitoring networks suffering from a limited spatial coverage, mobile platforms enable personalized high-resolution monitoring, providing valuable insights into personal atmospheric pollution exposure, and the identification of potential pollution hotspots. This study evaluated personal cyclist exposure to UFPs, BC and heavy metals whilst commuting near Antwerp, Belgium, by performing mobile measurements with wearable black carbon (BC) and ultrafine particle (UFP) instruments. Loaded micro-aethalometer filterstrips were chemically analysed and the inhaled pollutant dose determined from the exhibited heart rate. Considerable spatial pollutant variation was observed along the travelled routes, with distinct contributions from spatial factors (e.g. traffic intersections, urban park and market) and temporary events. On average 300% higher BC, 20% higher UFP and changing elemental concentrations are observed along the road traffic route (RT), when compared to the bicycle highway route (BH). Although the overall background pollution determines a large portion of the experienced personal exposure (in this case 53% for BC and 40% for UFP), cyclists can influence their personal atmospheric pollution exposure, by selecting less exposed commuting routes. Our results, hereby, strengthen the body of evidence in favour of further policy investments in isolated bicycle infrastructure.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000431387100063 Publication Date 2018-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 9 Open Access
Notes ; The authors would like to acknowledge the Flanders Environment Agency (VMM) for granting access to the 42R817 monitoring station and provision of telemetric pollutant and meteorological data. The corresponding author acknowledges the Research Foundation Flanders (FWO) for his postdoctoral research grant (12I4816N). ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:150540 Serial 5939
Permanent link to this record
 

 
Author van Walsem, J.; Roegiers, J.; Modde, B.; Lenaerts, S.; Denys, S.
Title Determination of intrinsic kinetic parameters in photocatalytic multi-tube reactors by combining the NTUm-method with radiation field modelling Type A1 Journal article
Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 354 Issue 354 Pages 1042-1049
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In this work, we propose an adapted Number of Transfer Units (NTUm)-method as an effective tool to determine the Langmuir-Hinshelwood kinetic parameters for a photocatalytic multi-tube reactor. The Langmuir-Hinshelwood rate constant kLH and the Langmuir adsorption constant KL were determined from several experiments under different UV-irradiance conditions, resulting in irradiance depending values for kLH. In order to determine a unique, intrinsic empirical constant k0, valid for all irradiation conditions, we coupled the adapted NTUm-method with a radiation field model to predict UV-irradiance distribution inside the reactor. The final set of kinetic parameters were derived using a Generalized Reduced Gradient (GRG) nonlinear solving method in Matlab which minimizes the differences between model and experimental reactor outlet concentrations of acetaldehyde for various photocatalytic experiments under varying operating conditions, including inlet concentration, flow rate and UV-irradiance. An excellent agreement of the intrinsic empirical constant k0, derived from the coupled NTUm-radiation field model and an earlier published CFD approach was found, emphasizing its validity and reliability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000445413900099 Publication Date 2018-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 2 Open Access
Notes ; J.V.W. acknowledges the Agentschap Innoveren & Ondernemen for a PhD fellowship. ; Approved Most recent IF: 6.216
Call Number UA @ admin @ c:irua:154845 Serial 5940
Permanent link to this record
 

 
Author Buysse, C.; Kovalevsky, A.; Snijkers, F.; Buekenhoudt, A.; Mullens, S.; Luyten, J.; Kretzschmar, J.; Lenaerts, S.
Title Development, performance and stability of sulfur-free, macrovoid-free BSCF capillaries for high temperature oxygen separation from air Type A1 Journal article
Year 2011 Publication Journal of membrane science Abbreviated Journal J Membrane Sci
Volume 372 Issue 1/2 Pages 239-248
Keywords (down) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Capture and storage of CO2 (CCS) from fossil-fuel power plants is vital in order to counteract a pending anthropogenic global warming. High temperature oxygen transport perovskite membranes can fulfill an important role in the separation of oxygen from air needed in the oxy-fuel technologies for CCS. In this study we present the development, performance and stability of gastight, macrovoid-free and sulfur-free Ba0.5Sr0.5Co0.8Fe0.2O3 − δ (BSCF) mixed conductor capillary membranes prepared by phase-inversion spinning and sintering. A sulfur-free phase-inversion polymer was chosen in order to obtain a phase-pure BSCF crystal phase. Special attention was given to the polymer solution and ceramic spinning suspension in order to avoid macrovoids and achieve gastight membranes. The sulfur-free BSCF capillaries showed an average 4-point bending strength of 64 ± 8 MPa and a maximum oxygen flux of not, vert, similar5.3 Nml/(cm2 min) at 950 °C for an argon sweep flow rate of 125 Nml/min. The comparison of the performance of sulfur-free and sulfur-containing BSCF capillaries with similar dimensions revealed a profound impact of the sulfur contamination on both the oxygen flux and the activation energy of the overall oxygen transport mechanism. Both long-term oxygen permeation at different temperatures and post-operation analysis of a sulfur-free BSCF capillary were performed and discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000289829200026 Publication Date 2011-02-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0376-7388 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.035 Times cited 32 Open Access
Notes ; The authors want to express their thanks to the VITO staff for their continuous support, especially B. Molenberghs, W. Doyen, H. Beckers, R. Kemps, M. Mertens, M. Schoeters and H. Chen. C. Buysse thankfully acknowledges a PhD scholarship provided by VITO and the University of Antwerp. This work is performed in the framework of the German Helmholtz Alliance Project “MEM-BRAIN”, aiming at the development of gas separation membranes for zero-emission fossil fuel power plants. ; Approved Most recent IF: 6.035; 2011 IF: 3.850
Call Number UA @ admin @ c:irua:89916 Serial 5942
Permanent link to this record