|   | 
Details
   web
Records
Author Barbier, M.; Papp, G.; Peeters, F.M.
Title Snake states and Klein tunneling in a graphene Hall bar with a pn-junction Type A1 Journal article
Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 100 Issue (up) 16 Pages 163121-163121,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The Hall (R-H) and bend (R-B) resistances of a graphene Hall bar structure containing a pn-junction are calculated when in the ballistic regime. The simulations are done using the billiard model. Introducing a pn-junction-dividing the Hall bar geometry in two regions-leads to two distinct regimes exhibiting very different physics: (1) both regions are of n-type and (2) one region is n-type and the other p-type. In regime (1), a “Hall plateau”-an enhancement of the resistance-appears for R-H. On the other hand, in regime (2), we found a negative R-H, which approaches zero for large B. The bend resistance is highly asymmetric in regime (2) and the resistance increases with increasing magnetic field B in one direction while it reduces to zero in the other direction. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704667]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000303128500064 Publication Date 2012-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 20 Open Access
Notes ; This work was supported by IMEC, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-EuroGRAPHENE project CONGRAN. ; Approved Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:99129 Serial 3047
Permanent link to this record
 

 
Author Wu, Z.; Peeters, F.M.; Chang, K.
Title Spin and momentum filtering of electrons on the surface of a topological insulator Type A1 Journal article
Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 98 Issue (up) 16 Pages 162101,1-162101,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate theoretically the transport properties of Dirac fermions on the surface of a three-dimensional topological insulator. Dirac electrons can be totally reflected in front of a magnetic/electric p-n junction. For a p-n-p structure, multiple total internal reflections at the interfaces result in the bound states in the channel, which behaves like an electronic waveguide. This p-n-p like structure exhibits spin and momentum filtering features and could be used as a spin and/or charge diode.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000289842700032 Publication Date 2011-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 33 Open Access
Notes ; ; Approved Most recent IF: 3.411; 2011 IF: 3.844
Call Number UA @ lucian @ c:irua:89971 Serial 3076
Permanent link to this record
 

 
Author Silhanek, A.V.; van de Vondel, J.; Moshchalkov, V.V.; Metlushko, V.; Ilic, B.; Misko, V.R.; Peeters, F.M.
Title Comment on “Transverse rectification in superconducting thin films with arrays of asymmetric defects” Type Editorial
Year 2008 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 92 Issue (up) 17 Pages
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Amer inst physics Place of Publication Melville Editor
Language Wos 000255524000100 Publication Date 2008-05-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 20 Open Access
Notes Approved Most recent IF: 3.411; 2008 IF: 3.726
Call Number UA @ lucian @ c:irua:68867 Serial 412
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.
Title Graphene on hexagonal lattice substrate : stress and pseudo-magnetic field Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 104 Issue (up) 17 Pages 173106
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Moire patterns in the pseudo-magnetic field and in the strain profile of graphene (GE) when put on top of a hexagonal lattice substrate are predicted from elasticity theory. The van der Waals interaction between GE and the substrate induces out-of-plane deformations in graphene which results in a strain field, and consequently in a pseudo-magnetic field. When the misorientation angle is about 0.5 degrees, a three-fold symmetric strain field is realized that results in a pseudo-magnetic field very similar to the one proposed by F. Guinea, M. I. Katsnelson, and A. K. Geim [Nature Phys. 6, 30 (2010)]. Our results show that the periodicity and length of the pseudo-magnetic field can be tuned in GE by changing the misorientation angle and substrate adhesion parameters and a considerable energy gap (23 meV) can be obtained due to out-of-plane deformation of graphene which is in the range of recent experimental measurements (20-30 meV). (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000336142500066 Publication Date 2014-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 14 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. was supported by the EU-Marie Curie IIF postdoc Fellowship 299855. ; Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:117724 Serial 1375
Permanent link to this record
 

 
Author Autrique, D.; Gornushkin, I.; Alexiades, V.; Chen, Z.; Bogaerts, A.; Rethfeld, B.
Title Revisiting the interplay between ablation, collisional, and radiative processes during ns-laser ablation Type A1 Journal article
Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 103 Issue (up) 17 Pages 174102-174105
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A study of ns-laser ablation is presented, which focuses on the transient behavior of the physical processes that act in and above a copper sample. A dimensionless multiphase collisional radiative model describes the interplay between the ablation, collisional, and radiative mechanisms. Calculations are done for a 6 ns-Nd:YAG laser pulse operating at 532 nm and fluences up to 15 J/cm2. Temporal intensity profiles as well as transmissivities are in good agreement with experimental results. It is found that volumetric ablation mechanisms and photo-processes both play an essential role in the onset of ns-laser induced breakdown.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000326455100107 Publication Date 2013-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 13 Open Access
Notes Approved Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:110944 Serial 2906
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Tinck, S.; de Marneffe, J.-F.; Zhang, L.; Bogaerts, A.
Title Mechanisms for plasma cryogenic etching of porous materials Type A1 Journal article
Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 111 Issue (up) 17 Pages 173104
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Porous materials are commonly used in microelectronics, as they can meet the demand for continuously shrinking electronic feature dimensions. However, they are facing severe challenges in plasma etching, due to plasma induced damage. In this paper, we present both the plasma characteristics and surface processing during the etching of porous materials. We explain how the damage occurs in the porous material during plasma etching for a wide range of chuck temperatures and the responsible mechanism for plasma damage-free etching at cryogenic temperature, by a combination of experiments and numerical modeling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000413863400032 Publication Date 2017-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 2 Open Access OpenAccess
Notes We acknowledge the support from Marie Skłodowska- Curie actions (Grant Agreement-702604). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the University of Antwerp. L. Zhang and J.-F. de Marneffe acknowledge Dr. M. Cooke and A. Goodyear from Oxford Instruments Plasma Technology for processing the samples at their Yatton facility in the United Kingdom. Approved Most recent IF: 3.411
Call Number PLASMANT @ plasmant @c:irua:147022 Serial 4762
Permanent link to this record
 

 
Author Buffière, M.; Brammertz, G.; Batuk, M.; Verbist, C.; Mangin, D.; Koble, C.; Hadermann, J.; Meuris, M.; Poortmans, J.
Title Microstructural analysis of 9.7% efficient Cu2ZnSnSe4 thin film solar cells Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 105 Issue (up) 18 Pages 183903
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This work presents a detailed analysis of the microstructure and the composition of our record Cu 2ZnSnSe4 (CZTSe)-CdS-ZnO solar cell with a total area efficiency of 9.7%. The average composition of the CZTSe crystallites is Cu 1.94 Zn 1.12Sn0.95Se3.99. Large crystals of ZnSe secondary phase (up to 400 nm diameter) are observed at the voids between the absorber and the back contact, while smaller ZnSe domains are segregated at the grain boundaries and close to the surface of the CZTSe grains. An underlying layer and some particles of Cu xSe are observed at the Mo-MoSe2-Cu2ZnSnSe4 interface. The free surface of the voids at the back interface is covered by an amorphous layer containing Cu, S, O, and C, while the presence of Cd, Na, and K is also observed in this region.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000345000000086 Publication Date 2014-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 17 Open Access
Notes Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:121329 Serial 2038
Permanent link to this record
 

 
Author van Daele, B.; Van Tendeloo, G.; Jacobs, K.; Moerman, I.; Leys, M.
Title Formation of metallic In in InGaN/GaN multiquantum wells Type A1 Journal article
Year 2004 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 85 Issue (up) 19 Pages 4379-4381
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000224962800038 Publication Date 2004-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 32 Open Access
Notes IAP V-1; IWT-Project No.980319 Approved Most recent IF: 3.411; 2004 IF: 4.308
Call Number UA @ lucian @ c:irua:54804 Serial 1261
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Graphene: a perfect nanoballoon Type A1 Journal article
Year 2008 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 93 Issue (up) 19 Pages 193107,1-193107,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We have performed a first-principles density functional theory investigation of the penetration of helium atoms through a graphene monolayer with defects. The relaxation of the graphene layer caused by the incoming helium atoms does not have a strong influence on the height of the energy barriers for penetration. For defective graphene layers, the penetration barriers decrease exponentially with the size of the defects but they are still sufficiently high that very large defects are needed to make the graphene sheet permeable for small atoms and molecules. This makes graphene a very promising material for the construction of nanocages and nanomembranes.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000260944100090 Publication Date 2008-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 295 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the NOI-BOF of the University of Antwerp, and the Belgian Science Policy (IAP). Approved Most recent IF: 3.411; 2008 IF: 3.726
Call Number UA @ lucian @ c:irua:73196 Serial 1368
Permanent link to this record
 

 
Author Cloetens, P.; Ludwig, W.; Baruchel, J.; van Dyck, D.; van Landuyt, J.; Guigay, J.P.; Schlenker, M.
Title Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation X-rays Type A1 Journal article
Year 1999 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 75 Issue (up) 19 Pages 2912-2914
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000083483900014 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 481 Open Access
Notes Approved Most recent IF: 3.411; 1999 IF: 4.184
Call Number UA @ lucian @ c:irua:29643 Serial 1484
Permanent link to this record
 

 
Author Vandenberghe, W.G.; Verhulst, A.S.; Kao, K.-H.; De Meyer, K.; Sorée, B.; Magnus, W.; Groeseneken, G.
Title A model determining optimal doping concentration and material's band gap of tunnel field-effect transistors Type A1 Journal article
Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 100 Issue (up) 19 Pages 193509-193509,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We develop a model for the tunnel field-effect transistor (TFET) based on the Wentzel-Kramer-Brillouin approximation which improves over existing semi-classical models employing generation rates. We hereby introduce the concept of a characteristic tunneling length in direct semiconductors. Based on the model, we show that a limited density of states results in an optimal doping concentration as well as an optimal material's band gap to obtain the highest TFET on-current at a given supply voltage. The observed optimal-doping trend is confirmed by 2-dimensional quantum-mechanical simulations for silicon and germanium. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4714544]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000304108000098 Publication Date 2012-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 25 Open Access
Notes ; William Vandenberghe gratefully acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by IMEC's Industrial Affiliation Program. ; Approved Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:98948 Serial 2105
Permanent link to this record
 

 
Author Yang, W.; Chang, K.; Peeters, F.M.
Title Spin-polarized transport of two-dimensional electron gas embedded in a diluted magnetic semiconductor Type A1 Journal article
Year 2005 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 86 Issue (up) 19 Pages 192107-3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The spin-polarized transport property of a diluted magnetic semiconductor two-dimensional electron gas is investigated theoretically at low temperature. A large current polarization can be found in this system even at small magnetic fields and oscillates with increasing magnetic field while the carrier polarization is vanishingly small. The magnitude as well as the sign of the current polarization can be tuned by varying magnetic field, the electron density and the Mn concentration. (c) 2005 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000229397900042 Publication Date 2005-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 10 Open Access
Notes Approved Most recent IF: 3.411; 2005 IF: 4.127
Call Number UA @ lucian @ c:irua:103163 Serial 3097
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M.
Title Vortex manipulation in a superconducting matrix with view on applications Type A1 Journal article
Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 96 Issue (up) 19 Pages 192501,1-192501,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We show how a single flux quantum can be effectively manipulated in a superconducting film with a matrix of blind holes. Such a sample can serve as a basic memory element, where the position of the vortex in a k×l matrix of pinning sites defines the desired combination of n bits of information (2n = k×l). Vortex placement is achieved by strategically applied current and the resulting position is read out via generated voltage between metallic contacts on the sample. Such a device can also act as a controllable source of a nanoengineered local magnetic field for, e.g., spintronics applications.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000277756400040 Publication Date 2010-05-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 14 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the ESF-NES and ESF-AQDJJ networks. ; Approved Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:83657 Serial 3869
Permanent link to this record
 

 
Author Volodin, A.; Van Haesendonck, C.; Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Stress dependence of the suspended graphene work function : vacuum Kelvin probe force microscopy and density functional theory Type A1 Journal article
Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 110 Issue (up) 19 Pages 193101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We report on work function measurements on graphene, which is exfoliated over a predefined array of wells in silicon oxide, by Kelvin probe force microscopy operating in a vacuum. The obtained graphene sealed microchambers can support large pressure differences, providing controllable stretching of the nearly impermeable graphene membranes. These measurements allow detecting variations of the work function induced by the mechanical stresses in the suspended graphene where the work function varies linearly with the strain and changes by 62 +/- 2 meV for 1 percent of strain. Our related ab initio calculations result in a work function variation that is a factor of 1.4 larger than the experimental value. The limited discrepancy between the theory and the experiment can be accounted for by a charge transfer from the unstrained to the strained graphene regions. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000402319200036 Publication Date 2017-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 8 Open Access
Notes ; The authors wish to thank A. Klekachev (IMEC Leuven, Belgium) for the fabrication of the samples. This work was supported by the Science Foundation-Flanders (FWO, Belgium). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-Department EWI. The Hercules Foundation also funded the scanning probe microscopy equipment. ; Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:144279 Serial 4690
Permanent link to this record
 

 
Author Kong, X.; Li, L.; Liang, L.; Peeters, F.M.; Liu, X.-J.
Title The magnetic, electronic, and light-induced topological properties in two-dimensional hexagonal FeX₂ (X=Cl, Br, I) monolayers Type A1 Journal article
Year 2020 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
Volume 116 Issue (up) 19 Pages 192404-192405
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using Floquet-Bloch theory, we propose to realize chiral topological phases in two-dimensional (2D) hexagonal FeX2 (X=Cl, Br, I) monolayers under irradiation of circularly polarized light. Such 2D FeX2 monolayers are predicted to be dynamically stable and exhibit both ferromagnetic and semiconducting properties. To capture the full topological physics of the magnetic semiconductor under periodic driving, we adopt ab initio Wannier-based tight-binding methods for the Floquet-Bloch bands, with the light-induced bandgap closings and openings being obtained as the light field strength increases. The calculations of slabs with open boundaries show the existence of chiral edge states. Interestingly, the topological transitions with branches of chiral edge states changing from zero to one and from one to two by tuning the light amplitude are obtained, showing that the topological Floquet phase of high Chern number can be induced in the present Floquet-Bloch systems. Published under license by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000533500900001 Publication Date 2020-05-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4 Times cited 18 Open Access
Notes ; This work was supported by the Ministry of Science and Technology of China (MOST) (Grant No. 2016YFA0301604), the National Natural Science Foundation of China (NSFC) (Nos. 11574008, 11761161003, 11825401, and 11921005), the Strategic Priority Research Program of Chinese Academy of Science (Grant No. XDB28000000), the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl), and the FLAG-ERA Project TRANS 2D TMD. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government-Department EWI-and the National Supercomputing Center in Tianjin, funded by the Collaborative Innovation Center of Quantum Matter. This research also used resources of the Compute and Data Environment for Science (CADES) at the Oak Ridge National Laboratory, which was supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. X.K. and L.L. also acknowledge the work conducted at the Center for Nanophase Materials Sciences, which is a U.S. Department of Energy Office of Science User Facility. ; Approved Most recent IF: 4; 2020 IF: 3.411
Call Number UA @ admin @ c:irua:169496 Serial 6623
Permanent link to this record
 

 
Author Razavi, F.S.; Gross, G.; Habermeier, H.-U.; Lebedev, O.; Amelinckx, S.; Van Tendeloo, G.; Vigliante, A.
Title Epitaxial strain induced metal insulator transition in La0.9Sr0.1MnO3 and La0.88Sr0.1MnO3 thin films Type A1 Journal article
Year 2000 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 76 Issue (up) 2 Pages 155-157
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We are reporting an unexpected metal insulator transition at the ferromagnetic phase-transition temperature for thin films of La0.9Sr0.1MnO3 (< 50 nm), grown on a (100) face of SrTiO3 substrate. For the thicker films (> 50 nm), similar to the single crystal, no such transition is observed below T-C. Additionally, we observe the suppression of the features associated with charge or orbital ordering in intentionally La-deficient thin films of La0.88Sr0.1MnO3 (< 75 nm). In thin films, transmission electron microscopy reveals a compressive strain due to the epitaxial growth, that is, lattice parameters adopt those of the cubic lattice of SrTiO3. As the film thickness increases, coherent microtwinning is observed in the films and the films relax to a orthorhombic structure. (C) 2000 American Institute of Physics. [S0003-6951(00)00402-2].
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000084541000009 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 91 Open Access
Notes Approved Most recent IF: 3.411; 2000 IF: 3.906
Call Number UA @ lucian @ c:irua:99441 Serial 1073
Permanent link to this record
 

 
Author Fix, T.; Ulhaq-Bouillet, C.; Colis, S.; Dinia, A.; Bertoni, G.; Verbeeck, J.; Van Tendeloo, G.
Title Nanoscale analysis of interfaces in a metal/oxide/oxide trilayer obtained by pulsed laser deposition Type A1 Journal article
Year 2007 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 91 Issue (up) 2 Pages 023106-023106,3
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Sr2FeMoO6/SrTiO3/CoFe2 trilayers grown by pulsed laser deposition on SrTiO3 (001) are investigated by transmission electron microscopy and electron energy loss spectroscopy. The stack is epitaxial, independent of whether the CoFe2 electrode is grown at 500 or at 50 degrees C. Thus it is possible to obtain epitaxy near room temperature. The SrTiO3/CoFe2 interface is quite sharp, while the Sr2FeMoO6/SrTiO3 interface presents regions of Fe depletion. The chemical composition of the films is close to the nominal stoichiometries. These results could be useful for the growth of heteroepitaxial devices and magnetic tunnel junctions. (C) 2007 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000248017300079 Publication Date 2007-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 16 Open Access
Notes Approved Most recent IF: 3.411; 2007 IF: 3.596
Call Number UA @ lucian @ c:irua:94653UA @ admin @ c:irua:94653 Serial 2263
Permanent link to this record
 

 
Author Verbeeck, J.; Schattschneider, P.; Lazar, S.; Stöger-Pollach, M.; Löffler, S.; Steiger-Thirsfeld, A.; Van Tendeloo, G.
Title Atomic scale electron vortices for nanoresearch Type A1 Journal article
Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 99 Issue (up) 20 Pages 203109-203109,3
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron vortex beams were only recently discovered and their potential as a probe for magnetism in materials was shown. Here we demonstrate a method to produce electron vortex beams with a diameter of less than 1.2 Å. This unique way to prepare free electrons to a state resembling atomic orbitals is fascinating from a fundamental physics point of view and opens the road for magnetic mapping with atomic resolution in an electron microscope.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000297786500058 Publication Date 2011-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 90 Open Access
Notes Hercules Approved Most recent IF: 3.411; 2011 IF: 3.844
Call Number UA @ lucian @ c:irua:93625UA @ admin @ c:irua:93625 Serial 184
Permanent link to this record
 

 
Author Grimaldi, G.; Leo, A.; Nigro, A.; Silhanek, A.V.; Verellen, N.; Moshchalkov, V.V.; Milošević, M.V.; Casaburi, A.; Cristiano, R.; Pace, S.
Title Controlling flux flow dissipation by changing flux pinning in superconducting films Type A1 Journal article
Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 100 Issue (up) 20 Pages 202601-202601,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the flux flow state in superconducting materials characterized by rather strong intrinsic pinning, such as Nb, NbN, and nanostructured Al thin films, in which we drag the superconducting dissipative state into the normal state by current biasing. We modify the vortex pinning strength either by ion irradiation, by tuning the measuring temperature or by including artificial pinning centers. We measure critical flux flow voltages for all materials and the same effect is observed: switching to low flux flow dissipations at low fields for an intermediate pinning regime. This mechanism offers a way to additionally promote the stability of the superconducting state. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4718309]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000304265000051 Publication Date 2012-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 33 Open Access
Notes ; ; Approved Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:98946 Serial 504
Permanent link to this record
 

 
Author Çakir, D.; Peeters, F.M.; Sevik, C.
Title Mechanical and thermal properties of h-MX2 (M = Cr, Mo, W; X = O, S, Se, Te) monolayers : a comparative study Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 104 Issue (up) 20 Pages 203110
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using density functional theory, we obtain the mechanical and thermal properties of MX2 monolayers (where M = Cr, Mo, W and X = O, S, Se, Te). The C-centered phonon frequencies (i.e., A(1), A(2)'', E ', and E ''), relative frequency values of A(1), and E ' modes, and mechanical properties (i.e., elastic constants, Young modulus, and Poisson's ratio) display a strong dependence on the type of metal and chalcogenide atoms. In each chalcogenide (metal) group, transition-metal dichalcogenides (TMDCs) with W (O) atom are found to be much stiffer. Consistent with their stability, the thermal expansion of lattice constants for TMDCs with O (Te) is much slower (faster). Furthermore, in a heterostructure of these materials, the difference of the thermal expansion of lattice constants between the individual components becomes quite tiny over the whole temperature range. The calculated mechanical and thermal properties show that TMDCs are promising materials for heterostructures. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000337140800063 Publication Date 2014-05-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 130 Open Access
Notes ; Cem Sevik acknowledges the support from Scientific and Technological Research Council of Turkey (TUBITAK-113F096) and Anadolu University (BAP-1306F261 and -1306F281) to this project. We would also like to thank the ULAKBIM High Performance and Grid Computing Center for a generous time allocation for our projects. D. C. was supported by a FWO Pegasus-short Marie Curie Fellowship. Part of this work was supported by the Methusalem foundation of the Flemish Government. ; Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:118379 Serial 1974
Permanent link to this record
 

 
Author Van Daele, B.; Van Tendeloo, G.; Derluyn, J.; Shrivastava, P.; Lorenz, A.; Leys, M.R.; Germain, M.;
Title Mechanism for Ohmic contact formation on Si3N4 passivated AlGaN/GaN high-electron-mobility transistors Type A1 Journal article
Year 2006 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 89 Issue (up) 20 Pages Artn 201908
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000242100200030 Publication Date 2006-11-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 15 Open Access
Notes Iap V-1; Fwo Approved Most recent IF: 3.411; 2006 IF: 3.977
Call Number UA @ lucian @ c:irua:61919 Serial 1978
Permanent link to this record
 

 
Author Papp, G.; Peeters, F.M.
Title Strong wave-vector filtering and nearly 100% spin polarization through resonant tunneling antisymmetrical magnetic structure (vol 81, pg 691, 2002) Type L1 Letter to the editor
Year 2003 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 82 Issue (up) 20 Pages 3570-3570
Keywords L1 Letter to the editor; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000182823300065 Publication Date 2003-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 21 Open Access
Notes Approved Most recent IF: 3.411; 2003 IF: 4.049
Call Number UA @ lucian @ c:irua:103295 Serial 3185
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
Title Structural and vibrational properties of amorphous GeO2 from first-principles Type A1 Journal article
Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 98 Issue (up) 20 Pages 202110,1-202110,3
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The structural and vibrational properties of amorphous germanium oxide (a-GeO<sub>2</sub>) are investigated using first-principles calculations based on density functional theory. We first generate an a-GeO<sub>2</sub> structure by first-principles molecular dynamics and analyze its structural properties. The vibrational spectra is then calculated within a density-functional approach. Both static and dynamic properties are in good agreement with experimental data. We next generate defects in our structure (oxygen vacancies with several density and charge states) and consider the most stable atomic configurations, focusing on the vibrational features of threefold coordinated O and divalent Ge centers.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000290812100038 Publication Date 2011-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 226 Open Access
Notes Approved Most recent IF: 3.411; 2011 IF: 3.844
Call Number UA @ lucian @ c:irua:90222 Serial 3202
Permanent link to this record
 

 
Author Zarenia, M.; Conti, S.; Peeters, F.M.; Neilson, D.
Title Coulomb drag in strongly coupled quantum wells : temperature dependence of the many-body correlations Type A1 Journal article
Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 115 Issue (up) 20 Pages 202105
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the effect of the temperature dependence of many-body correlations on hole-hole Coulomb drag in strongly coupled GaAs/GaAlAs double quantum wells. For arbitrary temperatures, we obtained the correlations using the classical-map hypernetted-chain approach. We compare the temperature dependence of the resulting drag resistivities rho D(T) at different densities with rho D(T) calculated assuming correlations fixed at zero temperature. Comparing the results with those when correlations are completely neglected, we confirm that correlations significantly increase the drag. We find that the drag becomes sensitive to the temperature dependence of T greater than or similar to 2TF, twice the Fermi temperature. Our results show excellent agreement with available experimental data. Published under license by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000498619400007 Publication Date 2019-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 2 Open Access
Notes Approved Most recent IF: 3.411
Call Number UA @ admin @ c:irua:165135 Serial 6291
Permanent link to this record
 

 
Author Dong, H.M.; Tao, Z.H.; Li, L.L.; Huang, F.; Xu, W.; Peeters, F.M.
Title Substrate dependent terahertz response of monolayer WS₂ Type A1 Journal article
Year 2020 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
Volume 116 Issue (up) 20 Pages 1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate experimentally the terahertz (THz) optoelectronic properties of monolayer (ML) tungsten disulfide (WS2) placed on different substrates using THz time-domain spectroscopy (TDS). We find that the THz optical response of n-type ML WS2 depends sensitively on the choice of the substrate. This dependence is found to be a consequence of substrate induced charge transfer, extra scattering centers, and electronic localization. Through fitting the experimental results with the Drude-Smith formula, we can determine the key sample parameters (e.g., the electronic relaxation time, electron density, and electronic localization factor) of ML WS2 on different substrates. The temperature dependence of these parameters is examined. Our results show that the THz TDS technique is an efficient non-contact method that can be utilized to characterize and investigate the optoelectronic properties of nano-devices based on ML WS2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000536282300001 Publication Date 2020-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4 Times cited 17 Open Access
Notes ; This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. 2018GF09) and by the National Natural Science foundation of China (Nos. U1930116 and 11574319). ; Approved Most recent IF: 4; 2020 IF: 3.411
Call Number UA @ admin @ c:irua:170255 Serial 6620
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Faraji, M.; Yagmurcukardes, M.; Fadlallah, M.M.; Jappor, H.R.; Ghergherehchi, M.; Feghhi, S.A.H.
Title A Dirac-semimetal two-dimensional BeN4 : thickness-dependent electronic and optical properties Type A1 Journal article
Year 2021 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
Volume 118 Issue (up) 20 Pages 203103
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Motivated by the recent experimental realization of a two-dimensional (2D) BeN4 monolayer, in this study we investigate the structural, dynamical, electronic, and optical properties of a monolayer and few-layer BeN4 using first-principles calculations. The calculated phonon band dispersion reveals the dynamical stability of a free-standing BeN4 layer, while the cohesive energy indicates the energetic feasibility of the material. Electronic band dispersions show that monolayer BeN4 is a semi-metal whose conduction and valence bands touch each other at the Sigma point. Our results reveal that increasing the layer number from single to six-layers tunes the electronic nature of BeN4. While monolayer and bilayer structures display a semi-metallic behavior, structures thicker than that of three-layers exhibit a metallic nature. Moreover, the optical parameters calculated for monolayer and bilayer structures reveal that the bilayer can absorb visible light in the ultraviolet and visible regions better than the monolayer structure. Our study investigates the electronic properties of Dirac-semimetal BeN4 that can be an important candidate for applications in nanoelectronic and optoelectronic. Published under an exclusive license by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000691329900002 Publication Date 2021-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 3.411
Call Number UA @ admin @ c:irua:181725 Serial 6980
Permanent link to this record
 

 
Author Halley, D.; Majjad, H.; Bowen, M.; Najjari, N.; Henry, Y.; Ulhaq-Bouillet, C.; Weber, W.; Bertoni, G.; Verbeeck, J.; Van Tendeloo, G.
Title Electrical switching in Fe/Cr/MgO/Fe magnetic tunnel junctions Type A1 Journal article
Year 2008 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 92 Issue (up) 21 Pages 212115,1-3
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hysteretic resistance switching is observed in epitaxial Fe/Cr/MgO/Fe magnetic tunnel junctions under bias voltage cycling between negative and positive values of about 1 V. The junctions switch back and forth between high- and low-resistance states, both of which depend on the device bias history. A linear dependence is found between the magnitude of the tunnel magnetoresistance and the crafted resistance of the junctions. To explain these results, a model is proposed that considers electron transport both by elastic tunneling and by defect-assisted transmission. (c) 2008 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000256303500042 Publication Date 2008-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 33 Open Access
Notes Approved Most recent IF: 3.411; 2008 IF: 3.726
Call Number UA @ lucian @ c:irua:69284UA @ admin @ c:irua:69284 Serial 894
Permanent link to this record
 

 
Author Schowalter, M.; Lamoen, D.; Kruse, P.; Gerthsen, D.; Rosenauer, A.
Title First-principles calculations of the mean inner Coulomb potential for sphalerite type II.VI semiconductors Type A1 Journal article
Year 2004 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
Volume 85 Issue (up) 21 Pages 4938-4940
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000225300600037 Publication Date 2004-11-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 16 Open Access
Notes Approved Most recent IF: 3.411; 2004 IF: 4.308
Call Number UA @ lucian @ c:irua:49657 Serial 1203
Permanent link to this record
 

 
Author Sankaran, K.; Pourtois, G.; Degraeve, R.; Zahid, M.B.; Rignanese, G.-M.; Van Houdt, J.
Title First-principles modeling of intrinsic and extrinsic defects in \gamma-Al2O3 Type A1 Journal article
Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 97 Issue (up) 21 Pages 212906
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The electronic properties of a set of intrinsic and extrinsic point defects in gamma-Al2O3 are investigated using quasiparticle calculations within the G(0)W(0) approximation. We find that the electronic signature of atomic vacancies lie deep in the band gap, close to the top of the valence band edge. The introduction of C, Si, and N impurities induces defective levels that are located close to the conduction band edge and near the middle of the band gap of the oxide. The comparison with electrical measurements reveals that the energy levels of some of these defects match with the electronic fingerprint of the defects reported in gamma-Al2O3 based nonvolatile memories. (C) 2010 American Institute of Physics. [doi:10.1063/1.3507385]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000284618300039 Publication Date 2010-11-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 12 Open Access
Notes Approved Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:105617 Serial 1213
Permanent link to this record
 

 
Author Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M.
Title Fluxonic cellular automata Type A1 Journal article
Year 2007 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 91 Issue (up) 21 Pages 212501,1-3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000251105500023 Publication Date 2007-11-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 45 Open Access
Notes Approved Most recent IF: 3.411; 2007 IF: 3.596
Call Number UA @ lucian @ c:irua:67176 Serial 1245
Permanent link to this record