|   | 
Details
   web
Records
Author Yagmurcukardes, M.; Qin, Y.; Ozen, S.; Sayyad, M.; Peeters, F.M.; Tongay, S.; Sahin, H.
Title Quantum properties and applications of 2D Janus crystals and their superlattices Type A1 Journal article
Year 2020 Publication Applied Physics Reviews Abbreviated Journal Appl Phys Rev
Volume 7 Issue (down) 1 Pages 011311-11316
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional (2D) Janus materials are a new class of materials with unique physical, chemical, and quantum properties. The name “Janus” originates from the ancient Roman god which has two faces, one looking to the future while the other facing the past. Janus has been used to describe special types of materials which have two faces at the nanoscale. This unique atomic arrangement has been shown to present rather exotic properties with applications in biology, chemistry, energy conversion, and quantum sciences. This review article aims to offer a comprehensive review of the emergent quantum properties of Janus materials. The review starts by introducing 0D Janus nanoparticles and 1D Janus nanotubes, and highlights their difference from classical ones. The design principles, synthesis, and the properties of graphene-based and chalcogenide-based Janus layers are then discussed. A particular emphasis is given to colossal built-in potential in 2D Janus layers and resulting quantum phenomena such as Rashba splitting, skyrmionics, excitonics, and 2D magnetic ordering. More recent theoretical predictions are discussed in 2D Janus superlattices when Janus layers are stacked onto each other. Finally, we discuss the tunable quantum properties and newly predicted 2D Janus layers waiting to be experimentally realized. The review serves as a complete summary of the 2D Janus library and predicted quantum properties in 2D Janus layers and their superlattices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000519611500001 Publication Date 2020-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1931-9401 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited 158 Open Access
Notes ; S.T. acknowledges support from NSF Contract Nos. DMR 1552220, DMR 1904716, and NSF CMMI 1933214. H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 117F095. H.S. acknowledges support from the Turkish Academy of Sciences under the GEBIP program. M.Y. is supported by the Flemish Science Foundation (FWO-Vl) through a postdoctoral fellowship. Part of this work was supported by the FLAG-ERA project TRANS2D-TMD. ; Approved Most recent IF: 15; 2020 IF: 13.667
Call Number UA @ admin @ c:irua:167712 Serial 6591
Permanent link to this record
 

 
Author Conti, S.; Neilson, D.; Peeters, F.M.; Perali, A.
Title Transition metal dichalcogenides as strategy for high temperature electron-hole superfluidity Type A1 Journal article
Year 2020 Publication Condensed Matter Abbreviated Journal
Volume 5 Issue (down) 1 Pages 22-12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Condensation of spatially indirect excitons, with the electrons and holes confined in two separate layers, has recently been observed in two different double layer heterostructures. High transition temperatures were reported in a double Transition Metal Dichalcogenide (TMD) monolayer system. We briefly review electron-hole double layer systems that have been proposed as candidates for this interesting phenomenon. We investigate the double TMD system WSe2/hBN/MoSe2, using a mean-field approach that includes multiband effects due to the spin-orbit coupling and self-consistent screening of the electron-hole Coulomb interaction. We demonstrate that the transition temperature observed in the double TMD monolayers, which is remarkably high relative to the other systems, is the result of (i) the large electron and hole effective masses in TMDs, (ii) the large TMD band gaps, and (iii) the presence of multiple superfluid condensates in the TMD system. The net effect is that the superfluidity is strong across a wide range of densities, which leads to high transition temperatures that extend as high as TBKT=150 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000523711200017 Publication Date 2020-03-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2410-3896 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 13 Open Access
Notes ; This work was partially supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl), the Methusalem Foundation and the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:168658 Serial 6636
Permanent link to this record
 

 
Author Ceyhan, E.; Yagmurcukardes, M.; Peeters, F.M.; Sahin, H.
Title Electronic and magnetic properties of single-layer FeCl₂ with defects Type A1 Journal article
Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 103 Issue (down) 1 Pages 014106
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The formation of lattice defects and their effect on the electronic properties of single-layer FeCl2 are investigated by means of first-principles calculations. Among the vacancy defects, namely mono-, di-, and three-Cl vacancies and mono-Fe vacancy, the formation of mono-Cl vacancy is the most preferable. Comparison of two different antisite defects reveals that the formation of the Fe-antisite defect is energetically preferable to the Cl-antisite defect. While a single Cl vacancy leads to a 1 mu(B) decrease in the total magnetic moment of the host lattice, each Fe vacant site reduces the magnetic moment by 4 mu(B). However, adsorption of an excess Cl atom on the surface changes the electronic structure to a ferromagnetic metal or to a ferromagnetic semiconductor depending on the adsorption site without changing the ferromagnetic state of the host lattice. Both Cl-antisite and Fe-antisite defected domains change the magnetic moment of the host lattice by -1 mu(B) and +3 mu(B), respectively. The electronic ground state of defected structures reveals that (i) single-layer FeCl2 exhibits half-metallicity under the formation of vacancy and Cl-antisite defects; (ii) ferromagnetic metallicity is obtained when a single Cl atom is adsorbed on upper-Cl and Fe sites, respectively; and (iii) ferromagnetic semiconducting behavior is found when a Cl atom is adsorbed on a lower-Cl site or a Fe-antisite defect is formed. Simulated scanning electron microscope images show that atomic-scale identification of defect types is possible from their electronic charge density. Further investigation of the periodically Fe-defected structures reveals that the formation of the single-layer FeCl3 phase, which is a dynamically stable antiferromagnetic semiconductor, is possible. Our comprehensive analysis on defects in single-layer FeCl2 will complement forthcoming experimental observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000606969400002 Publication Date 2021-01-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access Not_Open_Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and by Flemish Supercomputer Center (VSC). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 117F095. M.Y. was supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:176039 Serial 6689
Permanent link to this record
 

 
Author Lavor, I.R.; Cavalcante, L.S.R.; Chaves, A.; Peeters, F.M.; Van Duppen, B.
Title Probing the structure and composition of van der Waals heterostructures using the nonlocality of Dirac plasmons in the terahertz regime Type A1 Journal article
Year 2021 Publication 2d Materials Abbreviated Journal 2D Mater
Volume 8 Issue (down) 1 Pages 015014
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Dirac plasmons in graphene are very sensitive to the dielectric properties of the environment. We show that this can be used to probe the structure and composition of van der Waals heterostructures (vdWh) put underneath a single graphene layer. In order to do so, we assess vdWh composed of hexagonal boron nitride and different types of transition metal dichalcogenides (TMDs). By performing realistic simulations that account for the contribution of each layer of the vdWh separately and including the importance of the substrate phonons, we show that one can achieve single-layer resolution by investigating the nonlocal nature of the Dirac plasmon-polaritons. The composition of the vdWh stack can be inferred from the plasmon-phonon coupling once it is composed by more than two TMD layers. Furthermore, we show that the bulk character of TMD stacks for plasmonic screening properties in the terahertz regime is reached only beyond 100 layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000582820500001 Publication Date 2020-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 4 Open Access OpenAccess
Notes ; This work was financially supported by the Brazilian Council for Research (CNPq), Brazilian National Council for the Improvement of Higher Education (CAPES) and by the Research Foundation Flanders (FWO) through a postdoctoral fellowship to B.V.D. ; Approved Most recent IF: 6.937
Call Number UA @ admin @ c:irua:173507 Serial 6696
Permanent link to this record
 

 
Author Jiang, J.; Wang, Y.-L.; Milošević, M.V.; Xiao, Z.-L.; Peeters, F.M.; Chen, Q.-H.
Title Reversible ratchet effects in a narrow superconducting ring Type A1 Journal article
Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 103 Issue (down) 1 Pages 014502
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the ratchet effect in a narrow pinning-free superconductive ring based on time-dependent Ginzburg-Landau (TDGL) equations. Voltage responses to external dc and ac currents at various magnetic fields are studied. Due to asymmetric barriers for flux penetration and flux exit in the ring-shaped superconductor, the critical current above which the flux-flow state is reached, as well as the critical current for the transition to the normal state, are different for the two directions of applied current. These effects cooperatively cause ratchet signal reversal at high magnetic fields, which has not been reported to date in a pinning-free system. The ratchet signal found here is larger than those induced by asymmetric pinning potentials. Our results also demonstrate the feasibility of using mesoscopic superconductors to employ a superconducting diode effect in versatile superconducting devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000604821500003 Publication Date 2021-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access OpenAccess
Notes ; We are grateful to G. Berdiyorov for useful suggestions and comments. Q.-H.C. thanks Beiyi Zhu for helpful discussions during the early stage of this work. This work is supported in part by the National Key Research and Development Program of China, Grants No. 2017YFA0303002 (Q.-H.C. and J.J.), and No. 2018YFA0209002 (Y.-L.W.), and the National Natural Science Foundation of China Grants No. 11834005, No. 11674285, No. 61771235, and No. 61727805. Z.-L.X. acknowledges support by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering and the National Science Foundation under Grant No. DMR-1901843. F.M.P. and M.V.M. acknowledge support by the Research Foundation – Flanders (FWO). ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:174984 Serial 6697
Permanent link to this record
 

 
Author Rzeszotarski, B.; Mrenca-Kolasinska, A.; Peeters, F.M.; Szafran, B.
Title Effective Landé factors for an electrostatically defined quantum point contact in silicene Type A1 Journal article
Year 2021 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk
Volume 11 Issue (down) 1 Pages 19892
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The transconductance and effective Lande g* factors for a quantum point contact defined in silicene by the electric field of a split gate is investigated. The strong spin-orbit coupling in buckled silicene reduces the g* factor for in-plane magnetic field from the nominal value 2 to around 1.2 for the first-to 0.45 for the third conduction subband. However, for perpendicular magnetic field we observe an enhancement of g* factors for the first subband to 5.8 in nanoribbon with zigzag and to 2.5 with armchair edge. The main contribution to the Zeeman splitting comes from the intrinsic spin-orbit coupling defined by the Kane-Mele form of interaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000706380800089 Publication Date 2021-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.259 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.259
Call Number UA @ admin @ c:irua:182502 Serial 6983
Permanent link to this record
 

 
Author Conti, S.; Saberi-Pouya, S.; Perali, A.; Virgilio, M.; Peeters, F.M.; Hamilton, A.R.; Scappucci, G.; Neilson, D.
Title Electron-hole superfluidity in strained Si/Ge type II heterojunctions Type A1 Journal article
Year 2021 Publication npj Quantum Materials Abbreviated Journal
Volume 6 Issue (down) 1 Pages 41
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Excitons are promising candidates for generating superfluidity and Bose-Einstein condensation (BEC) in solid-state devices, but an enabling material platform with in-built band structure advantages and scaling compatibility with industrial semiconductor technology is lacking. Here we predict that spatially indirect excitons in a lattice-matched strained Si/Ge bilayer embedded into a germanium-rich SiGe crystal would lead to observable mass-imbalanced electron-hole superfluidity and BEC. Holes would be confined in a compressively strained Ge quantum well and electrons in a lattice-matched tensile strained Si quantum well. We envision a device architecture that does not require an insulating barrier at the Si/Ge interface, since this interface offers a type II band alignment. Thus the electrons and holes can be kept very close but strictly separate, strengthening the electron-hole pairing attraction while preventing fast electron-hole recombination. The band alignment also allows a one-step procedure for making independent contacts to the electron and hole layers, overcoming a significant obstacle to device fabrication. We predict superfluidity at experimentally accessible temperatures of a few Kelvin and carrier densities up to similar to 6 x 10(10) cm(-2), while the large imbalance of the electron and hole effective masses can lead to exotic superfluid phases.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000642904200001 Publication Date 2021-04-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2397-4648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 9 Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:178226 Serial 6984
Permanent link to this record
 

 
Author Sun, P.Z.; Yagmurcukardes, M.; Zhang, R.; Kuang, W.J.; Lozada-Hidalgo, M.; Liu, B.L.; Cheng, H.-M.; Wang, F.C.; Peeters, F.M.; Grigorieva, I.V.; Geim, A.K.
Title Exponentially selective molecular sieving through angstrom pores Type A1 Journal article
Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun
Volume 12 Issue (down) 1 Pages 7170
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Two-dimensional crystals with angstrom-scale pores are widely considered as candidates for a next generation of molecular separation technologies aiming to provide extreme, exponentially large selectivity combined with high flow rates. No such pores have been demonstrated experimentally. Here we study gas transport through individual graphene pores created by low intensity exposure to low kV electrons. Helium and hydrogen permeate easily through these pores whereas larger species such as xenon and methane are practically blocked. Permeating gases experience activation barriers that increase quadratically with molecules' kinetic diameter, and the effective diameter of the created pores is estimated as similar to 2 angstroms, about one missing carbon ring. Our work reveals stringent conditions for achieving the long sought-after exponential selectivity using porous two-dimensional membranes and suggests limits on their possible performance. Two-dimensional membranes with angstrom-sized pores are predicted to combine high permeability with exceptional selectivity, but experimental demonstration has been challenging. Here the authors realize angstrom-sized pores in monolayer graphene and demonstrate gas transport with activation barriers increasing quadratically with the molecular kinetic diameter.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000728562700016 Publication Date 2021-12-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 28 Open Access OpenAccess
Notes Approved Most recent IF: 12.124
Call Number UA @ admin @ c:irua:184840 Serial 6989
Permanent link to this record
 

 
Author Pandey, T.; Peeters, F.M.; Milošević, M.V.
Title Pivotal role of magnetic ordering and strain in lattice thermal conductivity of chromium-trihalide monolayers Type A1 Journal article
Year 2022 Publication 2D materials Abbreviated Journal 2D Mater
Volume 9 Issue (down) 1 Pages 015034
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Understanding the coupling between spin and phonons is critical for controlling the lattice thermal conductivity (kappa ( l )) in magnetic materials, as we demonstrate here for CrX3 (X = Br and I) monolayers. We show that these compounds exhibit large spin-phonon coupling (SPC), dominated by out-of-plane vibrations of Cr atoms, resulting in significantly different phonon dispersions in ferromagnetic (FM) and paramagnetic (PM) phases. Lattice thermal conductivity calculations provide additional evidence for strong SPC, where particularly large kappa ( l ) is found for the FM phase. Most strikingly, PM and FM phases exhibit radically different behavior with tensile strain, where kappa ( l ) increases with strain for the PM phase, and strongly decreases for the FM phase-as we explain through analysis of phonon lifetimes and scattering rates. Taken all together, we uncover the high significance of SPC on the phonon transport in CrX3 monolayers, a result extendable to other 2D magnetic materials, that will be useful in further design of thermal spin devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000735170300001 Publication Date 2021-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.5 Times cited 2 Open Access Not_Open_Access
Notes Approved Most recent IF: 5.5
Call Number UA @ admin @ c:irua:184642 Serial 7010
Permanent link to this record
 

 
Author Lyu, Y.-Y.; Jiang, J.; Wang, Y.-L.; Xiao, Z.-L.; Dong, S.; Chen, Q.-H.; Milošević, M.V.; Wang, H.; Divan, R.; Pearson, J.E.; Wu, P.; Peeters, F.M.; Kwok, W.-K.
Title Superconducting diode effect via conformal-mapped nanoholes Type A1 Journal article
Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun
Volume 12 Issue (down) 1 Pages 2703
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract A superconducting diode is an electronic device that conducts supercurrent and exhibits zero resistance primarily for one direction of applied current. Such a dissipationless diode is a desirable unit for constructing electronic circuits with ultralow power consumption. However, realizing a superconducting diode is fundamentally and technologically challenging, as it usually requires a material structure without a centre of inversion, which is scarce among superconducting materials. Here, we demonstrate a superconducting diode achieved in a conventional superconducting film patterned with a conformal array of nanoscale holes, which breaks the spatial inversion symmetry. We showcase the superconducting diode effect through switchable and reversible rectification signals, which can be three orders of magnitude larger than that from a flux-quantum diode. The introduction of conformal potential landscapes for creating a superconducting diode is thereby proven as a convenient, tunable, yet vastly advantageous tool for superconducting electronics. This could be readily applicable to any superconducting materials, including cuprates and iron-based superconductors that have higher transition temperatures and are desirable in device applications. A superconducting diode is dissipationless and desirable for electronic circuits with ultralow power consumption, yet it remains challenging to realize it. Here, the authors achieve a superconducting diode in a conventional superconducting film patterned with a conformal array of nanoscale holes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000658724200018 Publication Date 2021-05-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 71 Open Access OpenAccess
Notes Approved Most recent IF: 12.124
Call Number UA @ admin @ c:irua:179611 Serial 7024
Permanent link to this record
 

 
Author Cai, J.; Griffin, E.; Guarochico-Moreira, V.H.; Barry, D.; Xin, B.; Yagmurcukardes, M.; Zhang, S.; Geim, A.K.; Peeters, F.M.; Lozada-Hidalgo, M.
Title Wien effect in interfacial water dissociation through proton-permeable graphene electrodes Type A1 Journal article
Year 2022 Publication Nature communications Abbreviated Journal Nat Commun
Volume 13 Issue (down) 1 Pages 5776-5777
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Strong electric fields can accelerate molecular dissociation reactions. The phenomenon known as the Wien effect was previously observed using high-voltage electrolysis cells that produced fields of about 10(7) V m(-1), sufficient to accelerate the dissociation of weakly bound molecules (e.g., organics and weak electrolytes). The observation of the Wien effect for the common case of water dissociation (H2O reversible arrow H+ + OH-) has remained elusive. Here we study the dissociation of interfacial water adjacent to proton-permeable graphene electrodes and observe strong acceleration of the reaction in fields reaching above 10(8) V m(-1). The use of graphene electrodes allows measuring the proton currents arising exclusively from the dissociation of interfacial water, while the electric field driving the reaction is monitored through the carrier density induced in graphene by the same field. The observed exponential increase in proton currents is in quantitative agreement with Onsager's theory. Our results also demonstrate that graphene electrodes can be valuable for the investigation of various interfacial phenomena involving proton transport.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000862552600012 Publication Date 2022-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 14 Open Access OpenAccess
Notes Approved Most recent IF: 16.6
Call Number UA @ admin @ c:irua:191575 Serial 7228
Permanent link to this record
 

 
Author Zhou, Z.; Tan, Y.; Yang, Q.; Bera, A.; Xiong, Z.; Yagmurcukardes, M.; Kim, M.; Zou, Y.; Wang, G.; Mishchenko, A.; Timokhin, I.; Wang, C.; Wang, H.; Yang, C.; Lu, Y.; Boya, R.; Liao, H.; Haigh, S.; Liu, H.; Peeters, F.M.; Li, Y.; Geim, A.K.; Hu, S.
Title Gas permeation through graphdiyne-based nanoporous membranes Type A1 Journal article
Year 2022 Publication Nature communications Abbreviated Journal Nat Commun
Volume 13 Issue (down) 1 Pages 4031-4036
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Nanoporous membranes based on two dimensional materials are predicted to provide highly selective gas transport in combination with extreme permeance. Here we investigate membranes made from multilayer graphdiyne, a graphene-like crystal with a larger unit cell. Despite being nearly a hundred of nanometers thick, the membranes allow fast, Knudsen-type permeation of light gases such as helium and hydrogen whereas heavy noble gases like xenon exhibit strongly suppressed flows. Using isotope and cryogenic temperature measurements, the seemingly conflicting characteristics are explained by a high density of straight-through holes (direct porosity of similar to 0.1%), in which heavy atoms are adsorbed on the walls, partially blocking Knudsen flows. Our work offers important insights into intricate transport mechanisms playing a role at nanoscale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000918423100001 Publication Date 2022-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 21 Open Access OpenAccess
Notes Approved Most recent IF: 16.6
Call Number UA @ admin @ c:irua:194402 Serial 7308
Permanent link to this record
 

 
Author Huang, S.; Griffin, E.; Cai, J.; Xin, B.; Tong, J.; Fu, Y.; Kravets, V.; Peeters, F.M.; Lozada-Hidalgo, M.
Title Gate-controlled suppression of light-driven proton transport through graphene electrodes Type A1 Journal article
Year 2023 Publication Nature communications Abbreviated Journal
Volume 14 Issue (down) 1 Pages 6932-6937
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Recent experiments demonstrated that proton transport through graphene electrodes can be accelerated by over an order of magnitude with low intensity illumination. Here we show that this photo-effect can be suppressed for a tuneable fraction of the infra-red spectrum by applying a voltage bias. Using photocurrent measurements and Raman spectroscopy, we show that such fraction can be selected by tuning the Fermi energy of electrons in graphene with a bias, a phenomenon controlled by Pauli blocking of photo-excited electrons. These findings demonstrate a dependence between graphene's electronic and proton transport properties and provide fundamental insights into molecularly thin electrode-electrolyte interfaces and their interaction with light. Recent experiments have shown that proton transport through graphene electrodes can be promoted by light, but the understanding of this phenomenon remains unclear. Here, the authors report the electrical tunability of this photo-effect, showing a connection between graphene electronic and proton transport properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001094448600003 Publication Date 2023-10-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record
Impact Factor 16.6 Times cited Open Access
Notes Approved Most recent IF: 16.6; 2023 IF: 12.124
Call Number UA @ admin @ c:irua:201185 Serial 9041
Permanent link to this record
 

 
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M.; Pereira, J.M.
Title Band structure, density of states, and transmission in graphene bilayer superlattices Type A1 Journal article
Year 2009 Publication AIP conference proceedings Abbreviated Journal
Volume 1199 Issue (down) Pages 547-548
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The energy spectrum and density of states of graphene bilayer superlattices (SLs) are evaluated. We take into account doping and/or gating of the layers as well as tunnel coupling between them. In addition, we evaluate the transmission through such SLs and through single or double barriers. The transmission exhibits a strong dependence on the direction of the incident wave vector.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000281590800258 Publication Date 2010-01-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:84893 Serial 217
Permanent link to this record
 

 
Author Peeters, F.M.; Partoens, B.; Schweigert, V.A.; Schweigert, I.V.
Title Classical atomic bilayers Type H1 Book chapter
Year 1998 Publication Abbreviated Journal
Volume Issue (down) Pages 523-527
Keywords H1 Book chapter; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Plenum Press Place of Publication New York Editor
Language Wos 000083193600095 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:24177 Serial 363
Permanent link to this record
 

 
Author Peeters, F.M.; Vasilopoulos, P.
Title Electrical and thermal properties of a two-dimensional electron gas in a one-dimensional periodic potential Type A1 Journal article
Year 1992 Publication Physical review: B Abbreviated Journal Phys Rev B
Volume 46 Issue (down) Pages 4667-4680
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1992JK72500032 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 148 Open Access
Notes Approved INSTRUMENTS & INSTRUMENTATION 31/56 Q3 # NUCLEAR SCIENCE & TECHNOLOGY 9/32 Q2 # PHYSICS, PARTICLES & FIELDS 24/28 Q4 # SPECTROSCOPY 28/43 Q3 #
Call Number UA @ lucian @ c:irua:2998 Serial 890
Permanent link to this record
 

 
Author Deo, P.S.; Schweigert, V.A.; Peeters, F.M.
Title Hysteresis in mesoscopic superconducting disks: the Bean-Livingston barrier Type A1 Journal article
Year 1999 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 59 Issue (down) Pages 6039-6042
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000079254300016 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 59 Open Access
Notes Approved Most recent IF: 3.836; 1999 IF: NA
Call Number UA @ lucian @ c:irua:24156 Serial 1545
Permanent link to this record
 

 
Author Devreese, J.T.; Verbist, G.; Peeters, F.M.
Title Large bipolarons and high-Tc materials Type H3 Book chapter
Year 1995 Publication Abbreviated Journal
Volume Issue (down) Pages 385-391
Keywords H3 Book chapter; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Cambridge University Press Place of Publication Cambridge Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:11700 Serial 1778
Permanent link to this record
 

 
Author Janssens, K.L.; Peeters, F.M.; Schweigert, V.A.
Title Magnetic field dependence of the properties of excitons confined in a quantum disk Type A1 Journal article
Year 2001 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 224 Issue (down) Pages 763-768
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000168432100030 Publication Date 2004-11-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972;1521-3951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 1 Open Access
Notes Approved Most recent IF: 1.674; 2001 IF: 0.873
Call Number UA @ lucian @ c:irua:37311 Serial 1872
Permanent link to this record
 

 
Author Deo, P.S.; Schweigert, V.A.; Peeters, F.M.; Geim, A.K.
Title Magnetization of mesoscopic superconducting discs Type A1 Journal article
Year 1997 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 79 Issue (down) Pages 4653-4656
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos A1997YK36500035 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 165 Open Access
Notes Approved Most recent IF: 8.462; 1997 IF: 6.140
Call Number UA @ lucian @ c:irua:19275 Serial 1896
Permanent link to this record
 

 
Author Deo, P.S.; Peeters, F.M.; Schweigert, V.A.
Title Mesoscopic superconducting disks Type A1 Journal article
Year 1999 Publication Superlattices and microstructures Abbreviated Journal Superlattice Microst
Volume 25 Issue (down) Pages 1195-1211
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000082323800050 Publication Date 2002-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0749-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.123 Times cited 22 Open Access
Notes Approved Most recent IF: 2.123; 1999 IF: 0.649
Call Number UA @ lucian @ c:irua:26991 Serial 2001
Permanent link to this record
 

 
Author Ivanov, V.A.; Betouras, J.J.; Peeters, F.M.
Title MgB2 : superconductivity and pressure effects Type P1 Proceeding
Year 2003 Publication Abbreviated Journal
Volume Issue (down) Pages 35-46
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract We present a Ginzburg-Landau theory for a two-band superconductor with emphasis on MgB2. We propose experiments which lead to identification of the possible scenarios: whether both sigma- and pi-bands superconduct or sigma-alone. According to the second scenario a microscopic theory of superconducting MgB2 is proposed based on the strongly interacting or-electrons and non-correlated pi-electrons of boron ions. The kinematic and Coulomb interactions of sigma-electrons provide the superconducting state with an anisotropic gap of s(*)-wave symmetry. The critical temperature T-c has a non-monotonic dependence on the distance r between the centers of gravity of sigma- and pi-bands. The position of MgB2 on a bell-shaped curve T-c (r) is identified in the overdoped region. The derived superconducting density of electronic states is in agreement with available experimental and theoretical data. It is argued that the effects of pressure are crucial to identify the microscopic origin of superconductivity in MgB2. Possibilities for increase of T, are discussed.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Dordrecht Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume 106 Series Issue Edition
ISSN 1-4020-1372-8 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:94869 Serial 2020
Permanent link to this record
 

 
Author Geim, A.K.; Grigorieva, I.V.; Dubonos, S.V.; Lok, J.G.S.; Maan, J.C.; Filippov, A.E.; Peeters, F.M.
Title Phase transitions in individual sub-micrometre superconductors Type A1 Journal article
Year 1997 Publication Nature Abbreviated Journal Nature
Volume 390 Issue (down) Pages 259-262
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1997YG66700054 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 40.137 Times cited 370 Open Access
Notes Approved Most recent IF: 40.137; 1997 IF: 27.368
Call Number UA @ lucian @ c:irua:19265 Serial 2595
Permanent link to this record
 

 
Author Peeters, F.M.
Title Semiconductor Type H3 Book chapter
Year 1997 Publication Abbreviated Journal
Volume Issue (down) Pages 350-352
Keywords H3 Book chapter; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher McGraw-Hill Place of Publication New York Editor
Language Wos 000077204000044 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:19308 Serial 2982
Permanent link to this record
 

 
Author Wen, X.; Peeters, F.M.; Devreese, J.T.
Title Streaming-to-accumulation transition in a two-dimensional electron system in a polar semiconductor Type A1 Journal article
Year 1992 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 46 Issue (down) Pages 7571-7580
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1992JQ37800028 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 13 Open Access
Notes Approved PHYSICS, APPLIED 28/145 Q1 #
Call Number UA @ lucian @ c:irua:2913 Serial 3175
Permanent link to this record
 

 
Author Verbist, G.; Smondyrev, M.A.; Peeters, F.M.; Devreese, J.T.
Title Strong-coupling analysis of large bipolarons in two and three dimensions Type A1 Journal article
Year 1992 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 45 Issue (down) Pages 5262-5269
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1992HJ68900016 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 68 Open Access
Notes Approved PHYSICS, APPLIED 28/145 Q1 #
Call Number UA @ lucian @ c:irua:2891 Serial 3179
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.
Title Superconducting nanowires: quantum-confinement effect on the critical magnetic field and supercurrent Type P1 Proceeding
Year 2010 Publication Abbreviated Journal
Volume Issue (down) Pages 327-338
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract We study the effect, of electron confinement on the superconducting-to-normal phase transition driven by a magnetic field and/or on the current-carrying state of the superconducting condensate in nanowires. Our investigation is based on a self-consistent. numerical solution of the Bogoliubov-de Gennes equations. We show that, in a parallel magnetic field and/or in the presence of supercurrent the transition from superconducting to normal phase occurs as a cascade of discontinuous jumps in the superconducting order parameter for diameters D < 10 divided by 15 nm at T = 0. The critical magnetic held exhibits quantum-size oscillations with pronounced resonant enhancements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000278418300025 Publication Date 2010-04-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), Interuni-versity Attraction Poles Programme -Belgian State -Belgian Science Policy (IAP) and the ESF-AQDJJ network. ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:83294 Serial 3361
Permanent link to this record
 

 
Author Dong, H.M.; Qin, H.; Zhang, J.; Peeters, F.M.; Xu, W.
Title Terahertz absorption window in bilayer graphene Type H1 Book chapter
Year 2009 Publication Abbreviated Journal
Volume Issue (down) Pages 247-248
Keywords H1 Book chapter; Condensed Matter Theory (CMT)
Abstract We present a detailed theoretical study of terahertz (THz) optical absorption in bilayer graphene. Considering an air/graphene/dielectric-wafer system, we find that there is an absorption window in the range 3 similar to 30 THz. Such an absorption window is induced by different transition energies required for inter- and intra-band optical absorption in the presence of the Pauli blockade effect. As a result, the position and width of this THz absorption window depend sensitively on temperature and carrier density of the system. These results are pertinent to the applications of recently developed graphene systems as novel optoelectronic devices such as THz photo-detectors.
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New York, N.Y. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-4244-5416-7 Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:99225 Serial 3506
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.
Title Tuning the superconducting properties of nanomaterials Type H1 Book chapter
Year 2009 Publication Abbreviated Journal
Volume Issue (down) Pages 1-14
Keywords H1 Book chapter; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract Electron continement and its effect on the superconducting-to-normal phase transition driven by a magentic field and/or a current is studied in nanowires. Our investigation is based on a self-consistent numerical solution of the Bogoliubov-de Gennes equations. We find that in a parallel magneitc field and/or in the presence of a supercurrent the transition from the superconducting to the normal phase occurs as a cascade of discontinuous jumps in the superconducting order parameter for diameters D < 10 divided by 15 nm at T = 0. The critical magentic field exhibits quantum-size oscillations with pronounced resonant enhancements as a function of the wire radius.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Dordrecht Editor
Language Wos 000274282900001 Publication Date 2009-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1874-6500; ISBN 978-90-481-3118-1 Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:99226 Serial 3761
Permanent link to this record
 

 
Author Deo, P.S.; Schweigert, V.A.; Peeters, F.M.; Geim, A.K.
Title Type of phase transitions in a mesoscopic superconducting disc Type A1 Journal article
Year 1997 Publication Physica: E Abbreviated Journal Physica E
Volume 1 Issue (down) Pages 297-300
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000074364500064 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record;
Impact Factor 2.221 Times cited Open Access
Notes Approved Most recent IF: 2.221; 1997 IF: NA
Call Number UA @ lucian @ c:irua:19299 Serial 3791
Permanent link to this record