|   | 
Details
   web
Records
Author Verbruggen, S.W.; Dirckx, J.J.J.; Martens, J.A.; Lenaerts, S.
Title Surface photovoltage measurements : a quick assessment of the photocatalytic activity? Type A1 Journal article
Year 2013 Publication Catalysis today Abbreviated Journal Catal Today
Volume 209 Issue (down) Pages 215-220
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Surface photovoltage (SPV) measurements can contribute to a better understanding of electronic properties of photocatalysts under illumination. Direct linking of SPV data to the actual photocatalytic activity remains troublesome. This work aims to discuss SPV measurements from a photocatalytic point of view. By means of several application-based scenarios we illustrate that the trend between SPV and photocatalysis strongly depends on parameters such as the crystal structure, surface modifications, morphology and humidity. This makes the interpretation far from straightforward.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000319498800035 Publication Date 2013-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.636 Times cited 8 Open Access
Notes ; ; Approved Most recent IF: 4.636; 2013 IF: 3.309
Call Number UA @ admin @ c:irua:106520 Serial 5995
Permanent link to this record
 

 
Author Hollevoet, L.; Jardali, F.; Gorbanev, Y.; Creel, J.; Bogaerts, A.; Martens, J.A.
Title Towards green ammonia synthesis through plasma-driven nitrogen oxidation and catalytic reduction Type A1 Journal article
Year 2020 Publication Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit
Volume Issue (down) Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Ammonia is an industrial large-volume chemical, with its main application in fertilizer production. It also attracts increasing attention as a green-energy vector. Over the past century, ammonia production has been dominated by the Haber-Bosch process, in which a mixture of nitrogen and hydrogen gas is converted to ammonia at high temperatures and pressures. Haber-Bosch processes with natural gas as the source of hydrogen are responsible for a significant share of the global CO(2)emissions. Processes involving plasma are currently being investigated as an alternative for decentralized ammonia production powered by renewable energy sources. In this work, we present the PNOCRA process (plasma nitrogen oxidation and catalytic reduction to ammonia), combining plasma-assisted nitrogen oxidation and lean NO(x)trap technology, adopted from diesel-engine exhaust gas aftertreatment technology. PNOCRA achieves an energy requirement of 4.6 MJ mol(-1)NH(3), which is more than four times less than the state-of-the-art plasma-enabled ammonia synthesis from N(2)and H(2)with reasonable yield (>1 %).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000580489400001 Publication Date 2020-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 1 Open Access
Notes ; We gratefully acknowledge the financial support by the Flemish Government through the Moonshot cSBO project P2C (HBC.2019.0108). J.A.M. and A.B. acknowledge the Flemish Government for long-term structural funding (Methusalem). ; Approved Most recent IF: 16.6; 2020 IF: 11.994
Call Number UA @ admin @ c:irua:173589 Serial 6634
Permanent link to this record
 

 
Author Gupta, A.; Baron, G.V.; Perreault, P.; Lenaerts, S.; Ciocarlan, R.-G.; Cool, P.; Mileo, P.G.M.; Rogge, S.; Van Speybroeck, V.; Watson, G.; Van Der Voort, P.; Houlleberghs, M.; Breynaert, E.; Martens, J.; Denayer, J.F.M.
Title Hydrogen clathrates : next generation hydrogen storage materials Type A1 Journal article
Year 2021 Publication Energy Storage Materials Abbreviated Journal
Volume 41 Issue (down) Pages 69-107
Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Extensive research has been carried on the molecular adsorption in high surface area materials such as carbonaceous materials and MOFs as well as atomic bonded hydrogen in metals and alloys. Clathrates stand among the ones to be recently suggested for hydrogen storage. Although, the simulations predict lower capacity than the expected by the DOE norms, the additional benefits of clathrates such as low production and operational cost, fully reversible reaction, environmentally benign nature, low risk of flammability make them one of the most promising materials to be explored in the next decade. The inherent ability to tailor the properties of clathrates using techniques such as addition of promoter molecules, use of porous supports and formation of novel reverse micelles morphology provide immense scope customisation and growth. As rapidly evolving materials, clathrates promise to get as close as possible in the search of “holy grail” of hydrogen storage. This review aims to provide the audience with the background of the current developments in the solid-state hydrogen storage materials, with a special focus on the hydrogen clathrates. The in-depth analysis of the hydrogen clathrates will be provided beginning from their discovery, various additives utilised to enhance their thermodynamic and kinetic properties, challenges in the characterisation of hydrogen in clathrates, theoretical developments to justify the experimental findings and the upscaling opportunities presented by this system. The review will present state of the art in the field and also provide a global picture for the path forward.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000685118300009 Publication Date 2021-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2405-8297 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:178744 Serial 8045
Permanent link to this record
 

 
Author Kummamuru, N.B.; Ciocarlan, R.-G.; Houlleberghs, M.; Martens, J.; Breynaert, E.; Verbruggen, S.W.; Cool, P.; Perreault, P.
Title Surface modification of mesostructured cellular foam to enhance hydrogen storage in binary THF/H₂ clathrate hydrate Type A1 Journal article
Year 2024 Publication Sustainable energy & fuels Abbreviated Journal
Volume Issue (down) Pages 1-15
Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA)
Abstract This study introduces solid-state tuning of a mesostructured cellular foam (MCF) to enhance hydrogen (H-2) storage in clathrate hydrates. Grafting of promoter-like molecules (e.g., tetrahydrofuran) at the internal surface of the MCF resulted in a substantial improvement in the kinetics of formation of binary H-2-THF clathrate hydrate. Identification of the confined hydrate as sII clathrate hydrate and enclathration of H-2 in its small cages was performed using XRD and high-pressure H-1 NMR spectroscopy respectively. Experimental findings show that modified MCF materials exhibit a similar to 1.3 times higher H-2 storage capacity as compared to non-modified MCF under the same conditions (7 MPa, 265 K, 100% pore volume saturation with a 5.56 mol% THF solution). The enhancement in H-2 storage is attributed to the hydrophobicity originating from grafting organic molecules onto pristine MCF, thereby influencing water interactions and fostering an environment conducive to H-2 enclathration. Gas uptake curves indicate an optimal tuning point for higher H-2 storage, favoring a lower density of carbon per nm(2). Furthermore, a direct correlation emerges between higher driving forces and increased H-2 storage capacity, culminating at 0.52 wt% (46.77 mmoles of H-2 per mole of H2O and 39.78% water-to-hydrate conversions) at 262 K for the modified MCF material with fewer carbons per nm(2). Notably, the substantial H-2 storage capacity achieved without energy-intensive processes underscores solid-state tuning's potential for H-2 storage in the synthesized hydrates. This study evaluated two distinct kinetic models to describe hydrate growth in MCF. The multistage kinetic model showed better predictive capabilities for experimental data and maintained a low average absolute deviation. This research provides valuable insights into augmenting H-2 storage capabilities and holds promising implications for future advancements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001208396000001 Publication Date 2024-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:205764 Serial 9232
Permanent link to this record