|   | 
Details
   web
Records
Author Esfahani; Leenaerts, O.; Sahin, H.; Partoens, B.; Peeters, F.M.
Title Structural transitions in monolayer MOS2 by lithium adsorption Type A1 Journal article
Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 119 Issue (up) 119 Pages 10602-10609
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Based on first-principles calculations, we study the structural stability of the H and T phases of monolayer MoS2 upon Li doping. Our calculations demonstrate that it is possible to stabilize a distorted T phase of MoS2 over the H phase through adsorption of Li atoms on the MoS2 surface. Through molecular dynamics and phonon calculations, we show that the T phase of MoS2 is dynamically unstable and undergoes considerable distortions. The type of distortion depends on the concentration of adsorbed Li atoms and changes from zigzag-like to diamond-like when increasing the Li doping. There exists a substantial energy barrier to transform the stable H phase to the distorted T phases, which is considerably reduced by increasing the concentration of Li atoms. We show that it is necessary that the Li atoms adsorb on both sides of the MoS2 monolayer to reduce the barrier sufficiently. Two processes are examined that allow for such two-sided adsorption, namely, penetration through the MoS2 layer and diffusion over the MoS2 surface. We show that while there is only a small barrier of 0.24 eV for surface diffusion, the amount of energy needed to pass through a pure MoS2 layer is of the order of similar or equal to 2 eV. However, when the MoS2 layer is covered with Li atoms the amount of energy that Li atoms should gain to penetrate the layer is drastically reduced and penetration becomes feasible.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000354912200051 Publication Date 2015-04-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 96 Open Access
Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl) and the Methusalem program of the Flemish government. H. S is supported by an FWO Pegasus-Long Marie Curie fellowship. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government department EWI. ; Approved Most recent IF: 4.536; 2015 IF: 4.772
Call Number c:irua:126409 Serial 3270
Permanent link to this record
 

 
Author Kang, J.; Sahin, H.; Peeters, F.M.
Title Tuning carrier confinement in the MoS2/WS2 lateral heterostructure Type A1 Journal article
Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 119 Issue (up) 119 Pages 9580-9586
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract To determine and control the spatial confinement of charge carriers is of importance for nanoscale optoelectronic device applications. Using first-principles calculations, we investigate the tunability of band alignment and Charge localization in lateral and combined lateral vertical heterostructures of MoS2 and WS2. First, we Show that a type-II to type-I band alignment transition takes place when tensile strain is applied on the WS2 region. This band alignment transition is a result of the different response of the band edge states with strain and is caused by their different wave function characters. Then we show that the presence of the grain boundary introduces localized in-gap states. The boundary at the armchair interface significantly modifies the charge distribution of the valence band maximum (VBM) state, whereas in a heterostructure with tilt grain domains both conducation band maximum (CBM) and VBM are found to be localized around the grain boundary. We also found that the thickness of the constituents in a lateral heterostructure also determines how the electrons and holes are confined. Creating combined lateral vertical heterostructures of MOS2/WS2 provides another way cif tuning the charge confinement. These results provide possible ways to tune the carrier confinement in MoS2/WS2 heterostructures, which are interesting for its practical: applications in the future.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000353930700066 Publication Date 2015-04-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 73 Open Access
Notes ; This work was supported by the Methusalem program of the Flemish government. H.S. is supported by a FWO Pegasus Marie Curie-long Fellowship and J.K. by a FWO Pegasus Marie Curie-short Fellowship. ; Approved Most recent IF: 4.536; 2015 IF: 4.772
Call Number c:irua:126381 Serial 3747
Permanent link to this record
 

 
Author Iyikanat, F.; Sahin, H.; Senger, R.T.; Peeters, F.M.
Title Vacancy formation and oxidation characteristics of single layer TiS3 Type A1 Journal article
Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 119 Issue (up) 119 Pages 10709-10715
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The structural, electronic, and magnetic properties of pristine, defective, and oxidized monolayer TiS3 are investigated using first-principles calculations in the framework of density functional theory. We found that a single layer of TiS3 is a direct band gap semiconductor, and the bonding nature of the crystal is fundamentally different from other transition metal chalcogenides. The negatively charged surfaces of single layer TiS3 makes this crystal a promising material for lubrication applications. The formation energies of possible vacancies, i.e. S, Ti, TiS, and double S, are investigated via total energy optimization calculations. We found that the formation of a single S vacancy was the most likely one among the considered vacancy types. While a single S vacancy results in a nonmagnetic, semiconducting character with an enhanced band gap, other vacancy types induce metallic behavior with spin polarization of 0.3-0.8 mu(B). The reactivity of pristine and defective TiS3 crystals against oxidation was investigated using conjugate gradient calculations where we considered the interaction with atomic O, O-2, and O-3. While O-2 has the lowest binding energy with 0.05-0.07 eV, O-3 forms strong bonds stable even at moderate temperatures. The strong interaction (3.9-4.0 eV) between atomic O and TiS3 results in dissociative adsorption of some O-containing molecules. In addition, the presence of S-vacancies enhances the reactivity of the surface with atomic O, whereas it had a negative effect on the reactivity with O-2 and O-3 molecules.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000354912200063 Publication Date 2015-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 51 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. RI., H.S., and R.T.S. acknowledge the support from TUBITAK through project 114F397. ; Approved Most recent IF: 4.536; 2015 IF: 4.772
Call Number c:irua:126410 Serial 3829
Permanent link to this record
 

 
Author Alyörük, M.M.; Aierken, Y.; Çakır, D.; Peeters, F.M.; Sevik, C.
Title Promising Piezoelectric Performance of Single Layer Transition-Metal Dichalcogenides and Dioxides Type A1 Journal article
Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 119 Issue (up) 119 Pages 23231-23237
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Piezoelectricity is a unique material property that allows one to convert mechanical energy into electrical one or vice versa. Transition metal dichalcogenides (TMDC) and transition metal dioxides (TMDO) are expected to have great potential for piezoelectric device applications due to their noncentrosymmetric and two-dimensional crystal structure. A detailed theoretical investigation of the piezoelectric stress (e 11 ) and piezoelectric strain (d 11 ) coefficients of single layer TMDCs and TMDOs with chemical formula MX 2 (where M= Cr, Mo, W, Ti, Zr, Hf, Sn and X = O, S, Se, Te) is presented by using first-principles calculations based on density func- tional theory. We predict that not only the Mo- and W-based members of this family but also the other materials with M= Cr, Ti, Zr and Sn exhibit highly promising piezoelectric properties. CrTe 2 has the largest e 11 and d 11 coefficients among the group VI elements (i.e., Cr, Mo, and W). In addition, the relaxed-ion e 11 and d 11 coefficients of SnS 2 are almost the same as those of CrTe 2 . Furthermore, TiO 2 and ZrO 2 pose comparable or even larger e 11 coefficients as compared to Mo- and W-based TMDCs and TMDOs. Our calculations reveal that TMDC and TMDO structures are strong candidates for future atomically thin piezoelectric applications such as transducers, sensors, and energy harvesting devices due to their piezoelectric coefficients that are comparable (even larger) to currently used bulk piezoelectric materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000362702100054 Publication Date 2015-09-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 134 Open Access
Notes M.M.A and C.S. acknowledges the support from Scientific and Technological Research Council of Turkey (TUBITAK- 113F333). C.S. acknowledges support from Anadolu University (BAP-1407F335, -1505F200), and Turkish Academy of Sciences (TUBA-GEBIP). Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. Approved Most recent IF: 4.536; 2015 IF: 4.772
Call Number c:irua:129418 Serial 4035
Permanent link to this record
 

 
Author Matulis, A.; Peeters, F.M.
Title Appearance of enhanced Weiss oscillations in graphene: theory Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 75 Issue (up) 12 Pages 125429,1-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000245330200106 Publication Date 2007-03-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 65 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:64294 Serial 138
Permanent link to this record
 

 
Author Degani, M.H.; Farias, G.A.; Peeters, F.M.
Title Bound states and lifetime of an electron on a bulk helium surface Type A1 Journal article
Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 72 Issue (up) 12 Pages 125408-125408,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We propose an effective potential for an excess electron near the helium liquid-vapor interface that takes into account the diffuseness of the liquid-vapor interface and the classical image potential. The splitting of the first two excited states of the excess electron bound to the helium liquid-vapor interface as a function of an external constant electric field applied perpendicular to the interface is in excellent agreement with recent experiments. The effect of a parallel magnetic field on the energy levels are calculated. Single-electron tunneling of the electron out of its surface state is studied as a function of the electric field applied to the system. We found that the tunneling time has a linear dependence on the electric field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000232229400125 Publication Date 2005-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 11 Open Access
Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
Call Number UA @ lucian @ c:irua:94719 Serial 251
Permanent link to this record
 

 
Author Zarenia, M.; Pereira, J.M.; Farias, G.A.; Peeters, F.M.
Title Chiral states in bilayer graphene : magnetic field dependence and gap opening Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue (up) 12 Pages 125451-125451,13
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract At the interface of electrostatic potential kink profiles, one-dimensional chiral states are found in bilayer graphene (BLG). Such structures can be created by applying an asymmetric potential to the upper and the lower layers of BLG. We found the following: (i) due to the strong confinement by the single kink profile, the unidirectional states are only weakly affected by a magnetic field; (ii) increasing the smoothness of the kink potential results in additional bound states, which are topologically different from those chiral states; and (iii) in the presence of a kink-antikink potential, the overlap between the oppositely moving chiral states results in the appearance of crossing and anticrossing points in the energy spectrum. This leads to the opening of tunable minigaps in the spectrum of the unidirectional topological states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000295484300016 Publication Date 2011-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 50 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the Belgian Science Policy (IAP), the European Science Foundation (ESF) under the EUROCORES program EuroGRAPHENE (project CONGRAN), the Brazilian agency CNPq (Pronex), and the bilateral projects between Flanders and Brazil and the collaboration project FWO-CNPq. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:92915 Serial 358
Permanent link to this record
 

 
Author Wendelen, W.; Dzhurakhalov, A.A.; Peeters, F.M.; Bogaerts, A.
Title Combined molecular dynamics: continuum study of phase transitions in bulk metals under ultrashort pulsed laser irradiation Type A1 Journal article
Year 2010 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 114 Issue (up) 12 Pages 5652-5660
Keywords A1 Journal article; Integrated Molecular Plant Physiology Research (IMPRES); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The phase transition processes induced by ultrashort, 100 fs pulsed laser irradiation of Au, Cu, and Ni are studied by means of a combined atomistic-continuum approach. A moderately low absorbed laser fluence range, from 200 to 600 J/m2 is considered to study phase transitions by means of a local and a nonlocal order parameter. At low laser fluences, the occurrence of layer-by-layer evaporation has been observed, which suggests a direct solid to vapor transition. The calculated amount of molten material remains very limited under the conditions studied, especially for Ni. Therefore, our results show that a kinetic equation that describes a direct solid to vapor transition might be the best approach to model laser-induced phase transitions by continuum models. Furthermore, the results provide more insight into the applicability of analytical superheating theories that were implemented in continuum models and help the understanding of nonequilibrium phase transitions.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000275855600044 Publication Date 2010-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 2 Open Access
Notes ; A.D. gratefully acknowledges Professor M. Hot (ULB, Brussels) for the basic MD-code that was modified further for the laser-induced melting processes. W.W, and A.D. are thankful to Professor L.V. Zhigilei for useful discussions and advices. The calculations were performed on the CALCUA computing facility of the University of Antwerp. This work was supported by the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.536; 2010 IF: 4.524
Call Number UA @ lucian @ c:irua:81391 Serial 402
Permanent link to this record
 

 
Author Zarenia, M.; Pereira, J.M.; Peeters, F.M.; Farias, G.A.
Title Electrostatically confined quantum rings in bilayer graphene Type A1 Journal article
Year 2009 Publication Nano letters Abbreviated Journal Nano Lett
Volume 9 Issue (up) 12 Pages 4088-4092
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We propose a new system where electron and hole states are electrostatically confined into a quantum ring in bilayer graphene. These structures can be created by tuning the gap of the graphene bilayer using nanostructured gates or by position-dependent doping. The energy levels have a magnetic field (B0) dependence that is strikingly distinct from that of usual semiconductor quantum rings. In particular, the eigenvalues are not invariant under a B0 ¨ −B0 transformation and, for a fixed total angular momentum index m, their field dependence is not parabolic, but displays two minima separated by a saddle point. The spectra also display several anticrossings, which arise due to the overlap of gate-confined and magnetically confined states.
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000272395400023 Publication Date 2009-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 42 Open Access
Notes Approved Most recent IF: 12.712; 2009 IF: 9.991
Call Number UA @ lucian @ c:irua:80318 Serial 1024
Permanent link to this record
 

 
Author Badalyan, S.M.; Peeters, F.M.
Title Enhancement of Coulomb drag in double-layer graphene structures by plasmons and dielectric background inhomogeneity Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue (up) 12 Pages 121405
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The drag of massless fermions in graphene double-layer structures is investigated over a wide range of temperatures and interlayer separations. We show that the inhomogeneity of the dielectric background in such graphene structures, for experimentally relevant parameters, results in a significant enhancement of the drag resistivity. At intermediate temperatures the dynamical screening via plasmon-mediated drag enhances the drag resistivity and results in an upturn in its behavior at large interlayer separations. In a range of interlayer separations, corresponding to the crossover from strong to weak coupling of graphene layers, we find that the decrease of the drag resistivity with interlayer spacing is approximately quadratic. This dependence weakens below this range of interlayer spacing while for larger separations we find a cubic (quartic) dependence at intermediate (low) temperatures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000309178100003 Publication Date 2012-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 21 Open Access
Notes ; We acknowledge support from the Flemisch Science Foundation (FWO-Vl) and the Belgian Science Policy (BELSPO). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:101834 Serial 1060
Permanent link to this record
 

 
Author Tadić, M.; Čukarić, N.; Arsoski, V.; Peeters, F.M.
Title Excitonic Aharonov-Bohm effect : unstrained versus strained type-I semiconductor nanorings Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue (up) 12 Pages 125307-125307,13
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study how mechanical strain affects the magnetic field dependence of the exciton states in type-I semiconductor nanorings. Strain spatially separates the electron and hole in (In,Ga)As/GaAs nanorings which is beneficial for the occurrence of the excitonic Aharonov-Bohm (AB) effect. In narrow strained (In,Ga)As/GaAs nanorings the AB oscillations in the exciton ground-state energy are due to anticrossings with the first excited state. No such AB oscillations are found in unstrained GaAs/(Al,Ga)As nanorings irrespective of the ring width. Our results are obtained within an exact numerical diagonalization scheme and are shown to be accurately described by a two-level model with off-diagonal coupling t. The later transfer integral expresses the Coulomb coupling between states of electron-hole pairs. We also found that the oscillator strength for exciton recombination in (In,Ga)As/GaAs nanorings exhibits AB oscillations, which are superimposed on a linear increase with magnetic field. Our results agree qualitatively with recent experiments on the excitonic Aharonov-Bohm effect in type-I (In,Ga)As/GaAs nanorings.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000294777400013 Publication Date 2011-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes ; This work was supported by the Ministry of Education and Science of Serbia, the Flemish Science Foundation (FWO-Vl), the EU NoE: SANDiE, and the Belgian Science Policy (IAP). The calculations were performed on the CalcUA and Seastar computer clusters of the University of Antwerp. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:92326 Serial 1122
Permanent link to this record
 

 
Author Sidor, Y.; Partoens, B.; Peeters, F.M.; Ben, T.; Ponce, A.; Sales, D.L.; Molina, S.I.; Fuster, D.; González, L.; González, Y.
Title Excitons in coupled InAs/InP self-assembled quantum wires Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 75 Issue (up) 12 Pages 125120,1-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000245330200036 Publication Date 2007-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 24 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:64293 Serial 1128
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M.
Title Formation and segregation energies of B and P doped and BP codoped silicon nanowires Type A1 Journal article
Year 2006 Publication Nano letters Abbreviated Journal Nano Lett
Volume 6 Issue (up) 12 Pages 2781-2784
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000242786500026 Publication Date 2006-11-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 94 Open Access
Notes Approved Most recent IF: 12.712; 2006 IF: 9.960
Call Number UA @ lucian @ c:irua:62381 Serial 1248
Permanent link to this record
 

 
Author Tavernier, M.B.; Anisimovas, E.; Peeters, F.M.
Title Ground state and vortex structure of the N=5 and N=6 electron quantum dot Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 74 Issue (up) 12 Pages 125305,1-9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000240872500054 Publication Date 2006-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 23 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:61000 Serial 1383
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Savel'ev, S.E.; Kusmartsev, F.V.; Peeters, F.M.
Title In-phase motion of Josephson vortices in stacked SNS Josephson junctions : effect of ordered pinning Type A1 Journal article
Year 2013 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 26 Issue (up) 12 Pages 125010-125016
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting Josephson junctions is investigated using the anisotropic time-dependent Ginzburg-Landau theory in the presence of a square/rectangular array of pinning centers (holes). For small values of the applied drive, fluxons in different junctions move out of phase, forming a periodic triangular lattice. A rectangular lattice of moving fluxons is observed at larger currents, which is in agreement with previous theoretical predictions (Koshelev and Aranson 2000 Phys. Rev. Lett. 85 3938). This 'superradiant' flux-flow state is found to be stable in a wide region of applied current. The stability range of this ordered state is considerably larger than the one obtained for the pinning-free sample. Clear commensurability features are observed in the current-voltage characteristics of the system with pronounced peaks in the critical current at (fractional) matching fields. The effect of density and strength of the pinning centers on the stability of the rectangular fluxon lattice is discussed. Predicted synchronized motion of fluxons in the presence of ordered pinning can be detected experimentally using the rf response of the system, where enhancement of the Shapiro-like steps is expected due to the synchronization.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000327447200013 Publication Date 2013-10-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 5 Open Access
Notes ; This work was supported by EU Marie Curie (Project No: 253057) and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 2.878; 2013 IF: 2.796
Call Number UA @ lucian @ c:irua:112834 Serial 1573
Permanent link to this record
 

 
Author Milovanović, S.P.; Masir, M.R.; Peeters, F.M.
Title Interplay between snake and quantum edge states in a graphene Hall bar with a pn-junction Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 105 Issue (up) 12 Pages 123507
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The magneto- and Hall resistance of a locally gated cross shaped graphene Hall bar is calculated. The edge of the top gate is placed diagonally across the center of the Hall cross. Four-probe resistance is calculated using the Landauer-Büttiker formalism, while the transmission coefficients are obtained using the non-equilibrium Green's function approach. The interplay between transport due to edge channels and snake states is investigated. When two edge channels are occupied, we predict oscillations in the Hall and the bend resistance as function of the magnetic field, which are a consequence of quantum interference between the occupied snake states.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000343004400090 Publication Date 2014-09-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 18 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:121119 Serial 1704
Permanent link to this record
 

 
Author Milton Pereira, J.; Peeters, F.M.; Vasilopoulos, P.
Title Magnetic interface states in graphene-based quantum wires Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 75 Issue (up) 12 Pages 125433,1-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000245330200110 Publication Date 2007-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 35 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:64295 Serial 1882
Permanent link to this record
 

 
Author Kálmán, O.; Földi, P.; Benedict, M.G.; Peeters, F.M.
Title Magnetoconductance of rectangular arrays of quantum rings Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 78 Issue (up) 12 Pages 125306-125306,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Electron transport through multiterminal rectangular arrays of quantum rings is studied in the presence of Rashba-type spin-orbit interaction (SOI) and of a perpendicular magnetic field. Using the analytic expressions for the transmission and reflection coefficients for single rings we obtain the conductance through such arrays as a function of the SOI strength, of the magnetic flux, and of the wave vector k of the incident electron. Due to destructive or constructive spin interferences caused by the SOI, the array can be totally opaque for certain ranges of k, while there are parameter values where it is completely transparent. Spin resolved transmission probabilities show nontrivial spin transformations at the outputs of the arrays. When pointlike random scattering centers are placed between the rings, the Aharonov-Bohm peaks split, and an oscillatory behavior of the conductance emerges as a function of the SOI strength.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000259691500047 Publication Date 2008-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 31 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:94598 Serial 1913
Permanent link to this record
 

 
Author Hao, Y.L.; Peeters, F.M.
Title Micro-Hall bar as a sensor to detect the interaction of nanoscale ferromagnetic disks and columns Type A1 Journal article
Year 2007 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 101 Issue (up) 12 Pages 123718,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000247625700078 Publication Date 2007-07-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record
Impact Factor 2.068 Times cited Open Access
Notes Approved Most recent IF: 2.068; 2007 IF: 2.171
Call Number UA @ lucian @ c:irua:69646 Serial 2022
Permanent link to this record
 

 
Author Xu, W.; Dong, H.M.; Li, L.L.; Yao, J.Q.; Vasilopoulos, P.; Peeters, F.M.
Title Optoelectronic properties of graphene in the presence of optical phonon scattering Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue (up) 12 Pages 125304-125304,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study in detail the optoelectronic properties of graphene. Considering the electron interactions with photons and phonons, we employ the mass- and energy-balance equations to self-consistently evaluate the photoinduced carrier densities, the optical conductance, and the transmission coefficient in the presence of a linearly polarized radiation field. We demonstrate that the photoinduced carrier densities increase around the electron-photon-phonon resonant transition. They depend strongly on the radiation intensity and frequency, temperature, and dark carrier density. For short-wavelength radiation (L<3 μm), we obtain the universal optical conductance σ0=e2/(4ℏ). Importantly, there exists an optical-absorption window in the radiation wavelength range 4100 μm, which is induced by different transition energies required for interband and intraband optical absorption. The position and width of this window depend sensitively on the temperature and the carrier density of the system. These theoretical results are in line with recent experimental findings and indicate that graphene exhibits important features not only in the visible regime but also in the midinfrared bandwidth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000281516500009 Publication Date 2010-09-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 28 Open Access
Notes ; This work was supported by the Chinese Academy of Sciences, National Natural Science Foundation of China, and Department of Science and Technology of Yunnan Province. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:84260 Serial 2496
Permanent link to this record
 

 
Author Axt, V.M.; Kuhn, T.; Vagov, A.; Peeters, F.M.
Title Phonon-induced pure dephasing in exciton-biexciton quantum dot systems driven by ultrafast laser pulse sequences Type A1 Journal article
Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 72 Issue (up) 12 Pages 125309-125315
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A semiconductor quantum dot model accounting for single exciton as well as biexciton states coupled to phonons and laser light is investigated in the limit of strong electronic confinement. For an arbitrary sequence of excitations with ultrafast pulses analytical solutions are obtained for all density-matrix elements. The results are nonperturbative with respect to both the carrier-phonon and the carrier-light coupling. Numerical results for a single pulse excitation are presented illustrating spectral features of our solution as well as pulse area and temperature dependences.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000232229400075 Publication Date 2005-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 48 Open Access
Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
Call Number UA @ lucian @ c:irua:103139 Serial 2604
Permanent link to this record
 

 
Author Horzum, S.; Sahin, H.; Cahangirov, S.; Cudazzo, P.; Rubio, A.; Serin, T.; Peeters, F.M.
Title Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2 Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue (up) 12 Pages 125415-5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Motivated by recent experimental observations of Tongay et al. [Nano Lett. 12, 5576 (2012)] we show how the electronic properties and Raman characteristics of single layer MoSe2 are affected by elastic biaxial strain. We found that with increasing strain: (1) the E' and E '' Raman peaks (E-2g and E-1g in bulk) exhibit significant redshifts (up to similar to 30 cm(-1)), (2) the position of the A'(1) peak remains at similar to 180 cm(-1) (A(1g) in bulk) and does not change considerably with further strain, (3) the dispersion of low energy flexural phonons crosses over from quadratic to linear, and (4) the electronic band structure undergoes a direct to indirect band gap crossover under similar to 3% biaxial tensile strain. Thus the application of strain appears to be a promising approach for a rapid and reversible tuning of the electronic, vibrational, and optical properties of single layer MoSe2 and similar MX2 dichalcogenides. DOI:10.1103/PhysRevB.87.125415
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000316383700006 Publication Date 2013-03-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 171 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Marie Curie Long Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:108277 Serial 2605
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M.
Title Phonons in Ge nanowires Type A1 Journal article
Year 2009 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 95 Issue (up) 12 Pages 122110,1-122110,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The phonon spectra of thin freestanding, hydrogen passivated, Ge nanowires are calculated by ab initio techniques. The effect of confinement on the phonon modes as caused by the small diameters of the wires is investigated. Confinement causes a hardening of the optical modes and a softening of the longitudinal acoustic modes. The stability of the nanowires, undoped or doped with B or P atoms, is investigated using the obtained phonon spectra. All considered wires were stable, except for highly doped, very thin nanowires.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000270243800035 Publication Date 2009-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 12 Open Access
Notes Approved Most recent IF: 3.411; 2009 IF: 3.554
Call Number UA @ lucian @ c:irua:79307 Serial 2606
Permanent link to this record
 

 
Author Nowak, M.P.; Szafran, B.; Peeters, F.M.
Title Resonant harmonic generation and collective spin rotations in electrically driven quantum dots Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue (up) 12 Pages 125428
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Spin rotations induced by an ac electric field in a two-electron double quantum dot are studied by an exact numerical solution of the time-dependent Schrodinger equation in the context of recent electric-dipole spin resonance experiments on gated nanowires. We demonstrate that the splitting of the main resonance line by the spin exchange coupling is accompanied by the appearance of fractional resonances and that both these effects are triggered by interdot tunnel coupling. We find that the ac-driven system generates residual but distinct harmonics of the driving frequency, which are amplified when tuned to the main transition frequency. The mechanism is universal for electron systems in electrically driven potentials and works also in the absence of electron-electron interaction or spin-orbit coupling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000308867300005 Publication Date 2012-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 29 Open Access
Notes ; This work was supported by funds of the Ministry of Science and Higher Education (MNiSW) for 2012-2013 under Project No. IP2011038671, and by PL-Grid Infrastructure. M.P.N. gratefully acknowledges support from the Foundation for Polish Science (FNP) under START and MPD program cofinanced by the EU European Regional Development Fund. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:101839 Serial 2885
Permanent link to this record
 

 
Author Shakouri, K.; Vasilopoulos, P.; Vargiamidis, V.; Peeters, F.M.
Title Spin- and valley-dependent magnetotransport in periodically modulated silicene Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue (up) 12 Pages 125444
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The low-energy physics of silicene is described by Dirac fermions with a strong spin-orbit interaction and its band structure can be controlled by an external perpendicular electric field E-z. We investigate the commensurability oscillations in silicene modulated by a weak periodic potential V = V-0 cos(2 pi y/a(0)) with a(0) as its period, in the presence of a perpendicular magnetic field B and of a weak sinusoidal electric field E-z = E-0 cos(2 pi y/b(0)), where b(0) is its period. We show that the spin and valley degeneracy of the Landau levels is lifted, due to the modulation, and that the interplay between the strong spin-orbit interaction and the potential and electric field modulations can result in spin- and valley-resolved magnetotransport. At very weak magnetic fields the commensurability oscillations induced by a weak potential modulation can exhibit a beating pattern depending on the strength of the homogenous electric field Ez but this is not the case when only Ez is modulated. The Hall conductivity plateaus acquire a step structure, due to spin and valley intra-Landau-level transitions, that is absent in unmodulated silicene. The results are critically contrasted with those for graphene and the two-dimensional electron gas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000342497700008 Publication Date 2014-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 31 Open Access
Notes ; Our work was supported by the Flemish Science Foundation (FWO-VI), the Methusalem Foundation of the Flemish Government, and by the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119946 Serial 3079
Permanent link to this record
 

 
Author Krstajic, P.; Peeters, F.M.
Title Spin-dependent tunneling in diluted magnetic semiconductor trilayer structures Type A1 Journal article
Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 72 Issue (up) 12 Pages 125350-125356
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Tunneling of holes through a trilayer structure made of two diluted magnetic semiconductors, (Ga,Mn)As, separated by a thin layer of nonmagnetic AlAs is investigated. The problem is treated within the 6x6 Luttinger-Kohn model for valence bands with the split-off band included. The influence of the spin-orbit coupling is pronounced as the spin-splitting Delta(ex) is comparable with the split-off Delta(SO) splitting. It is assumed that direct tunneling is the dominant mechanism due to the high quality of the tunnel junctions. Our theoretical results predict the correct order of magnitude for the tunneling magnetoresistance ratio, but various other effects, such as scattering on impurities and defects, should be included in order to realize a quantitative agreement with experiment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000232229400116 Publication Date 2005-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
Call Number UA @ lucian @ c:irua:104068 Serial 3086
Permanent link to this record
 

 
Author Földi, P.; Kálmán, O.; Peeters, F.M.
Title Stability of spintronic devices based on quantum ring networks Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue (up) 12 Pages 125324,1-125324,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Transport properties in mesoscopic networks are investigated, where the strength of the (Rashba-type) spin-orbit coupling is tuned with external gate voltages. We analyze in detail to what extent the ideal behavior and functionality of some promising network-based devices are modified by random (spin-dependent) scattering events and by thermal fluctuations. It is found that although the functionality of these devices is obviously based on the quantum coherence of the transmitted electrons, there is a certain stability: moderate level of errors can be tolerated. For mesoscopic networks made of typical semiconductor materials, we found that when the energy distribution of the input carriers is narrow enough, the devices can operate close to their ideal limits even at relatively high temperature. As an example, we present results for two different networks: one that realizes a Stern-Gerlach device and another that simulates a spin quantum walker. Finally we propose a simple network that can act as a narrow band energy filter even in the presence of random scatterers.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000270383300091 Publication Date 2009-09-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 41 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:79230 Serial 3131
Permanent link to this record
 

 
Author Verberck, B.; Partoens, B.; Peeters, F.M.; Trauzettel, B.
Title Strain-induced band gaps in bilayer graphene Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue (up) 12 Pages 125403-125403,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a tight-binding investigation of strained bilayer graphene within linear elasticity theory, focusing on the different environments experienced by the A and B carbon atoms of the different sublattices. We find that the inequivalence of the A and B atoms is enhanced by the application of perpendicular strain epsilon(zz), which provides a physical mechanism for opening a band gap, most effectively obtained when pulling the two graphene layers apart. In addition, perpendicular strain introduces electron-hole asymmetry and can result in linear electronic dispersion near the K point. Our findings suggest experimental means for strain-engineered band gaps in bilayer graphene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000301113200005 Publication Date 2012-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 53 Open Access
Notes ; The authors would like to acknowledge O. Leenaerts, E. Mariani, K. H. Michel, and J. Schelter for useful discussions. B. V. was financially supported by the Flemish Science Foundation (FWO-Vl). This work was financially supported by the ESF program EuroGraphene under projects CONGRAN and ENTS as well as by the DFG. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:97181 Serial 3168
Permanent link to this record
 

 
Author Xu, W.; Peeters, F.M.; Devreese, J.T.
Title Streaming-to-accumulation transition in a 2-dimensional electron-system in a polar semiconductor Type A1 Journal article
Year 1992 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 46 Issue (up) 12 Pages 7571-7580
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract Hot-electron transport is studied for a two-dimensional electron gas coupled to longitudinal-optical phonons in crossed electric and magnetic fields. At low electric and high magnetic fields the electrons are accumulated, while at high electric fields they are in a streaming state. We develop a streaming-to-accumulation transition model and compare the results with that from a Monte Carlo simulation.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1992JQ37800028 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 13 Open Access
Notes Approved PHYSICS, APPLIED 28/145 Q1 #
Call Number UA @ lucian @ c:irua:103023 Serial 3174
Permanent link to this record
 

 
Author Ferreira, W.P.; Farias, G.A.; Carmona, H.A.; Peeters, F.M.
Title Structural transitions in a classical two-dimensional molecule system Type A1 Journal article
Year 2002 Publication Solid state communications Abbreviated Journal Solid State Commun
Volume 122 Issue (up) 12 Pages 665-669
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The ground state of a classical two-dimensional (2D) system with a finite number of charge particles, trapped by two positive impurity charges localized at a distance (z(0)) from the. 2D plane and separated from each other by a distance chi(p) are obtained. The impurities are allowed to carry more than one positive charge. This classical system can form a 2D-like classical molecule that exhibits structural transitions and spontaneous symmetry breaking as function of the separation between the positive charges before it transforms into two 2D-like classical atoms. We also observe structural transitions as a function of the dielectric constant of the substrate which supports the charged particles, in addition to broken symmetry states and unbinding of particles. (C) 2002 Elsevier Science Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000177129500008 Publication Date 2002-10-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.554 Times cited 3 Open Access
Notes Approved Most recent IF: 1.554; 2002 IF: 1.671
Call Number UA @ lucian @ c:irua:95137 Serial 3268
Permanent link to this record