|   | 
Details
   web
Records
Author Krstajie, P.M.; Peeters, F.M.
Title Energy-momentum dispersion relation of plasmarons in bilayer graphene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 16 Pages 165420-165424
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract The relation between the energy and momentum of plasmarons in bilayer graphene is investigated within the Overhauser approach, where the electron-plasmon interaction is described as a field theoretical problem. We find that the Dirac-like spectrum is shifted by Delta E(k) similar to 100 divided by 150 meV depending on the electron concentration n(e) and electron momentum. The shift increases with electron concentration as the energy of plasmons becomes larger. The dispersion of plasmarons is more pronounced than in the case of single layer graphene, which is explained by the fact that the energy dispersion of electrons is quadratic and not linear. We expect that these predictions can be verified using angle-resolved photoemission spectroscopy (ARPES).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000326089400004 Publication Date 2013-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the ESF-EuroGRAPHENE project CON-GRAN, and by the Serbian Ministry of Education and Science, within the Project No. TR 32008. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:112224 Serial 1042
Permanent link to this record
 

 
Author Geurts, R.; Milošević, M.V.; Albino Aguiar, J.; Peeters, F.M.
Title Enhanced stability of vortex-antivortex states in two-component mesoscopic superconductors Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 2 Pages 024501-24508
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the Ginzburg-Landau (GL) theory, we calculate the stability of sample symmetry-induced vortex-antivortex molecules in a mesoscopic superconducting bilayer exposed to a homogeneous magnetic field. We demonstrate the conditions under which the two condensates cooperatively broaden the field-temperature stability range of the composite (joint) vortex-antivortex state. In cases when such broadening is not achieved, a reentrance of the vortex-antivortex state is found at lower temperatures. In a large portion of the phase diagram noncomposite states are possible, in which the antivortex is present in only one of the layers. In this case, we demonstrate that the vortex-antivortex molecule in one of the layers can be pinned and enlarged by interaction with a vortex molecule in the other. Using analogies in the respective GL formalisms, we map our findings for the bilayer onto mesoscopic two-band superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000313029800003 Publication Date 2013-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 25 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen), the Brazilian science agencies FACEPE/CNPq under Grant No. APQ-0589-1.05/08 and CNPq under Grant No. 309832/2007-1, and the CNPq-FWO cooperation program under Grant No. 490681/2010-7. M.V.M. acknowledges support from the CAPES-PVE program. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:105925 Serial 1058
Permanent link to this record
 

 
Author Esfahani, D.N.; Covaci, L.; Peeters, F.M.
Title Field effect on surface states in a doped Mott-insulator thin film Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 3 Pages 035131-35136
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract Surface effects of a doped thin film made of a strongly correlated material are investigated both in the absence and presence of a perpendicular electric field. We use an inhomogeneous Gutzwiller approximation for a single-band Hubbard model in order to describe correlation effects. For low doping, the bulk value of the quasiparticle weight is recovered exponentially deep into the slab, but with increasing doping, additional Friedel oscillations appear near the surface. We show that the inverse correlation length has a power-law dependence on the doping level. In the presence of an electrical field, considerable changes in the quasiparticle weight can be realized throughout the system. We observe a large difference (as large as five orders of magnitude) in the quasiparticle weight near the opposite sides of the slab. This effect can be significant in switching devices that use the surface states for transport. DOI: 10.1103/PhysRevB.87.035131
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000313941000001 Publication Date 2013-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:110086 Serial 1190
Permanent link to this record
 

 
Author Vandenberghe, W.G.; Verhulst, A.S.; Sorée, B.; Magnus, W.; Groeseneken, G.; Smets, Q.; Heyns, M.; Fischetti, M.V.
Title Figure of merit for and identification of sub-60 mV/decade devices Type A1 Journal article
Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 102 Issue 1 Pages 013510-13514
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract A figure of merit I60 is proposed for sub-60 mV/decade devices as the highest current where the input characteristics exhibit a transition from sub- to super-60 mV/decade behavior. For sub-60 mV/decade devices to be competitive with metal-oxide-semiconductor field-effect devices, I60 has to be in the 1-10 μA/μm range. The best experimental tunnel field-effect transistors (TFETs) in the literature only have an I60 of 6×10-3 μA/μm but using theoretical simulations, we show that an I60 of up to 10 μA/μm should be attainable. It is proven that the Schottky barrier FET (SBFET) has a 60 mV/decade subthreshold swing limit while combining a SBFET and a TFET does improve performance.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000313646500132 Publication Date 2013-01-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 64 Open Access
Notes ; William G. Vandenberghe gratefully acknowledges the support of a Ph.D. stipend from IWT-Vlaanderen. The authors thank Danielle Leonelli, Lars-Ake Ragnarsson, and Krishna Bhuwalka for useful discussions. This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:109262 Serial 1192
Permanent link to this record
 

 
Author Leenaerts, O.; Sahin, H.; Partoens, B.; Peeters, F.M.
Title First-principles investigation of B- and N-doped fluorographene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 3 Pages 035434-35435
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of substitutional doping of fluorographene with boron and nitrogen atoms on its electronic and magnetic properties is investigated using first-principles calculations. It is found that boron dopants can be readily incorporated in the fluorographene crystal where they act as shallow acceptors and cause hole doping, but no changes in the magnetic properties are observed. Nitrogen dopants act as deep donors and give rise to a magnetic moment, but the resulting system becomes chemically unstable. These results are opposite to what was found for substitutional doping of graphane, i.e., hydrogenated graphene, in which case B substituents induce magnetism and N dopants do not.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000322083700002 Publication Date 2013-07-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 16 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. H.S. is supported by a FWO Pegasus-long Marie Curie Fellowship. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109807 Serial 1210
Permanent link to this record
 

 
Author Van Duppen, B.; Peeters, F.M.
Title Four-band tunneling in bilayer graphene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 20 Pages 205427-10
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract The conductance, the transmission, and the reflection probabilities through rectangular potential barriers and p-n junctions are obtained for bilayer graphene taking into account the four bands of the energy spectrum. We have evaluated the importance of the skew hopping parameters gamma(3) and gamma(4) to these properties and show that for energies E > gamma(1)/100 their effect is negligible. For high energies two modes of propagation exist and we investigate scattering between these modes. For perpendicular incidence both propagation modes are decoupled, and scattering between them is forbidden. This extends the concept of pseudospin as defined within the two-band approximation to a four-band model and corresponds to the (anti) symmetry of the wave functions under in-plane mirroring. New transmission resonances are found that appear as sharp peaks in the conductance which are absent in the two-band approximation. The application of an interlayer bias to the system (1) breaks the pseudospin structure, (2) opens a band gap that results in a distinct feature of suppressed transmission in the conductance, and (3) breaks the angular symmetry with respect to normal incidence in the transmission and reflection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000319282000002 Publication Date 2013-05-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 37 Open Access
Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) by an aspirant research grant to B. Van Duppen and the Methusalem Programme of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109001 Serial 1269
Permanent link to this record
 

 
Author De Beule, C.; Partoens, B.
Title Gapless interface states at the junction between two topological insulators Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 11 Pages 115113-115116
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract We consider a junction between two topological insulators and calculate the properties of the interface states with an effective low-energy Hamiltonian for topological insulators with a single cone on the surface. This system bears a close resemblance to bilayer graphene, as both result from the hybridization of Dirac cones. We find gapless interface states not only when the helicity directions of the topological surface states are oppositely oriented, but they can also exist if they are equally oriented. Furthermore, we find that the existence of the interface states can be understood from the closing of the bulk gap when the helicity changes orientation. Recently superluminal tachyonic excitations were also claimed to exist at the interface between topological insulators. However, here we show that these interface states do not exist. DOI: 10.1103/PhysRevB.87.115113
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000316101100002 Publication Date 2013-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes ; The authors would like to thank Dr. O. Leenaerts for the helpful discussions. This work was supported by the Research Foundation Flanders (FWO). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:108282 Serial 1316
Permanent link to this record
 

 
Author Orlova, N.V.; Shanenko, A.A.; Milošević, M.V.; Peeters, F.M.; Vagov, A.V.; Axt, V.M.
Title Ginzburg-Landau theory for multiband superconductors : microscopic derivation Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 13 Pages 134510-134518
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract A procedure to derive the Ginzburg-Landau (GL) theory from the multiband BCS Hamiltonian is developed in a general case with an arbitrary number of bands and arbitrary interaction matrix. It combines the standard Gor'kov truncation and a subsequent reconstruction in order to match accuracies of the obtained terms. This reconstruction recovers the phenomenological GL theory as obtained from the Landau model of phase transitions but offers explicit microscopic expressions for the relevant parameters. Detailed calculations are presented for a three-band system treated as a prototype multiband superconductor. It is demonstrated that the symmetry in the coupling matrix may lead to the chiral ground state with the phase frustration, typical for systems with broken time-reversal symmetry. DOI: 10.1103/PhysRevB.87.134510
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000317586700002 Publication Date 2013-04-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 57 Open Access
Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). A.A.S. acknowledges useful discussions with D. Neilson. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:108464 Serial 1344
Permanent link to this record
 

 
Author Milovanovic, S.P.; Masir, M.R.; Peeters, F.M.
Title Graphene hall bar with an asymmetric pn-junction Type A1 Journal article
Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 113 Issue 19 Pages 193701-193708
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigated the magnetic field dependence of the Hall and the bend resistances in the ballistic regime for a single layer graphene Hall bar structure containing a pn-junction. When both regions are n-type the Hall resistance dominates and Hall type of plateaus are formed. These plateaus occur as a consequence of the restriction on the angle imposed by Snell's law allowing only electrons with a certain initial angles to transmit though the potential step. The size of the plateau and its position is determined by the position of the potential interface as well as the value of the applied potential. When the second region is p-type, the bend resistance dominates, which is asymmetric in field due to the presence of snake states. Changing the position of the pn-interface in the Hall bar strongly affects these states and therefore the bend resistance is also changed. Changing the applied potential, we observe that the bend resistance exhibits a peak around the charge-neutrality point (CNP), which is independent of the position of the pn-interface, while the Hall resistance shows a sign reversal when the CNP is crossed, which is in very good agreement with a recent experiment [J. R. Williams and C. M. Marcus, Phys. Rev. Lett. 107, 046602 (2011)].
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000319295200022 Publication Date 2013-05-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 7 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, and the Methusalem Foundation of the Flemish government. We acknowledge fruitful discussions with M. Barbier. Approved Most recent IF: 2.068; 2013 IF: 2.185
Call Number UA @ lucian @ c:irua:108999 Serial 1371
Permanent link to this record
 

 
Author Shakouri, K.; Badalyan, S.M.; Peeters, F.M.
Title Helical liquid of snake states Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 19 Pages 195404-195405
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract We derive an exact solution to the problem of spin snake states induced in a nonhomogeneous magnetic field by a combined action of the Rashba spin-orbit and Zeeman fields. The electron spin behavior as a function of the cyclotron orbit center position and an external homogeneous magnetic field was obtained. It is shown that in an antisymmetric magnetic field the electron spin in the snake states has only an in-plane projection, perpendicular to the magnetic interface, which vanishes at large positive momenta. Applying an external homogeneous magnetic field adds a finite out-of-plane spin component and simultaneously gaps out the spectral branches, which results in regular beating patterns of the spin current components.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000326820200007 Publication Date 2013-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; This work was supported by the Methusalem program of the Flemish government and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:112712 Serial 1416
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Savel'ev, S.E.; Kusmartsev, F.V.; Peeters, F.M.
Title In-phase motion of Josephson vortices in stacked SNS Josephson junctions : effect of ordered pinning Type A1 Journal article
Year 2013 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 26 Issue 12 Pages 125010-125016
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract The dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting Josephson junctions is investigated using the anisotropic time-dependent Ginzburg-Landau theory in the presence of a square/rectangular array of pinning centers (holes). For small values of the applied drive, fluxons in different junctions move out of phase, forming a periodic triangular lattice. A rectangular lattice of moving fluxons is observed at larger currents, which is in agreement with previous theoretical predictions (Koshelev and Aranson 2000 Phys. Rev. Lett. 85 3938). This 'superradiant' flux-flow state is found to be stable in a wide region of applied current. The stability range of this ordered state is considerably larger than the one obtained for the pinning-free sample. Clear commensurability features are observed in the current-voltage characteristics of the system with pronounced peaks in the critical current at (fractional) matching fields. The effect of density and strength of the pinning centers on the stability of the rectangular fluxon lattice is discussed. Predicted synchronized motion of fluxons in the presence of ordered pinning can be detected experimentally using the rf response of the system, where enhancement of the Shapiro-like steps is expected due to the synchronization.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000327447200013 Publication Date 2013-10-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 5 Open Access
Notes ; This work was supported by EU Marie Curie (Project No: 253057) and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 2.878; 2013 IF: 2.796
Call Number UA @ lucian @ c:irua:112834 Serial 1573
Permanent link to this record
 

 
Author Couet, S.; Peelaers, H.; Trekels, M.; Houben, K.; Petermann, C.; Hu, M.Y.; Zhao, J.Y.; Bi, W.; Alp, E.E.; Menéndez, E.; Partoens, B.; Peeters, F.M.; Van Bael, M.J.; Vantomme, A.; Temst, K.;
Title Interplay between lattice dynamics and superconductivity in Nb3Sn thin films Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 4 Pages 045437-7
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the link between superconductivity and atomic vibrations in Nb3Sn films with a thickness ranging from 10 to 50 nm. The challenge of measuring the phonon density of states (PDOS) of these films has been tackled by employing the technique of nuclear inelastic scattering by Sn-119 isotopes to reveal the Sn-partial phonon density of states. With the support of ab initio calculations, we evaluate the effect of reduced film thickness on the PDOS. This approach allows us to estimate the changes in superconducting critical temperature T-c induced by phonon confinement, which turned out to be limited to a few tenths of K. The presented method is successful for the Nb3Sn system and paves the way for more systematic studies of the role of phonon confinement in Sn-containing superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000322529900004 Publication Date 2013-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes ; The authors would like to cordially thank Dr. Rudolf Ruffer from the nuclear resonant scattering group of the ESRF for the support and gratefully acknowledge the ESRF for providing beamtime for the preliminary phonon study. S. C., K. H., and E. M. thank the Flemish Science Foundation (FWO-Vl) for their personal fellowship. This work was supported by FWO-Vl, the Methusalem program of the Flemish government, and the Concerted Research Action program (GOA/09/ 006) and (GOA/14/007). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109801 Serial 1702
Permanent link to this record
 

 
Author Van Duppen, B.; Peeters, F.M.
Title Klein paradox for a pn junction in multilayer graphene Type A1 Journal article
Year 2013 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 102 Issue 2 Pages 27001-27005
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract Charge carriers in single and multilayered graphene systems behave as chiral particles due to the particular lattice symmetry of the crystal. We show that the interplay between the meta-material properties of graphene multilayers and the pseudospinorial properties of the charge carriers result in the occurrence of Klein and anti-Klein tunneling for rhombohedral stacked multilayers. We derive an algebraic formula predicting the angles at which these phenomena occur and support this with numerical calculations for systems up to four layers. We present a decomposition of an arbitrarily stacked multilayer into pseudospin doublets that have the same properties as rhombohedral systems with a lower number of layers. Copyright (C) EPLA, 2013
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000319617700017 Publication Date 2013-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 17 Open Access
Notes ; We thank S. GILLIS for valuable discussions. This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) by an aspirant research grant to B. Van Duppen and the Methusalem Programme of the Flemish Government. ; Approved Most recent IF: 1.957; 2013 IF: 2.269
Call Number UA @ lucian @ c:irua:109665 Serial 1763
Permanent link to this record
 

 
Author Dantas, D.S.; Chaves, A.; Farias, G.A.; Ramos, A.C.A.; Peeters, F.M.
Title Low-dimensional confining structures on the surface of helium films suspended on designed cavities Type A1 Journal article
Year 2013 Publication Journal of low temperature physics Abbreviated Journal J Low Temp Phys
Volume 173 Issue 3-4 Pages 207-226
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the formation of quantum confined structures on the surface of a liquid helium film suspended on a nanostructured substrate. We show theoretically that, by nanostructuring the substrate, it is possible to change the geometry of the liquid helium surface, opening the possibility of designing and controlling the formation of valleys with different shapes. By applying an external electric field perpendicular to the substrate plane, surface electrons can be trapped into these valleys, as in a quantum dot. We investigate how the external parameters, such as the electric field strength and the height of the liquid helium bath, can be tuned to control the energy spectrum of the trapped surface electrons.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000324820300008 Publication Date 2013-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2291;1573-7357; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.3 Times cited 1 Open Access
Notes ; This work has received financial support from the Brazilian National Research Council (CNPq), Fundacao Cearense de Apoio ao Desenvolvimento Cientifico e Tecnologico (Funcap), CAPES and Pronex/CNPq/Funcap. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and the bilateral project between CNPq and FWO-Vl. ; Approved Most recent IF: 1.3; 2013 IF: 1.036
Call Number UA @ lucian @ c:irua:111140 Serial 1845
Permanent link to this record
 

 
Author Singh, S.K.; Neek-Amal, M.; Peeters, F.M.
Title Melting of graphene clusters Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 13 Pages 134103-134109
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract Density-functional tight-binding and classical molecular dynamics simulations are used to investigate the structural deformations and melting of planar carbon nanoclusters C-N with N = 2-55. The minimum-energy configurations for different clusters are used as starting configurations for the study of the temperature effects on the bond breaking and rotation in carbon lines (N < 6), carbon rings (5 < N < 19), and graphene nanoflakes. The larger the rings (graphene nanoflakes) the higher the transition temperature (melting point) with ring-to-line (perfect-to-defective) transition structures. The melting point was obtained by using the bond energy, the Lindemann criteria, and the specific heat. We found that hydrogen-passivated graphene nanoflakes (CNHM) have a larger melting temperature with a much smaller dependence on size. The edges in the graphene nanoflakes exhibit several different metastable configurations (isomers) during heating before melting occurs. DOI: 10.1103/PhysRevB.87.134103
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000317390700001 Publication Date 2013-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 28 Open Access
Notes ; This work was supported by the EU-Marie Curie IIF Postdoctoral Fellowship No. 299855 (for M.N.-A.), the ESF-EuroGRAPHENE Project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:108467 Serial 1987
Permanent link to this record
 

 
Author Van Duppen, B.; Sena, S.H.R.; Peeters, F.M.
Title Multiband tunneling in trilayer graphene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 19 Pages 195439-10
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic tunneling properties of the two stable forms of trilayer graphene (TLG), rhombohedral ABC and Bernal ABA, are examined for p-n and p-n-p junctions as realized by using a single gate (SG) or a double gate (DG). For the rhombohedral form, due to the chirality of the electrons, the Klein paradox is found at normal incidence for SG devices, while at high-energy interband scattering between additional propagation modes can occur. The electrons in Bernal ABA TLG can have a monolayer- or bilayer-like character when incident on a SG device. Using a DG, however, both propagation modes will couple by breaking the mirror symmetry of the system, which induces intermode scattering and resonances that depend on the width of the DG p-n-p junction. For ABC TLG the DG opens up a band gap which suppresses Klein tunneling. The DG induces also an unexpected asymmetry in the tunneling angle for single-valley electrons.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000319281700004 Publication Date 2013-05-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-VI) by an aspirant research grant to B. Van Duppen and the Methusalem Programme of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:108998 Serial 2216
Permanent link to this record
 

 
Author Shanenko, A.A.; Orlova, N.V.; Vagov, A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M.
Title Nanofilms as quantum-engineered multiband superconductors : the Ginzburg-Landau theory Type A1 Journal article
Year 2013 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 102 Issue 2 Pages 27003-27006
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recently fabricated single-crystalline atomically flat metallic nanofilms are in fact quantum-engineered multiband superconductors. Here the multiband structure is dictated by the nanofilm thickness through the size quantization of the electron motion perpendicular to the nanofilm. This opens the unique possibility to explore superconductivity in well-controlled multi-band systems. However, a serious obstacle is the absence of a convenient and manageable theoretical tool to access new physical phenomena in such quasi-two-dimensional systems, including interplay of quantum confinement and fluctuations. Here we cover this gap and construct the appropriate multiband Ginzburg-Landau functional for nano-thin superconductors. Copyright (C) EPLA, 2013
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000319617700019 Publication Date 2013-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 8 Open Access
Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.957; 2013 IF: 2.269
Call Number UA @ lucian @ c:irua:109859 Serial 2257
Permanent link to this record
 

 
Author Barba-Ortega, J.; Sardella, E.; Aguiar, J.A.; Peeters, F.M.
Title Non-conventional vortex configurations in a mesoscopic flat disk Type A1 Journal article
Year 2013 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 487 Issue Pages 47-55
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract The influence of superficial defects on the vortex configurations of a thin superconducting disk is investigated within the time dependent Ginzburg-Landau formalism. The free energy, magnetization, vorticity, and the Cooper pair density are calculated for both metastable and stable vortex configurations and different number of defects on its surface in the presence of an external magnetic field applied perpendicular to the disk area. We show that the competition between the confinement geometry and the geometric position of the defects leads to non-conventional vortex configurations which are not compatible with the symmetry of the sample geometry. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000317743300009 Publication Date 2013-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 17 Open Access
Notes ; This work was partially supported by the Brazilian agencies CNPq, CAPES, FACEPE (APQ 0589-105/08), FAPESP, CNPq-FWO bilateral project, and Colombian Agencies Colciencias and DIB. ; Approved Most recent IF: 1.404; 2013 IF: 1.110
Call Number UA @ lucian @ c:irua:108486 Serial 2344
Permanent link to this record
 

 
Author Muñoz, W.A.; Covaci, L.; Peeters, F.M.
Title Superconducting current and proximity effect in ABA and ABC multilayer graphene Josephson junctions Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 88 Pages 214502
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using a numerical tight-binding approach based on the Chebyshev–Bogoliubov–de Gennes method we describe Josephson junctions made of multilayer graphene contacted by top superconducting gates. Both Bernal (ABA) and rhombohedral (ABC) stacking are considered and we find that the type of stacking has a strong effect on the proximity effect and the supercurrent flow. For both cases the pair amplitude shows a polarization between dimer and nondimer atoms, being more pronounced for rhombohedral stacking. Even though the proximity effect in nondimer sites is enhanced when compared to single-layer graphene, we find that the supercurrent is suppressed. The spatial distribution of the supercurrent shows that for Bernal stacking the current flows only in the topmost layers while for rhombohedral stacking the current flows throughout the whole structure.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000328569900004 Publication Date 2013-12-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number CMT @ cmt @ c:irua:128896 Serial 3962
Permanent link to this record
 

 
Author Xiao, Y.M.; Xu, W.; Zhang, Y.Y.; Peeters, F.M.
Title Optoelectronic properties of ABC-stacked trilayer graphene Type A1 Journal article
Year 2013 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 250 Issue 1 Pages 86-94
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a theoretical study on the optoelectronic properties of ABC-stacked trilayer graphene (TLG). The optical conductance and light transmittance are evaluated through using the energy-balance equation derived from the Boltzmann equation for an air/graphene/dielectric-wafer system in the presence of linearly polarized radiation field. The results obtained from two band structure models are examined and compared. For short wavelength radiation, the universal optical conductance sigma(0) = 3e(2)/(4h) can be obtained. Importantly, there exists an optical absorption window in the radiation wavelength range 10-200 mu m, which is induced by different transition energies required for inter- and intra-band optical absorption channels. As a result, we find that the position and width of this window depend sensitively on temperature and carrier density of the system, especially the lower frequency edge. There is a small characteristic absorption peak at about 82 mu m where the largest interband transition states exist in the ABC-stacked TLG model, in contrast to the relatively smooth curves in a simplified model. These theoretical results indicate that TLG has some interesting and important physical properties which can be utilized to realize infrared or THz optoelectronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000313347500011 Publication Date 2012-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 6 Open Access
Notes ; This work was supported by the National Natural Science Foundation of China (grant no. 10974206), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. One of us (F.M.P.) was a Specially Appointed Foreign Professor of the Chinese Academy of Sciences. ; Approved Most recent IF: 1.674; 2013 IF: 1.605
Call Number UA @ lucian @ c:irua:110109 Serial 2495
Permanent link to this record
 

 
Author Verberck, B.; Okazaki, T.; Tarakina, N.V.
Title Ordered and disordered packing of coronene molecules in carbon nanotubes Type A1 Journal article
Year 2013 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 15 Issue 41 Pages 18108-18114
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract Monte Carlo simulations of coronene molecules in single-walled carbon nanotubes (SWCNTs) and dicoronylene molecules in SWCNTs are performed. Depending on the diameter D of the encapsulating SWCNT, regimes favoring the formation of ordered, one-dimensional (1D) stacks of tilted molecules (D <= 1.7 nm for coronene@SWCNT, 1.5 nm <= D <= 1.7 nm for dicoronylene@SWCNT) and regimes with disordered molecular arrangements and increased translational mobilities enabling the thermally induced polymerization of neighboring molecules resulting in the formation of graphene nanoribbons (GNRs) are observed. The results show that the diameter of the encapsulating nanotube is a crucial parameter for the controlled synthesis of either highly ordered 1D structures or GNR precursors.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000325400600045 Publication Date 2013-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 9 Open Access
Notes ; B.V. is a Postdoctoral Fellow of the Research Foundation Flanders (FWO-VI). N.V.T. acknowledges funding by the Bavarian Ministry of Sciences, Research and the Arts. ; Approved Most recent IF: 4.123; 2013 IF: 4.198
Call Number UA @ lucian @ c:irua:112212 Serial 2502
Permanent link to this record
 

 
Author Carrillo-Nuñez, H.; Magnus, W.; Vandenberghe, W.G.; Sorée, B.; Peeters, F.M.
Title Phonon-assisted Zener tunneling in a cylindrical nanowire transistor Type A1 Journal article
Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 113 Issue 18 Pages 184507-184508
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract The tunneling current has been computed for a cylindrical nanowire tunneling field-effect transistor (TFET) with an all-round gate that covers the source region. Being the underlying mechanism, band-to-band tunneling, mediated by electron-phonon interaction, is pronouncedly affected by carrier confinement in the radial direction and, therefore, involves the self-consistent solution of the Schrodinger and Poisson equations. The latter has been accomplished by exploiting a non-linear variational principle within the framework of the modified local density approximation taking into account the nonparabolicity of both the valence band and conduction band in relatively thick wires. Moreover, while the effective-mass approximation might still provide a reasonable description of the conduction band in relatively thick wires, we have found that the nonparabolicity of the valence band needs to be included. As a major conclusion, it is observed that confinement effects in nanowire tunneling field-effect transistors have a stronger impact on the onset voltage of the tunneling current in comparison with planar TFETs. On the other hand, the value of the onset voltage is found to be overestimated when the valence band nonparabolicity is ignored. (C) 2013 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000319294100093 Publication Date 2013-05-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 4 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), and the Interuniversity Attraction Poles, Belgium State, Belgium Science Policy, and IMEC. ; Approved Most recent IF: 2.068; 2013 IF: 2.185
Call Number UA @ lucian @ c:irua:109651 Serial 2599
Permanent link to this record
 

 
Author Carrillo-Nunez, H.; Magnus, W.; Vandenberghe, W.G.; Sorée, B.; Peeters, F.M.
Title Phonon-assisted Zener tunneling in a p-n diode silicon nanowire Type A1 Journal article
Year 2013 Publication Solid state electronics Abbreviated Journal Solid State Electron
Volume 79 Issue Pages 196-200
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract The Zener tunneling current flowing through a biased, abrupt p-n junction embedded in a cylindrical silicon nanowire is calculated. As the band gap becomes indirect for sufficiently thick wires, Zener tunneling and its related transitions between the valence and conduction bands are mediated by short-wavelength phonons interacting with mobile electrons. Therefore, not only the high electric field governing the electrons in the space-charge region but also the transverse acoustic (TA) and transverse optical (TO) phonons have to be incorporated in the expression for the tunneling current. The latter is also affected by carrier confinement in the radial direction and therefore we have solved the Schrodinger and Poisson equations self-consistently within the effective mass approximation for both conduction and valence band electrons. We predict that the tunneling current exhibits a pronounced dependence on the wire radius, particularly in the high-bias regime. (C) 2012 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000313611000037 Publication Date 2012-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1101; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.58 Times cited 2 Open Access
Notes ; This work is supported by the Flemish Science Foundation (FWO-VI), and the Interuniversity Attraction Poles, Belgium State, Belgium Science Policy, and IMEC. One of the authors (W. Vandenberghe) gratefully acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). ; Approved Most recent IF: 1.58; 2013 IF: 1.514
Call Number UA @ lucian @ c:irua:110104 Serial 2600
Permanent link to this record
 

 
Author Horzum, S.; Sahin, H.; Cahangirov, S.; Cudazzo, P.; Rubio, A.; Serin, T.; Peeters, F.M.
Title Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2 Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 12 Pages 125415-5
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract Motivated by recent experimental observations of Tongay et al. [Nano Lett. 12, 5576 (2012)] we show how the electronic properties and Raman characteristics of single layer MoSe2 are affected by elastic biaxial strain. We found that with increasing strain: (1) the E' and E '' Raman peaks (E-2g and E-1g in bulk) exhibit significant redshifts (up to similar to 30 cm(-1)), (2) the position of the A'(1) peak remains at similar to 180 cm(-1) (A(1g) in bulk) and does not change considerably with further strain, (3) the dispersion of low energy flexural phonons crosses over from quadratic to linear, and (4) the electronic band structure undergoes a direct to indirect band gap crossover under similar to 3% biaxial tensile strain. Thus the application of strain appears to be a promising approach for a rapid and reversible tuning of the electronic, vibrational, and optical properties of single layer MoSe2 and similar MX2 dichalcogenides. DOI:10.1103/PhysRevB.87.125415
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000316383700006 Publication Date 2013-03-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 171 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Marie Curie Long Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:108277 Serial 2605
Permanent link to this record
 

 
Author Zhang, S.H.; Xu, W.; Badalyan, S.M.; Peeters, F.M.
Title Piezoelectric surface acoustical phonon limited mobility of electrons in graphene on a GaAs substrate Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 7 Pages 075443-75445
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the mobility of Dirac fermions in monolayer graphene on a GaAs substrate, limited by the combined action of the extrinsic potential of piezoelectric surface acoustical phonons of GaAs (PA) and of the intrinsic deformation potential of acoustical phonons in graphene (DA). In the high-temperature (T) regime, the momentum relaxation rate exhibits the same linear dependence on T but different dependencies on the carrier density n, corresponding to the mobility mu proportional to 1 root n and 1/n, respectively for the PA and DA scattering mechanisms. In the low-T Bloch-Gruneisen regime, the mobility shows the same square-root density dependence mu proportional to root n, but different temperature dependencies mu proportional to T-3 and T-4, respectively for PA and DA phonon scattering. DOI: 10.1103/PhysRevB.87.075443
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000315375200008 Publication Date 2013-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 25 Open Access
Notes ; This work was supported by the ESF-Eurocores program EuroGRAPHENE (CONGRAN project) and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:107655 Serial 2622
Permanent link to this record
 

 
Author Zhu, J.-J.; Badalyan, S.M.; Peeters, F.M.
Title Plasmonic excitations in Coulomb-coupled N-layer graphene structures Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 8 Pages 085401-85408
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study Dirac plasmons and their damping in spatially separated N-layer graphene structures at finite doping and temperatures. The plasmon spectrum consists of one optical excitation with square-root dispersion and N – 1 acoustical excitations with linear dispersion, which are undamped at zero temperature and finite doping within a triangular energy region outside the electron-hole continuum. In the long-wavelength limit the energy and weight of the optical plasmon modes increase, respectively, as the square root and linearly with N in agreement with recent experimental findings. The energy and weight of the upper-lying acoustical branches also increase with N. This increase is strongest for the uppermost acoustical mode, and we find that its energy can exceed at some value of momentum the plasmon energy in an individual graphene sheet. Meanwhile, the energy of the low-lying acoustical branches decreases weakly with N as compared with the single acoustical mode in double-layer graphene structures. Our numerical calculations provide a detailed understanding of the overall behavior of the wave-vector dependence of the optical and acoustical multilayer plasmon modes and show how their dispersion and damping are modified as a function of temperature, interlayer spacing, and inlayer carrier density in (un)balanced graphene multilayer structures. DOI: 10.1103/PhysRevB.87.085401
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000314682900005 Publication Date 2013-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 59 Open Access
Notes ; This work was supported by the ESF-Eurocores program EuroGRAPHENE (CONGRAN project) and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:107671 Serial 2645
Permanent link to this record
 

 
Author Gomez, A.; Gonzalez, E.M.; Gilbert, D.A.; Milošević, M.V.; Liu, K.; Vicent, J.L.
Title Probing the dynamic response of antivortex, interstitial and trapped vortex lattices on magnetic periodic pinning potentials Type A1 Journal article
Year 2013 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 26 Issue 8 Pages 085018-8
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract The dynamics of the pinned vortex, antivortex and interstitial vortex have been studied in superconducting/magnetic hybrids consisting of arrays of Co/Pd multilayer nanodots embedded in Nb films. The magnetic nanodots show out-of-plane magnetization at the remanent state. This magnetic state allows for superconducting vortex lattices of different types in an applied homogeneous magnetic field. We experimentally and theoretically show three such lattices: (i) a lattice containing only antivortices; (ii) a vortex lattice entirely pinned on the dots; and (iii) a vortex lattice with pinned and interstitial vortices. Between the flux creep (low vortex velocity) and the free flux flow (high vortex velocity) regimes the interaction between the magnetic array and the vortex lattice governs the vortex dynamics, which in turn enables distinguishing experimentally the type of vortex lattice which governs the dissipation. We show that the vortex lattice with interstitial vortices has the highest onset velocity where the lattice becomes ordered, whereas the pinned vortex lattice has the smallest onset velocity. Further, for this system, we directly estimate that the external force needed to depin vortices is 60% larger than the one needed to depin antivortices; therefore we are able to decouple the antivortex-vortex motion.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000321709400024 Publication Date 2013-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 7 Open Access
Notes ; This work was supported by Spanish MINECO, grants FIS2008-06249 (Grupo Consolidado), Consolider CSD2007-00010 and CAM grant S2009/MAT-1726. MVM acknowledges support from FWO-Vlaanderen. Work at UCD was supported by the US NSF (DMR-1008791 and ECCS-0925626). ; Approved Most recent IF: 2.878; 2013 IF: 2.796
Call Number UA @ lucian @ c:irua:109785 Serial 2716
Permanent link to this record
 

 
Author Masir, M.R.; Moldovan, D.; Peeters, F.M.
Title Pseudo magnetic field in strained graphene : revisited Type A1 Journal article
Year 2013 Publication Solid state communications Abbreviated Journal Solid State Commun
Volume 175 Issue Pages 76-82
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract We revisit the theory of the pseudo magnetic field as induced by strain in graphene using the tight- binding approach. A systematic expansion of the hopping parameter and the deformation of the lattice vectors is presented from which we obtain an expression for the pseudo magnetic field for low energy electrons. We generalize and discuss previous results and propose a novel effective Hamiltonian. The contributions of the different terms to the pseudo field expression are investigated for a model triaxial strain profile and are compared with the full solution. Our work suggests that the previous proposed pseudo magnetic field expression is valid up to reasonably high strain (15%) and there is no K-dependent pseudo-magnetic field.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000329538200010 Publication Date 2013-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.554 Times cited 57 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EURO- CORES Program EuroGRAPHENE within the project CONGRAN and the Methusalem programme of the Flemish government. Approved Most recent IF: 1.554; 2013 IF: 1.698
Call Number UA @ lucian @ c:irua:114805 Serial 2737
Permanent link to this record
 

 
Author Latimer, M.L.; Berdiyorov, G.R.; Xiao, Z.L.; Peeters, F.M.; Kwok, W.K.
Title Realization of artificial ice systems for magnetic vortices in a superconducting MoGe thin film with patterned nanostructures Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 111 Issue 6 Pages 067001-67005
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract We report an anomalous matching effect in MoGe thin films containing pairs of circular holes arranged in such a way that four of those pairs meet at each vertex point of a square lattice. A remarkably pronounced fractional matching was observed in the magnetic field dependences of both the resistance and the critical current. At the half matching field the critical current can be even higher than that at zero field. This has never been observed before for vortices in superconductors with pinning arrays. Numerical simulations within the nonlinear Ginzburg-Landau theory reveal a square vortex ice configuration in the ground state at the half matching field and demonstrate similar characteristic features in the field dependence of the critical current, confirming the experimental realization of an artificial ice system for vortices for the first time.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000322799200013 Publication Date 2013-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 63 Open Access
Notes ; This work was supported by the US Department of Energy DOE BES under Contract No. DE-AC02-06CH11357 (transport measurements), the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government (numerical simulations). G. R. B. acknowledges an individual grant from FWO-Vl. The nanopatterning and morphological analysis were performed at Argonne's Center for Nanoscale Materials (CNM) which is funded by DOE BES under Contract No. DE-AC02-06CH11357. We are grateful to Dr. Charles Reichhardt in Los Alamos National Laboratory for stimulating discussions and critical comments. Z. L. X. acknowledges DOE BES Grant No. DE-FG02-06ER46334 (sample fabrication and imaging). M. L. L. was a recipient of the NIU/ANL Distinguished Graduate Fellowship grant. ; Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:110750 Serial 2836
Permanent link to this record
 

 
Author Neek-Amal, M.; Sadeghi, A.; Berdiyorov, G.R.; Peeters, F.M.
Title Realization of free-standing silicene using bilayer graphene Type A1 Journal article
Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 103 Issue 26 Pages 261904-4
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract The available synthesized silicene-like structures have been only realized on metallic substrates which are very different from the standalone buckled silicene, e. g., the Dirac cone of silicene is destroyed due to lattice distortion and the interaction with the substrate. Using graphene bilayer as a scaffold, a route is proposed to synthesize silicene with electronic properties decoupled from the substrate. The buckled hexagonal arrangement of silicene between the graphene layers is found to be very similar to the theoretically predicted standalone buckled silicene which is only very weakly van der Waals coupled to the graphene layers with a graphite-like interlayer distance of 3.42 angstrom and without any lattice distortion. We found that these stacked layers are stable well above room temperature. (C) 2013 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000329977400022 Publication Date 2013-12-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 74 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. was supported by the EU-Marie Curie IIF postdoc Fellowship/299855. ; Approved Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:114849 Serial 2837
Permanent link to this record