|   | 
Details
   web
Records
Author Lavor, I.R.; da Costa, D.R.; Covaci, L.; Milošević, M.V.; Peeters, F.M.; Chaves, A.
Title Zitterbewegung of moiré excitons in twisted MoS₂/WSe₂ heterobilayers Type A1 Journal article
Year 2021 Publication Physical review letters Abbreviated Journal
Volume 127 Issue (up) 10 Pages 106801
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract The moire pattern observed in stacked noncommensurate crystal lattices, such as heterobilayers of transition metal dichalcogenides, produces a periodic modulation of their band gap. Excitons subjected to this potential landscape exhibit a band structure that gives rise to a quasiparticle dubbed the moire exciton. In the case of MoS2/WSe2 heterobilayers, the moire trapping potential has honeycomb symmetry and, consequently, the moire exciton band structure is the same as that of a Dirac-Weyl fermion, whose mass can be further tuned down to zero with a perpendicularly applied field. Here we show that, analogously to other Dirac-like particles, the moire exciton exhibits a trembling motion, also known as Zitterbewegung, whose long timescales are compatible with current experimental techniques for exciton dynamics. This promotes the study of the dynamics of moire excitons in van der Waals heterostructures as an advantageous solid-state platform to probe Zitterbewegung, broadly tunable by gating and interlayer twist angle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000692200800020 Publication Date 2021-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1079-7114 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 5 Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:181599 Serial 6896
Permanent link to this record
 

 
Author Wang, J.; Zhao, W.-S.; Hu, Y.; Filho, R.N.C.; Peeters, F.M.
Title Charged vacancy in graphene : interplay between Landau levels and atomic collapse resonances Type A1 Journal article
Year 2024 Publication Physical review B Abbreviated Journal
Volume 109 Issue (up) 10 Pages 104103-104106
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The interplay between a magnetic field and the Coulomb potential from a charged vacancy on the electron states in graphene is investigated within the tight-binding model. The Coulomb potential removes locally Landau level degeneracy, while the vacancy introduces a satellite level next to the normal Landau level. These satellite levels are found throughout the positive-energy region, but in the negative-energy region, they turn into atomic collapse resonances. Crossings between Landau levels with different angular quantum number m are found. Unlike the point impurity system in which an anticrossing occurs between Landau levels of the same m, in this work anticrossing is found between the normal Landau level and the vacancy-induced level. The atomic collapse resonance hybridizes with the Landau levels. The charge at which the lowest Landau level m = -1, N = 1 crosses E = 0 increases with enhancing magnetic field. A Landau level scaling anomaly occurs when the charge is larger than the critical charge beta 0.6 and this critical charge is independent of the magnetic field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001199561900008 Publication Date 2024-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access
Notes Approved Most recent IF: 3.7; 2024 IF: 3.836
Call Number UA @ admin @ c:irua:205508 Serial 9137
Permanent link to this record
 

 
Author Baelus, B.J.; Peeters, F.M.
Title Multiply connected mesoscopic superconductors Type A1 Journal article
Year 2003 Publication Modern physics letters B T2 – 3rd International Conference on Modern Problems in Superconductivity, SEP 09-14, 2002, YALTA, UKRAINE Abbreviated Journal Mod Phys Lett B
Volume 17 Issue (up) 10-12 Pages 527-536
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Multiply connected mesoscopic: superconductors are considered within the framework of the nonlinear Ginzburg-Landau theory. The two coupled nonlinear equations are solved numerically and we investigated the properties of a superconducting ring, two concentric rings, and an asymmetric ring. We find that (i) for a mesoscopic superconducting ring the flux through the hole is not quantized, (ii) two concentric mesoscopic superconducting rings are magnetically coupled and the interaction energy increases with increasing sample thickness, and (iii) in asymmetric rings, a stationary phase slip state is predicted.
Address
Corporate Author Thesis
Publisher World scientific publ co pte ltd Place of Publication Singapore Editor
Language Wos 000184303900016 Publication Date 2003-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-9849;1793-6640; ISBN Additional Links UA library record; WoS full record
Impact Factor 0.617 Times cited Open Access
Notes Approved Most recent IF: 0.617; 2003 IF: 0.461
Call Number UA @ lucian @ c:irua:103810 Serial 2236
Permanent link to this record
 

 
Author Zhang, S.; Sahin, H.; Torun, E.; Peeters, F.; Martien, D.; DaPron, T.; Dilley, N.; Newman, N.
Title Fundamental mechanisms responsible for the temperature coefficient of resonant frequency in microwave dielectric ceramics Type A1 Journal article
Year 2017 Publication Journal of the American Ceramic Society Abbreviated Journal J Am Ceram Soc
Volume 100 Issue (up) 100 Pages 1508-1516
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The temperature coefficient of resonant frequency ((f)) of a microwave resonator is determined by three materials parameters according to the following equation: (f)=-(1/2 (epsilon) + 1/2 + (L)), where (L), (epsilon), and are defined as the linear temperature coefficients of the lattice constant, dielectric constant, and magnetic permeability, respectively. We have experimentally determined each of these parameters for Ba(Zn1/3Ta2/3)O-3, 0.8 at.% Ni-doped Ba(Zn1/3Ta2/3)O-3, and Ba(Ni1/3Ta2/3)O-3 ceramics. These results, in combination with density functional theory calculations, have allowed us to develop a much improved understanding of the fundamental physical mechanisms responsible for the temperature coefficient of resonant frequency, (f).
Address
Corporate Author Thesis
Publisher Place of Publication Columbus, Ohio Editor
Language Wos 000399610800034 Publication Date 2017-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7820 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.841 Times cited 6 Open Access
Notes ; ; Approved Most recent IF: 2.841
Call Number UA @ lucian @ c:irua:143682 Serial 4597
Permanent link to this record
 

 
Author Torun, E.; Sahin, H.; Singh, S.K.; Peeters, F.M.
Title Stable half-metallic monolayers of FeCl2 Type A1 Journal article
Year 2015 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 106 Issue (up) 106 Pages 192404
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The structural, electronic, and magnetic properties of single layers of Iron Dichloride (FeCl2) were calculated using first principles calculations. We found that the 1T phase of the single layer FeCl2 is 0.17 eV/unit cell more favorable than its 1H phase. The structural stability is confirmed by phonon calculations. We found that 1T-FeCl2 possess three Raman-active (130, 179, and 237 cm(-1)) and one infrared-active (279 cm(-1)) phonon branches. The electronic band dispersion of the 1T-FeCl2 is calculated using both gradient approximation of Perdew-Burke-Ernzerhof and DFT-HSE06 functionals. Both functionals reveal that the 1T-FeCl2 has a half-metallic ground state with a Curie temperature of 17 K. (C) 2015 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000355008100020 Publication Date 2015-05-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 84 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. was supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.411; 2015 IF: 3.302
Call Number c:irua:126411 Serial 3143
Permanent link to this record
 

 
Author Homm, P.; Dillemans, L.; Menghini, M.; Van Bilzen, B.; Bakalov, P.; Su, C.Y.; Lieten, R.; Houssa, M.; Nasr Esfahani, D.; Covaci, L.; Peeters, F.M.; Seo, J.W.; Locquet, J.P.;
Title Collapse of the low temperature insulating state in Cr-doped V2O3 thin films Type A1 Journal article
Year 2015 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 107 Issue (up) 107 Pages 111904
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We have grown epitaxial Cr-doped V2O3 thin films with Cr concentrations between 0% and 20% on (0001)-Al2O3 by oxygen-assisted molecular beam epitaxy. For the highly doped samples (>3%), a regular and monotonous increase of the resistance with decreasing temperature is measured. Strikingly, in the low doping samples (between 1% and 3%), a collapse of the insulating state is observed with a reduction of the low temperature resistivity by up to 5 orders of magnitude. A vacuum annealing at high temperature of the films recovers the low temperature insulating state for doping levels below 3% and increases the room temperature resistivity towards the values of Cr-doped V2O3 single crystals. It is well-know that oxygen excess stabilizes a metallic state in V2O3 single crystals. Hence, we propose that Cr doping promotes oxygen excess in our films during deposition, leading to the collapse of the low temperature insulating state at low Cr concentrations. These results suggest that slightly Cr-doped V2O3 films can be interesting candidates for field effect devices. (C) 2015 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000361639200020 Publication Date 2015-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 14 Open Access
Notes ; The authors acknowledge financial support from the FWO Project No. G052010N10 as well as the EU-FP7 SITOGA Project. P.H. acknowledges support from Becas Chile-CONICYT. ; Approved Most recent IF: 3.411; 2015 IF: 3.302
Call Number UA @ lucian @ c:irua:128728 Serial 4149
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Peeters, F.M.
Title Position-dependent effect of non-magnetic impurities on superconducting properties of nanowires Type A1 Journal article
Year 2015 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 109 Issue (up) 109 Pages 17010
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Anderson's theorem states that non-magnetic impurities do not change the bulk properties of conventional superconductors. However, as the dimensionality is reduced, the effect of impurities becomes more significant. Here we investigate superconducting nanowires with diameter comparable to the Fermi wavelength $\lambda_F$ (which is less than the superconducting coherence length) by using a microscopic description based on the Bogoliubov-de Gennes method. We find that: 1) impurities strongly affect the superconducting properties, 2) the effect is impurity position dependent, and 3) it exhibits opposite behavior for resonant and off-resonant wire widths. We show that this is due to the interplay between the shape resonances of the order parameter and the subband energy spectrum induced by the lateral quantum confinement. These effects can be used to manipulate the Josephson current, filter electrons by subband and investigate the symmetries of the superconducting subband gaps.
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000348592100029 Publication Date 2015-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 7 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 1.957; 2015 IF: 2.095
Call Number UA @ lucian @ c:irua:128424 Serial 4227
Permanent link to this record
 

 
Author Milovanović, S.P.; Peeters, F.M.
Title Strain controlled valley filtering in multi-terminal graphene structures Type A1 Journal article
Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 109 Issue (up) 109 Pages 203108
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Valley-polarized currents can be generated by local straining of multi-terminal graphene devices. The pseudo-magnetic field created by the deformation allows electrons from only one valley to transmit, and a current of electrons from a single valley is generated at the opposite side of the locally strained region. We show that valley filtering is most effective with bumps of a certain height and width. Despite the fact that the highest contribution to the polarized current comes from electrons from the lowest sub-band, contributions of other sub-bands are not negligible and can significantly enhance the output current. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000388000000049 Publication Date 2016-11-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 50 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN. ; Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:139165 Serial 4463
Permanent link to this record
 

 
Author Matulis, A.; Masir, M.R.; Peeters, F.M.
Title Application of optical beams to electrons in graphene Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue (up) 11 Pages 115458-115458,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The technique of beam optics is applied to the description of the wave function of Dirac electrons. This approach is illustrated by considering electron transmission through simple nonhomogeneous structures, such as flat and bent p-n junctions and superlattices. We found that a convex p-n junction compresses the beam waist, while a concave interface widens it without loosing its focusing properties. At a flat p-n junction the waist of the transmitted Gaussian beam can be narrowed or widened, depending on the angle of incidence. A general condition is derived for the occurrence of beam collimation in a superlattice which is less stringent than previous discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000288896400013 Publication Date 2011-03-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes ; This research was supported by the Flemish Science Foundation (Grant No. FWO-Vl), by the Belgian Science policy (IAP), and (in part) by the Lithuanian Science Council under project No. MIP-79/2010. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:89377 Serial 142
Permanent link to this record
 

 
Author Milovanovic, S.P.; Masir, M.R.; Peeters, F.M.
Title Bilayer graphene Hall bar with a pn-junction Type A1 Journal article
Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 114 Issue (up) 11 Pages 113706
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the magnetic field dependence of the Hall and the bend resistances for a ballistic Hall bar structure containing a pn-junction sculptured from a bilayer of graphene. The electric response is obtained using the billiard model, and we investigate the cases of bilayer graphene with and without a band gap. Two different conduction regimes are possible: (i) both sides of the junction have the same carrier type and (ii) one side of the junction is n-type while the other one is p-type. The first case shows Hall plateau-like features in the Hall resistance that fade away as the band gap opens. The second case exhibits a bend resistance that is asymmetric in magnetic field as a consequence of snake states along the pn-interface, where the maximum is shifted away from zero magnetic field.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000324827200031 Publication Date 2013-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 3 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 2.068; 2013 IF: 2.185
Call Number UA @ lucian @ c:irua:111169 Serial 234
Permanent link to this record
 

 
Author Shakouri, K.; Masir, M.R.; Jellal, A.; Choubabi, E.B.; Peeters, F.M.
Title Effect of spin-orbit couplings in graphene with and without potential modulation Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue (up) 11 Pages 115408-115409
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the effect of Rashba and intrinsic spin-orbit couplings on the electronic properties and spin configurations of Dirac fermions confined in: (i) a flat graphene sheet, (ii) a graphene wire with p-n-p structure, and (iii) a superlattice of graphene wires. The interplay between the spin-orbit interaction mechanisms breaks the electron-hole symmetry and the spin configuration induced by Rashba spin-orbit coupling lacks inversion symmetry in k space. We show that the Rashba spin-orbit interaction doubles the Fabry-Perot resonant modes in the transmission spectrum of a graphene wire and opens new channels for the electron transmission. Moreover, it leads to the appearance of spin split extra Dirac cones in the energy spectrum of a graphene superlattice. It is shown that the spin of the electrons and holes confined in a flat graphene sheet is always perpendicular to their motion while this is not the case for the other nanostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000323944600005 Publication Date 2013-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 36 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN. The generous support provided by the Saudi Center for Theoretical Physics (SCTP) is highly appreciated by A.J. and E.B.C. They also thank the Deanship of Scientific Research at King Faisal University for funding this work under the Project No. 130193. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:110716 Serial 836
Permanent link to this record
 

 
Author Wu, Z.; Peeters, F.M.; Chang, K.
Title Electron tunneling through double magnetic barriers on the surface of a topological insulator Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue (up) 11 Pages 115211-115211,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study electron tunneling through a planar magnetic and electric barrier on the surface of a three-dimensional topological insulator. For the double barrier structures, we find (i) a directional-dependent tunneling which is sensitive to the magnetic field configuration and the electric gate voltage, (ii) a spin rotation controlled by the magnetic field and the gate voltage, (iii) many Fabry-Pérot resonances in the transmission determined by the distance between the two barriers, and (iv) the electrostatic potential can enhance the difference in the transmission between the two magnetization configurations, and consequently lead to a giant magnetoresistance. Points (i), (iii), and (iv) are alike with that in graphene stemming from the same linear-dispersion relations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000282125700002 Publication Date 2010-09-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 65 Open Access
Notes ; This work was supported by the NSF of China, the Flemish Science Foundation (FWO-Vl), and the Belgian Science Policy. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:85420 Serial 990
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M.
Title Electronic and dynamical properties of Si/Ge core-shell nanowires Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue (up) 11 Pages 113411-113411,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Full ab initio techniques are applied to study the electronic and dynamical properties of free standing, hydrogen-passivated Si/Ge core-shell nanowires oriented along the [110] direction. All studied wires exhibit a direct band gap and are found to be structurally stable. The different contributions of the core and shell atoms to the phonon spectra are identified. The acoustic phonon velocities and the frequencies of some typical optical modes are compared with those of pure Si and Ge nanowires. These depend either on the concentration or on the type of core material. Optical modes are hardened and longitudinal acoustic velocities are softened with decreasing wire diameter.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000282270000001 Publication Date 2010-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and NOI-BOF (University of Antwerp). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:85421 Serial 995
Permanent link to this record
 

 
Author Neek-Amal, M.; Covaci, L.; Shakouri, K.; Peeters, F.M.
Title Electronic structure of a hexagonal graphene flake subjected to triaxial stress Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue (up) 11 Pages 115428
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic properties of a triaxially strained hexagonal graphene flake with either armchair or zigzag edges are investigated using molecular dynamics simulations and tight-binding calculations. We found that (i) the pseudomagnetic field in strained graphene flakes is not uniform neither in the center nor at the edge of zigzag terminated flakes, (ii) the pseudomagnetic field is almost zero in the center of armchair terminated flakes but increases dramatically near the edges, (iii) the pseudomagnetic field increases linearly with strain, for strains lower than 15% but increases nonlinearly beyond it, (iv) the local density of states in the center of the zigzag hexagon exhibits pseudo-Landau levels with broken sublattice symmetry in the zeroth pseudo-Landau level, and in addition there is a shift in the Dirac cone due to strain induced scalar potentials, and (v) there is size effect in pseudomagnetic field. This study provides a realistic model of the electronic properties of inhomogeneously strained graphene where the relaxation of the atomic positions is correctly included together with strain induced modifications of the hopping terms up to next-nearest neighbors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000324690400008 Publication Date 2013-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 46 Open Access
Notes ; This work was supported by the EU-Marie Curie IIF postdoctoral Fellowship/ 299855 (for M.N.-A.), the ESF EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Funding of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:111168 Serial 1011
Permanent link to this record
 

 
Author Shi, J.M.; Koenraad, P.M.; van de Stadt, A.F.W.; Peeters, F.M.; Devreese, J.T.; Wolter, J.H.
Title Electronic structure of a Si \delta-doped layer in a GaAs/AlxGa1-xAs/GaAs quantum barrier Type A1 Journal article
Year 1996 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 54 Issue (up) 11 Pages 7996-8004
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract We present a theoretical study of the electronic structure of a heavily Si delta-doped layer in a GaAs/AlxGa1-xAs/GaAs quantum barrier. In this class of structures the effect of DX centers on the electronic properties can be tuned by changing the AlxGa1-xAs barrier width and/or the Al concentration, which leads to a lowering of the DX level with respect to the Fermi energy without disturbing the wave functions much. A self-consistent approach is developed in which the effective confinement potential and the Fermi energy of the system, the energies, the wave functions, and the electron densities of the discrete subbands have been obtained as a function of both the material parameters of the samples and the experimental conditions. The effect of DX centers on such structures at nonzero temperature and under an external pressure is investigated for three different models: (1) the DX(nc)(0) model with no correlation effects, (2) the d(+)/DX(0) model, and (3) the d(+)/DX(-) model with inclusion of correlation effects. In the actual calculation, influences of the background accepters, the discontinuity of the effective mass of the electrons at the interfaces of the different materials, band nonparabolicity, and the exchange-correlation energy of the electrons have been taken into account. We have found that (1) introducing a quantum barrier into delta-doped GaAs makes it possible to control the energy gaps between different electronic; subbands; (2) the electron wave functions are mon spread out when the repellent effect of the barriers is increased as compared to those in delta-doped GaAs; (3) increasing the quantum-barrier height and/or the application of hydrostatic pressure are helpful to experimentally observe the effect of the DX centers through a decrease of the total free-electron density; and (4) the correlation effects of the charged impurities are important for the systems under study.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1996VL14500066 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 11 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:104388 Serial 1012
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Peeters, F.M.
Title Fabry-Pérot resonances in graphene microstructures: influence of a magnetic field Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue (up) 11 Pages 115417-115417,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Fabry-Pérot resonances in the transmission through single and double, graphene-based barriers (of height V) and wells are investigated and their dependence on an applied perpendicular magnetic field. For rectangular barriers the conductance decreases with increasing magnetic field while the resonances weaken (become more pronounced) with increasing magnetic field for EF<V (EF>V). The position of the resonances exhibit a linear shift with magnetic field which move to lower (higher) energy for EF<V (EF>V). Compared to semielliptic- or Gaussian-shaped barriers they show a smaller number of resonances in the absence of a magnetic field and an overall lower conductance but the resonant structure is more pronounced. The conductance of asymmetric double barriers show two major regions of resonances while the symmetric ones show one, that of three asymmetric barriers three, and so on.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000281723100007 Publication Date 2010-09-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 74 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP) and the Canadian NSERC under Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:84871 Serial 1167
Permanent link to this record
 

 
Author Földi, P.; Szaszkó-Bogár, V.; Peeters, F.M.
Title High-temperature conductance of a two-dimensional superlattice controlled by spin-orbit interaction Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue (up) 11 Pages 115313-115313,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Rashba-type spin-orbit interaction (SOI) controlled band structure of a two-dimensional superlattice allows for the modulation of the conductance of finite size devices by changing the strength of the SOI. We consider rectangular arrays and find that the temperature dependence of the conductance disappears for high temperatures, but the strength of the SOI still affects the conductance at these temperatures. The modulation effect can be seen even in the presence of strong dephasing, which can be important for practical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000288242800007 Publication Date 2011-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes ; We thank M. G. Benedict and F. Bartha for useful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the Hungarian Scientific Research Fund (OTKA) under Contracts No. T81364 and M045596 and by the “TAMOP-4.2.1/B-09/1/KONV-2010-0005 project: Creating the Center of Excellence at the University of Szeged” supported by the EU and the European Regional Development Fund. P.F. was supported by a J. Bolyai grant of the Hungarian Academy of Sciences. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:88778 Serial 1466
Permanent link to this record
 

 
Author Hilber, W.; Helm, M.; Peeters, F.M.; Alavi, K.; Pathak, R.N.
Title Impurity band and magnetic-field-induced metal-insulator transition in a doped GaAs/AlxGa1-xAs superlattice Type A1 Journal article
Year 1996 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 53 Issue (up) 11 Pages 6919-6922
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A combination of infrared spectroscopy and magnetotransport is used to investigate the impurity band and the magnetic-field-induced metal-insulator transition in n-type GaAs/AlxGa1-xAs superlattices. The dropping of the Fermi level from the conduction band into the impurity band upon increasing magnetic field is observed in a sample doped to n=4n(c), where n(c) is the critical density according to the Mott criterion. The metal-insulator transition takes place while the Fermi level is in the impurity band, with no qualitative change from the metallic to the insulating side. Due to the anisotropy of the superlattice band structure, the metal-insulator transition is shifted to higher magnetic field, when the magnetic field is tilted away from the growth axis towards the layer planes.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1996UC74000018 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 14 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:99676 Serial 1571
Permanent link to this record
 

 
Author Nicholas, R.J.; Sasaki, S.; Miura, N.; Peeters, F.M.; Shi, J.M.; Hai, G.Q.; Devreese, J.T.; Lawless, M.J.; Ashenford, D.E.; Lunn, B.
Title Interband magnetooptical studies of resonant polaron coupling in CdTe/Cd1-xMnxTe quantum-wells Type A1 Journal article
Year 1994 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 50 Issue (up) 11 Pages 7596-7601
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract Magnetoreflectivity measurements of the 1s and 2s exciton energies in a CdTe/Cd1-xMnxTe superlattice have been made in magnetic fields up to 45 T, showing the resonant polaron coupling of electrons to LO phonons. Strong reflectivity features are seen for both the 1s and 2s excitons, which show a strong field-dependent spin splitting due to the dilute magnetic barriers. At B-z=0, the 2s exciton feature is observed lying 18 meV above the Is state, and is shifted upward in energy by the magnetic fields. No resonant behavior occurs when the 2s state passes through the LO-phonon energy of 21 meV, but at higher fields of around 20 T, the resonances for both spin states (sigma(+/-)) of the 2s exciton broaden and show a strong anticrossing behavior. These experiments are shown to be in excellent agreement with a theoretical treatment which includes the resonant polaron coupling of the electrons alone. Both experiment and theory demonstrate an extremely strong resonant splitting of the 2s exciton states of approximately 11 meV, which is over 50% of the LO-phonon energy. The dominance of single-particle polaron coupling is attributed to the relative sizes of the polaron (35 Angstrom A) and the exciton (50 Angstrom A) radius.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1994PJ43700045 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 10 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:99837 Serial 1687
Permanent link to this record
 

 
Author Milton Pereira, J.; Peeters, F.M.; Vasilopoulos, P.
Title Landau levels and oscillator strength in a biased bilayer of graphene Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 76 Issue (up) 11 Pages 115419,1-8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000249786400110 Publication Date 2007-09-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 91 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:65694 Serial 1772
Permanent link to this record
 

 
Author Szafran, B.; Bednarek, S.; Peeters, F.M.
Title Magnetic-field-induced binding of few-electron systems in shallow quantum dots Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 74 Issue (up) 11 Pages 115310,1-5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000240872300074 Publication Date 2006-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:60999 Serial 1874
Permanent link to this record
 

 
Author Nguten, N.T.T.; Peeters, F.M.
Title Many-body effects in the cyclotron resonance of a magnetic dot Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue (up) 11 Pages 115335,1-115335,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Intraband cyclotron resonance (CR) transitions of a two-electron quantum dot containing a single magnetic ion is investigated for different Coulomb interaction strengths and different positions of the magnetic ion. In contrast to the usual parabolic quantum dots where CR is independent of the number of electrons, we found here that due to the presence of the magnetic ion Kohn's theorem no longer holds and CR is different for systems with different number of electrons and different effective electron-electron Coulomb interaction strength. Many-body effects result in shifts in the transition energies and change the number of CR lines. The position of the magnetic ion inside the quantum dot affects the structure of the CR spectrum by changing the position and the number of crossings and anticrossings in the transition energies and oscillator strengths.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000270383200110 Publication Date 2009-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:79228 Serial 1941
Permanent link to this record
 

 
Author Hai; Studart; Peeters, F.M.
Title Multisubband electron-transport in delta-doped semiconductor systems Type A1 Journal article
Year 1995 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 52 Issue (up) 11 Pages 8363-8371
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electron transport properties in delta-doped semiconductor systems-are studied. The subband electronic structure of the delta-doped system is obtained by solving the coupled Schrodinger and Poisson equations. The screening of the quasi-two-dimensional electron gas is taken into account for the ionized impurity scattering through the matrix dielectric function within the random-phase approximation. The quantum and transport mobilities are calculated numerically as a function of the total electron density and the width of the doped layer at zero temperature. The intersubband scattering and the effect of empty subbands above the Fermi level on the electron mobilities are investigated. The calculated mobilities are in reasonable agreement with the available experimental results.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1995RV81800091 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 67 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:95353 Serial 2243
Permanent link to this record
 

 
Author Schweigert, I.V.; Schweigert, V.A.; Peeters, F.M.
Title Perturbation of collisional plasma flow around a charged dust particle: kinetic analysis Type A1 Journal article
Year 2005 Publication Physics of plasmas Abbreviated Journal Phys Plasmas
Volume 12 Issue (up) 11 Pages 113501,1-9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Woodbury, N.Y. Editor
Language Wos 000233569600046 Publication Date 2005-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.115 Times cited 15 Open Access
Notes Approved Most recent IF: 2.115; 2005 IF: 2.182
Call Number UA @ lucian @ c:irua:56048 Serial 2575
Permanent link to this record
 

 
Author Lukyanchuk, I.; Vinokur, V.M.; Rydh, A.; Xie, R.; Milošević, M.V.; Welp, U.; Zach, M.; Xiao, Z.L.; Crabtree, G.W.; Bending, S.J.; Peeters, F.M.; Kwok, W.K.
Title Rayleigh instability of confined vortex droplets in critical superconductors Type A1 Journal article
Year 2015 Publication Nature physics Abbreviated Journal Nat Phys
Volume 11 Issue (up) 11 Pages 21-25
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Depending on the Ginzburg-Landau parameter kappa, superconductors can either be fully diamagnetic if kappa < 1/root 2 (type I superconductors) or allow magnetic flux to penetrate through Abrikosov vortices if kappa > 1/root 2 (type II superconductors; refs 1,2). At the Bogomolny critical point, kappa = kappa(c) = 1/root 2, a state that is infinitely degenerate with respect to vortex spatial configurations arises(3,4). Despite in-depth investigations of conventional type I and type II superconductors, a thorough understanding of the magnetic behaviour in the near-Bogomolny critical regime at kappa similar to kappa(c) remains lacking. Here we report that in confined systems the critical regime expands over a finite interval of kappa forming a critical superconducting state. We show that in this state, in a sample with dimensions comparable to the vortex core size, vortices merge into a multi-quanta droplet, which undergoes Rayleigh instability(5) on increasing kappa and decays by emitting single vortices. Superconducting vortices realize Nielsen-Olesen singular solutions of the Abelian Higgs model, which is pervasive in phenomena ranging from quantum electrodynamics to cosmology(6-9). Our study of the transient dynamics of Abrikosov-Nielsen-Olesen vortices in systems with boundaries promises access to non-trivial effects in quantum field theory by means of bench-top laboratory experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000346831100018 Publication Date 2014-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1745-2473;1745-2481; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 22.806 Times cited 20 Open Access
Notes ; We would like to thank N. Nekrasov for illuminating discussions. The work was supported by the US Department of Energy, Office of Science Materials Sciences and Engineering Division (V.M.V., W.K.K., U.W., R.X., M.Z., Z.L.X., G.W.C. and partially I.L. through the Materials Theory Institute), by FP7-IRSES-SIMTECH and ITN-NOTEDEV programs (I.L.), and by the Flemish Science Foundation (FWO-Vlaanderen) (M.V.M. and F.M.P.). ; Approved Most recent IF: 22.806; 2015 IF: 20.147
Call Number c:irua:122791 c:irua:122791 Serial 2815
Permanent link to this record
 

 
Author Papp, G.; Peeters, F.M.
Title Resistance maps for a submicron Hall electrosensor in the diffusive regime Type A1 Journal article
Year 2007 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 101 Issue (up) 11 Pages 113717,1-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000247306000084 Publication Date 2007-06-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 7 Open Access
Notes Approved Most recent IF: 2.068; 2007 IF: 2.171
Call Number UA @ lucian @ c:irua:69645 Serial 2879
Permanent link to this record
 

 
Author Moldovan, D.; Masir, M.R.; Covaci, L.; Peeters, F.M.
Title Resonant valley filtering of massive Dirac electrons Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue (up) 11 Pages 115431
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Electrons in graphene, in addition to their spin, have two pseudospin degrees of freedom: sublattice and valley pseudospin. Valleytronics uses the valley degree of freedom as a carrier of information similarly to the way spintronics uses electron spin. We show how a double-barrier structure consisting of electric and vector potentials can be used to filter massive Dirac electrons based on their valley index. We study the resonant transmission through a finite number of barriers and we obtain the energy spectrum of a superlattice consisting of electric and vector potentials. When a mass term is included, the energy bands and energy gaps at the K and K′ points are different and they can be tuned by changing the potential.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000309173300004 Publication Date 2012-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 55 Open Access
Notes This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro- GRAPHENE within the project CONGRAN, and the Flemish Science Foundation (FWO-Vl). Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:101835 Serial 2896
Permanent link to this record
 

 
Author Földi, P.; Szaszkó-Bogár, V.; Peeters, F.M.
Title Spin-orbit interaction controlled properties of two-dimensional superlattices Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue (up) 11 Pages 115302-115302,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The band structure of two-dimensional artificial superlattices in the presence of (Rashba-type) spin-orbit interaction (SOI) is presented. The position and shape of the energy bands in these spintronic crystals depend on the geometry as well as the strength of the SOI, which can be tuned by external gate voltages. For finite mesoscopic arrays, we show that their conductance properties and possible applications can be understood from these spin-dependent band diagrams.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000281516300005 Publication Date 2010-09-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes ; We thank M. G. Benedict and F. Bartha for useful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP) and the Hungarian Scientific Research Fund (OTKA) under Contracts No. T81364 and No. M045596. P.F. was supported by a J. Bolyai grant of the Hungarian Academy of Sciences. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:84259 Serial 3092
Permanent link to this record
 

 
Author Papp, G.; Borza, S.; Peeters, F.M.
Title Spin transport in a Mn-doped ZnSe asymmetric tunnel structure Type A1 Journal article
Year 2005 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 97 Issue (up) 11 Pages 113901-113905
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Spin-dependent tunneling of electrons in a diluted magnetic semiconductor ZnSe/Zn1-xMnxSe/Zn1-yMnySe/ZnSe/Zn1-xMnxSe/ZnSe heterostructure is investigated theoretically in the presence of parallel magnetic and electric fields, but our modeling is appropriate for any dilute magnetic II-VI semiconductor system. In the studied asymmetric system the transmission of electrons and the degree of spin polarization depend on the strength of the magnetic and electric fields and on the direction of the applied bias. For suitable magnetic fields, the output current of the system exhibits a nearly 100% spin polarization and the device can be used as a spin filter. (C) 2005 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000229804700072 Publication Date 2005-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 26 Open Access
Notes Approved Most recent IF: 2.068; 2005 IF: 2.498
Call Number UA @ lucian @ c:irua:102728 Serial 3102
Permanent link to this record
 

 
Author Avetisyan, A.A.; Partoens, B.; Peeters, F.M.
Title Stacking order dependent electric field tuning of the band gap in graphene multilayers Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue (up) 11 Pages 115432,1-115432,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of different stacking order of graphene multilayers on the electric field induced band gap is investigated. We considered a positively charged top and a negatively charged back gate in order to independently tune the band gap and the Fermi energy of three and four layer graphene systems. A tight-binding approach within a self-consistent Hartree approximation is used to calculate the induced charges on the different graphene layers. We found that the gap for trilayer graphene with the ABC stacking is much larger than the corresponding gap for the ABA trilayer. Also we predict that for four layers of graphene the energy gap strongly depends on the choice of stacking, and we found that the gap for the different types of stacking is much larger as compared to the case of Bernal stacking. Trigonal warping changes the size of the induced electronic gap by approximately 30% for intermediate and large values of the induced electron density.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000276248800145 Publication Date 2010-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 142 Open Access
Notes ; ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:82274 Serial 3148
Permanent link to this record