Number of records found: 1296
 | 
Citations
 | 
   web
Microwave plasma-based dry reforming of methane: Reaction performance and carbon formation”. Kelly S, Mercer E, De Meyer R, Ciocarlan R-G, Bals S, Bogaerts A, Journal of CO2 utilization 75, 102564 (2023). http://doi.org/10.1016/j.jcou.2023.102564
toggle visibility
Atomic level mechanisms of graphene healing by methane-based plasma radicals”. Khalilov U, Yusupov M, Eshonqulov Gb, Neyts Ec, Berdiyorov Gr, FlatChem 39, 100506 (2023). http://doi.org/10.1016/j.flatc.2023.100506
toggle visibility
Plasma-based CO2 conversion: How to correctly analyze the performance?”.Wanten B, Vertongen R, De Meyer R, Bogaerts A, Journal of Energy Chemistry 86, 180 (2023). http://doi.org/10.1016/j.jechem.2023.07.005
toggle visibility
Plasma-catalytic ammonia synthesis : packed catalysts act as plasma modifiers”. Ndayirinde C, Gorbanev Y, Ciocarlan R-G, De Meyer R, Smets A, Vlasov E, Bals S, Cool P, Bogaerts A, Catalysis today 419, 114156 (2023). http://doi.org/10.1016/J.CATTOD.2023.114156
toggle visibility
NH3 decomposition for H2 production by thermal and plasma catalysis using bimetallic catalysts”. Meng S, Li S, Sun S, Bogaerts A, Liu Y, Yi Y, Chemical engineering science 283, 119449 (2024). http://doi.org/10.1016/j.ces.2023.119449
toggle visibility
Plasma-based dry reforming of CH4: Plasma effects vs. thermal conversion”. Slaets J, Loenders B, Bogaerts A, Fuel 360, 130650 (2024). http://doi.org/10.1016/j.fuel.2023.130650
toggle visibility
Importance of plasma discharge characteristics in plasma catalysis: Dry reforming of methane vs. ammonia synthesis”. De Meyer R, Gorbanev Y, Ciocarlan R-G, Cool P, Bals S, Bogaerts A, Chemical Engineering Journal 488, 150838 (2024). http://doi.org/10.1016/j.cej.2024.150838
toggle visibility
Plasma catalysis in ammonia production and decomposition: Use it, or lose it?”.Gorbanev Y, Fedirchyk I, Bogaerts A, Current Opinion in Green and Sustainable Chemistry 47, 100916 (2024). http://doi.org/10.1016/j.cogsc.2024.100916
toggle visibility
Machine learning-driven optimization of plasma-catalytic dry reforming of methane”. Cai Y, Mei D, Chen Y, Bogaerts A, Tu X, Journal of Energy Chemistry 96, 153 (2024). http://doi.org/10.1016/j.jechem.2024.04.022
toggle visibility
Effect of Gas Composition on Temperature and CO2Conversion in a Gliding Arc Plasmatron reactor: Insights for Post‐Plasma Catalysis from Experiments and Computation”. Xu W, Van Alphen S, Galvita VV, Meynen V, Bogaerts A, ChemSusChem (2024). http://doi.org/10.1002/cssc.202400169
toggle visibility
Improving the performance of gliding arc plasma-catalytic dry reforming via a new post-plasma tubular catalyst bed”. Xu W, Buelens LC, Galvita VV, Bogaerts A, Meynen V, Journal of CO2 Utilization 83, 102820 (2024). http://doi.org/10.1016/j.jcou.2024.102820
toggle visibility
Coupled multi-dimensional modelling of warm plasmas: Application and validation for an atmospheric pressure glow discharge in CO2/CH4/O2”. Maerivoet S, Tsonev I, Slaets J, Reniers F, Bogaerts A, Chemical Engineering Journal 492, 152006 (2024). http://doi.org/10.1016/j.cej.2024.152006
toggle visibility
Capturing wetting states in nanopatterned silicon”. Xu X, Vereecke G, Chen C, Pourtois G, Armini S, Verellen N, Tsai WK, Kim DW, Lee E, Lin CY, Van Dorpe P, Struyf H, Holsteyns F, Moshchalkov V, Indekeu J, De Gendt S;, ACS nano 8, 885 (2014). http://doi.org/10.1021/nn405621w
toggle visibility
Characterization of complex silver halide photographic systems by means of analytical electron microscopy”. Oleshko V, Gijbels R, Jacob W, Alfimov M, Microbeam analysis 4, 1 (1995)
toggle visibility
Characterization of double structure tabular microcrystals of silver halide emulsions by means of electron energy-loss spectroscopy, zero-loss electron spectroscopic imaging and energy dispersive X-ray microanalysis”. Oleshko V, Gijbels R, Jacob W, Lakiere F, van Daele A, Silaev E, Kaplun L, Microscopy, microanalysis, microstructures 6, 79 (1995). http://doi.org/10.1051/mmm:1995108
toggle visibility
Computer simulations of an oxygen inductively coupled plasma used for plasma-assisted atomic layer deposition”. Tinck S, Bogaerts A, Plasma sources science and technology 20, 015008 (2011). http://doi.org/10.1088/0963-0252/20/1/015008
toggle visibility
Corrélations chimiques-géothermométriques des paramètres microchimiques des hydrothermes profonds”. Pentcheva E, Van 't dack L, Veldeman E, Gijbels R, Comptes rendus de l'Académie bulgare des sciences 49, 61 (1996)
toggle visibility
Energy-filtering TEM and electron energy-loss spectroscopy of double structure tabular microcrystals of silver halide emulsions”. Oleshko V, Gijbels R, Jacob W, Journal of microscopy 183, 27 (1996). http://doi.org/10.1046/j.1365-2818.1996.73068.x
toggle visibility
Engineering the electronic properties of silicene by tuning the composition of MoX2 and GaX (X = S,Se,Te) chalchogenide templates”. Scalise E, Houssa M, Cinquanta E, Grazianetti C, van den Broek B, Pourtois G, Stesmans A, Fanciulli M, Molle A, 2D materials 1, 011010 (2014). http://doi.org/10.1088/2053-1583/1/1/011010
toggle visibility
Evolution of charged particle densities after laser-induced photodetachment in a strongly electronegative RF discharge”. Yan M, Bogaerts A, Gijbels R, IEEE transactions on plasma science 30, 132 (2002). http://doi.org/10.1109/TPS.2002.1003959
toggle visibility
Fluid simulation of the phase-shift effect in hydrogen capacitively coupled plasmas: 1 : transient behaviour of electrodynamics and power deposition”. Zhang Y-R, Xu X, Bogaerts A, Wang Y-N, Journal of physics: D: applied physics 45, 015202 (2012). http://doi.org/10.1088/0022-3727/45/1/015202
toggle visibility
Fluid simulation of the phase-shift effect in hydrogen capacitively coupled plasmas: 2 : radial uniformity of the plasma characteristics”. Zhang Y-R, Xu X, Bogaerts A, Wang Y-N, Journal of physics: D: applied physics 45, 015203 (2012). http://doi.org/10.1088/0022-3727/45/1/015203
toggle visibility
Formation of a nanoscale SiO2 capping layer on photoresist lines with an Ar/SiCl4/O2 inductively coupled plasma : a modeling investigation”. Tinck S, Altamirano-Sánchez E, De Schepper P, Bogaerts A, Plasma processes and polymers 11, 52 (2014). http://doi.org/10.1002/ppap.201300062
toggle visibility
Fundamental aspects and applications of glow discharge spectrometric techniques”. Bogaerts A, Gijbels R, Spectrochimica acta: part B : atomic spectroscopy 53, 1 (1998). http://doi.org/10.1016/S0584-8547(97)00122-5
toggle visibility
Gas ratio effects on the Si etch rate and profile uniformity in an inductively coupled Ar/CF4 plasma”. Zhao S-X, Gao F, Wang Y-N, Bogaerts A, Plasma sources science and technology 22, 015017 (2013). http://doi.org/10.1088/0963-0252/22/1/015017
toggle visibility
The importance of an external circuit in a particle-in-cell/Monte Carlo collisions model for a direct current planar magnetron”. Bultinck E, Kolev I, Bogaerts A, Depla D, Journal of applied physics 103, 013309 (2008). http://doi.org/10.1063/1.2828155
toggle visibility
Interpretation of TOF-SIMS depth profiles from ultrashallow high-k dielectric stacks assisted by hybrid collisional computer simulation”. Ignatova VA, Möller W, Conard T, Vandervorst W, Gijbels R, Applied physics A : materials science &, processing 81, 71 (2005). http://doi.org/10.1007/s00339-005-3239-8
toggle visibility
Modeling of radio-frequency and direct current glow discharges in argon”. Bogaerts A, Gijbels R, Journal of technical physics 41, 183 (2000)
toggle visibility
Numerical study of the sputtering in a dc magnetron”. Kolev I, Bogaerts A, Journal of vacuum science and technology: A: vacuum surfaces and films 27, 20 (2009). http://doi.org/10.1021/jp8058992
toggle visibility
Plasma chemistry modeling for an inductively coupled plasma used for the growth of carbon nanotubes”. Mao M, Bogaerts A, Journal of physics : conference series 275, 012021 (2011). http://doi.org/10.1088/1742-6596/275/1/012021
toggle visibility