|   | 
Details
   web
Records
Author Vagov, A.; Shanenko, A.A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M.
Title Two-band superconductors : extended Ginzburg-Landau formalism by a systematic expansion in small deviation from the critical temperature Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue (up) 14 Pages 144514
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We derive the extended Ginzburg-Landau (GL) formalism for a clean s-wave two-band superconductor by employing a systematic expansion of the free-energy functional and the corresponding matrix gap equation in powers of the small deviation from the critical temperature tau = 1 – T/T-c. The two lowest orders of this expansion produce the equation for T-c and the standard GL theory. It is shown that in agreement with previous studies, this two-band GL theory maps onto the single-band GL model and thus fails to describe the difference in the spatial profiles of the two-band condensates. We prove that this difference appears already in the leading correction to the standard GL theory, which constitutes the extended GL formalism. We derive linear differential equations that determine the leading corrections to the band order parameters and magnetic field, discuss the validity of these equations, and consider examples of an important interplay between the band condensates. Finally, we present numerical results for the thermodynamic critical magnetic field and temperature-dependent band gaps for recent materials of interest, which are in very good agreement with those obtained from the full BCS approach in a wide temperature range. To this end, we emphasize the advantages of our extended GL theory in comparison with the often used two-component GL-like model based on an unreconstructed two-band generalization of the Gor'kov derivation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000309776800001 Publication Date 2012-10-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 44 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Authors are indebted to Y. Singh and R. Prozorov for discussions and for providing recent experimental data. A. V. is grateful to W. Pesch for stimulating discussions and critical comments on this work. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:101798 Serial 3769
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M.
Title Vortex states in nanoscale superconducting squares : the influence of quantum confinement Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue (up) 14 Pages 144501
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Bogoliubov-de Gennes theory is used to investigate the effect of the size of a superconducting square on the vortex states in the quantum confinement regime. When the superconducting coherence length is comparable to the Fermi wavelength, the shape resonances of the superconducting order parameter have strong influence on the vortex configuration. Several unconventional vortex states, including asymmetric ones, giant-multivortex combinations, and states comprising giant antivortices, were found as ground states and their stability was found to be very sensitive on the value of k(F)xi(0), the size of the sample W, and the magnetic flux Phi. By increasing the temperature and/or enlarging the size of the sample, quantum confinement is suppressed and the conventional mesoscopic vortex states as predicted by the Ginzburg-Laudau (GL) theory are recovered. However, contrary to the GL results we found that the states containing symmetry-induced vortex-antivortex pairs are stable over the whole temperature range. It turns out that the inhomogeneous order parameter induced by quantum confinement favors vortex-antivortex molecules, as well as giant vortices with a rich structure in the vortex core-unattainable in the GL domain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000325498300004 Publication Date 2013-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 19 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and Methusalem Funding of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:111145 Serial 3891
Permanent link to this record
 

 
Author Baelus, B.J.; Peeters, F.M.; Schweigert, V.A.
Title Vortex states in superconducting rings Type A1 Journal article
Year 2000 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 61 Issue (up) 14 Pages 9734-9747
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The superconducting state. of a thin superconducting disk with a hole is studied within the, nonlinear Ginzburg-Landau theory in which the demagnetization effect is accurately taken into account. We find that the flux through the hole is not quantized, the superconducting state is stabilized with increasing size of the hole for fixed radius of the disk, and a transition to a multivortex state is found if the disk is sufficiently large. Breaking the circular symmetry through a non-central-location of the hole in the disk favors the multivortex state.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000086441800074 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 78 Open Access
Notes Approved Most recent IF: 3.836; 2000 IF: NA
Call Number UA @ lucian @ c:irua:28514 Serial 3892
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.
Title Vortices induced in a superconducting loop by asymmetric kinetic inductance and their detection in transport measurements Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue (up) 14 Pages 144511,1-144511,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using time-dependent Ginzburg-Landau theory, we study the dynamic properties of a rectangular superconducting loop, which are found to depend on the position of the current leads. For asymmetric positioning of the leads, different kinetic inductance of the two paths for injected electric current leads to different critical conditions in the two branches. System self-regulates by allowing vortex entry, as vortex currents bring equilibration between the two current flows and the conventional resistive state can be realized. We also demonstrate that individual vortex entry in the loop can be detected by measuring the voltage between normal-metal leads, for applied currents comparable in magnitude to the screening currents.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000277210200107 Publication Date 2010-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the ESF-NES program, and the ESF-AQDJJ network. G.R.B. acknowledges support from FWO-Vlaanderen. The authors thank S. Michotte for useful discussions. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:82804 Serial 3901
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Lopez-Perez, W.; Gonzalez-Hernandez, R.; Rivera-Julio, J.; Espejo, C.; Milošević, M.V.; Peeters, F.M.
Title Two-dimensional hydrogenated buckled gallium arsenide: an ab initio study Type A1 Journal article
Year 2020 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat
Volume 32 Issue (up) 14 Pages 145502
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract First-principles calculations have been carried out to investigate the stability, structural and electronic properties of two-dimensional (2D) hydrogenated GaAs with three possible geometries: chair, zigzag-line and boat configurations. The effect of van der Waals interactions on 2D H-GaAs systems has also been studied. These configurations were found to be energetic and dynamic stable, as well as having a semiconducting character. Although 2D GaAs adsorbed with H tends to form a zigzag-line configuration, the energy differences between chair, zigzag-line and boat are very small which implies the metastability of the system. Chair and boat configurations display a – direct bandgap nature, while pristine 2D-GaAs and zigzag-line are indirect semiconductors. The bandgap sizes of all configurations are also hydrogen dependent, and wider than that of pristine 2D-GaAs with both PBE and HSE functionals. Even though DFT-vdW interactions increase the adsorption energies and reduce the equilibrium distances of H-GaAs systems, it presents, qualitatively, the same physical results on the stability and electronic properties of our studied systems with PBE functional. According to our results, 2D buckled gallium arsenide is a good candidate to be synthesized by hydrogen surface passivation as its group III-V partners 2D buckled gallium nitride and boron nitride. The hydrogenation of 2D-GaAs tunes the bandgap of pristine 2D-GaAs, which makes it a potential candidate for optoelectronic applications in the blue and violet ranges of the visible electromagnetic spectrum.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000507894400001 Publication Date 2019-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.7 Times cited Open Access
Notes ; This work has been carried out by the financial support of Universidad del Norte and Colciencias (Administrative Department of Science, Technology and Research of Colombia) under Convocatoria 712-Convocatoria para proyectos de investigacion en Ciencias Basicas, ano 2015, Cod: 121571250192, Contrato 110-216. The authors gratefully acknowledge the support from the High Performance Computing core facility CalcUA and the TOPBOF project at the University of Antwerp, Belgium; and the computing time granted on the supercomputer Mogon at Johannes Gutenberg University Mainz (hpc.uni-mainz.de). ; Approved Most recent IF: 2.7; 2020 IF: 2.649
Call Number UA @ admin @ c:irua:165644 Serial 6330
Permanent link to this record
 

 
Author González-García, A.; López-Pérez, W.; González-Hernández, R.; Bacaksiz, C.; Šabani, D.; Milošević, M.V.; Peeters, F.M.
Title Transition-metal adatoms on 2D-GaAs: a route to chiral magnetic 2D materials by design Type A1 Journal article
Year 2021 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat
Volume 33 Issue (up) 14 Pages 145803
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using relativistic density-functional calculations, we examine the magneto-crystalline anisotropy and exchange properties of transition-metal atoms adsorbed on 2D-GaAs. We show that single Mn and Mo atom (Co and Os) strongly bind on 2D-GaAs, and induce local out-of-plane (in-plane) magnetic anisotropy. When a pair of TM atoms is adsorbed on 2D-GaAs in a close range from each other, magnetisation properties change (become tunable) with respect to concentrations and ordering of the adatoms. In all cases, we reveal presence of strong Dzyaloshinskii–Moriya interaction. These results indicate novel pathways towards two-dimensional chiral magnetic materials by design, tailored for desired applications in magneto-electronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000626453600001 Publication Date 2021-04-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.649 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.649
Call Number CMT @ cmt @c:irua:177483 Serial 6755
Permanent link to this record
 

 
Author Chang, K.; Peeters, F.M.
Title Bright to dark exciton transition in symmetric coupled quantum wells Type A1 Journal article
Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 63 Issue (up) 15 Pages
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The energy dispersion of an exciton in a coupled quantum well is modified by an external in-plane magnetic field. We find that the in-plane magnetic field can shift the ground state of the magnetoexciton from a zero in-plane center-of-mass (CM) momentum to a finite CM momentum, and render the ground state of the magnetoexciton stable against radiative recombination due to momentum conservation. At the same time, a spatial separation of the electron and hole is realized. Thus an in-plane magnetic field can be used to tailor the radiative properties of excitons in coupled quantum wells.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000168215400013 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 42 Open Access
Notes Approved Most recent IF: 3.836; 2001 IF: NA
Call Number UA @ lucian @ c:irua:37292 Serial 256
Permanent link to this record
 

 
Author Backes, W.H.; Peeters, F.M.; Brosens, F.; Devreese, J.T.
Title Dispersion of longitudinal plasmons for a quasi-two-dimensional electron gas Type A1 Journal article
Year 1992 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 45 Issue (up) 15 Pages 8437-8442
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract Confinement of electrons in ultrathin metallic films leads to subbands. By increasing the thickness of the electron layer, the subbands will dissolve into a quasicontinuum, with the number of electrons per unit volume kept constant. Within the random-phase approximation, the two-dimensional plasmon, which originally follows Stern's dispersion relation, becomes a longitudinal surface plasmon. The plasmon excitations of a model metallic film are investigated by including all subbands. Single-particle excitations, which exhibit the depolarization shift, converge into the plasma excitation spectrum. With further increases in the film thickness, the bulk plasmon arises and the surface plasmon remains. Our analysis shows how quantum size effects evolve into hydrodynamical classical size effects with increasing thickness of the film.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1992HR33600028 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 37 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:2738 Serial 737
Permanent link to this record
 

 
Author Govaerts, K.; Park, K.; De Beule, C.; Partoens, B.; Lamoen, D.
Title Effect of Bi bilayers on the topological states of Bi2Se3 : a first-principles study Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue (up) 15 Pages 155124
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Bi2Se3 is a three-dimensional topological insulator which has been extensively studied because it has a single Dirac cone on the surface, inside a relatively large bulk band gap. However, the effect of two-dimensional topological insulator Bi bilayers on the properties of Bi2Se3 and vice versa, has not been explored much. Bi bilayers are often present between the quintuple layers of Bi2Se3, since (Bi2)n(Bi2Se3)m form stable ground-state structures. Moreover, Bi2Se3 is a good substrate for growing ultrathin Bi bilayers. By first-principles techniques, we first show that there is no preferable surface termination by either Bi or Se. Next, we investigate the electronic structure of Bi bilayers on top of, or inside a Bi2Se3 slab. If the Bi bilayers are on top, we observe a charge transfer to the quintuple layers that increases the binding energy of the surface Dirac cones. The extra states, originating from the Bi bilayers, were declared to form a topological Dirac cone, but here we show that these are ordinary Rashba-split states. This result, together with the appearance of a new Dirac cone that is localized slightly deeper, might necessitate the reinterpretation of several experimental results. When the Bi bilayers are located inside the Bi2Se3 slab, they tend to split the slab into two topological insulators with clear surface states. Interface states can also be observed, but an energy gap persists because of strong coupling between the neighboring quintuple layers and the Bi bilayers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000343773200001 Publication Date 2014-10-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 30 Open Access
Notes ; We gratefully acknowledge financial support from the Research Foundation – Flanders (FWO-Vlaanderen). K.G. thanks the University of Antwerp for a Ph.D. fellowship. C.D.B. is an aspirant of the Flemish Science Foundation. This work was carried out using the HPC infrastructure at the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC, supported financially by the Hercules Foundation and the Flemish Government (EWI Department). K.P. was supported by U.S. National Science Foundation Grant No. DMR-1206354. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119527 Serial 800
Permanent link to this record
 

 
Author Hai; Studart; Peeters, F.M.
Title Electron-mobility in 2 coupled delta-layers Type A1 Journal article
Year 1995 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 52 Issue (up) 15 Pages 11273-11276
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The low-temperature transport properties are studied for electrons confined in delta-doped semiconductor structures with two sheets in parallel. The subband quantum mobility and transport mobility are calculated numerically for the Si delta-doped GaAs systems. The effect of coupling of the two delta layers on the electron transport is investigated. Our calculations are in good agreement with experimental results.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1995TA85200092 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 25 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:95343 Serial 976
Permanent link to this record
 

 
Author Zhang, Z.; Partoens, B.; Chang, K.; Peeters, F.M.
Title First-principles study of transition metal impurities in Si Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 77 Issue (up) 15 Pages 155201,1-8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000255457400057 Publication Date 2008-04-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 72 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:68846 Serial 1221
Permanent link to this record
 

 
Author Horzum, S.; Çakir, D.; Suh, J.; Tongay, S.; Huang, Y.-S.; Ho, C.-H.; Wu, J.; Sahin, H.; Peeters, F.M.
Title Formation and stability of point defects in monolayer rhenium disulfide Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 89 Issue (up) 15 Pages 155433
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recently, rhenium disulfide (ReS2) monolayers were experimentally extracted by conventional mechanical exfoliation technique from as-grown ReS2 crystals. Unlike the well-known members of transition metal dichalcogenides (TMDs), ReS2 crystallizes in a stable distorted-1T structure and lacks an indirect to direct gap crossover. Here we present an experimental and theoretical study of the formation, energetics, and stability of the most prominent lattice defects in monolayer ReS2. Experimentally, irradiation with 3-MeV He+2 ions was used to break the strong covalent bonds in ReS2 flakes. Photoluminescence measurements showed that the luminescence from monolayers is mostly unchanged after highly energetic a particle irradiation. In order to understand the energetics of possible vacancies in ReS2 we performed systematic first-principles calculations. Our calculations revealed that the formation of a single sulfur vacancy has the lowest formation energy in both Re and S rich conditions and a random distribution of such defects are energetically more preferable. Sulfur point defects do not result in any spin polarization whereas the creation of Re-containing point defects induce magnetization with a net magnetic moment of 1-3 mu B. Experimentally observed easy formation of sulfur vacancies is in good agreement with first-principles calculations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000337301200009 Publication Date 2014-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 130 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the bilateral project FWO-TUBITAK, and the Methusalem Foundation of the Flemish government. Computational resources were provided by TUBITAK ULAK-BIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. S. was supported by a FWO Pegasus Long Marie Curie Fellowship. D. C. was supported by a FWO Pegasus-short Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:118410 Serial 1250
Permanent link to this record
 

 
Author Tomecka, D.M.; Kamieniarz, G.; Partoens, B.; Peeters, F.M.
Title Ground state configurations and melting of two-dimensional non-uniformly charged classical clusters Type A1 Journal article
Year 2009 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 21 Issue (up) 15 Pages 155301,1-155301,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We consider classical two-dimensional (2D) Coulomb clusters consisting of two species containing five particles with charge q1 and five with charge q2, respectively. Using Monte Carlo and molecular dynamics (MD) simulations, we investigated the ground state configurations as well as radial and angular displacements of particles as a function of temperature and their dependence on the ratio q = q2/q1. We found new configurations and a new multi-step melting behavior for q sufficiently different from the uniform charge limit q = 1.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000264708600007 Publication Date 2009-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 2 Open Access
Notes Approved Most recent IF: 2.649; 2009 IF: 1.964
Call Number UA @ lucian @ c:irua:76412 Serial 1384
Permanent link to this record
 

 
Author Sidor, Y.; Partoens, B.; Peeters, F.M.; Schildermans, N.; Hayne, M.; Moshchalkov, V.V.; Rastelli, A.; Schmidt, O.G.
Title High-field magnetoexcitons in unstrained GaAs/AlxGa1-xAs quantum dots Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 73 Issue (up) 15 Pages 155334,1-8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000237155100084 Publication Date 2006-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 50 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:58275 Serial 1429
Permanent link to this record
 

 
Author Fedina, L.; Lebedev, O.I.; Van Tendeloo, G.; van Landuyt, J.; Mironov, O.A.; Parker, E.H.C.
Title In situ HREM irradiation study of point-defect clustering in MBE-grown strained Si1-xGex/(001)Si structures Type A1 Journal article
Year 2000 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 61 Issue (up) 15 Pages 10336-10345
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We present a detailed analysis of the point-defect clustering in strained Si/Si(1-x)Ge(x)/(001)Si structures, including the interaction of the point defects with the strained interfaces and the sample surface during 400 kV electron irradiation at room temperature. Point-defect cluster formation is very sensitive to the type and magnitude of the strain in the Si and Si(1-x)Ge(x) layers. A small compressive strain (-0.3%) in the SiGe alloy causes an aggregation of vacancies in the form of metastable [110]-oriented chains. They are located on {113} planes and further recombine with interstitials. Tensile strain in the Si layer causes an aggregation of interstitial atoms in the forms of additional [110] rows which are inserted on {113} planes with [001]-split configurations. The chainlike configurations are characterized by a large outward lattice relaxation for interstitial rows (0.13 +/-0.01 nm) and a very small inward relaxation for vacancy chains (0.02+/-0.01 nm). A compressive strain higher than -0.5% strongly decreases point-defect generation inside the strained SiGe alloy due to the large positive value of the formation volume of a Frenkel pair. This leads to the suppression of point-defect clustering in a strained SiGe alloy so that SiGe relaxes via a diffusion of vacancies from the Si layer, giving rise to an intermixing at the Si/SiGe interface. In material with a 0.9% misfit a strongly increased flow of vacancies from the Si layer to the SiGe layer and an increased biaxial strain in SiGe bath promote the preferential aggregation of vacancies in the (001) plane, which relaxes to form intrinsic 60 degrees dislocation loops.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000086606200082 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes Conference Name: Microsc. Semicond. Mater. Conf. Approved Most recent IF: 3.836; 2000 IF: NA
Call Number UA @ lucian @ c:irua:103456 Serial 1577
Permanent link to this record
 

 
Author Pauwels, B.; Van Tendeloo, G.; Bouwen, W.; Kuhn, L.T.; Lievens, P.; Lei, H.; Hou, M.
Title Low-energy-deposited Au clusters investigated by high-resolution electron microscopy and molecular dynamics simulations Type A1 Journal article
Year 2000 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 62 Issue (up) 15 Pages 10383-10393
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000089977100084 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 88 Open Access
Notes Approved Most recent IF: 3.836; 2000 IF: NA
Call Number UA @ lucian @ c:irua:54733 Serial 1849
Permanent link to this record
 

 
Author Janssens, K.L.; Partoens, B.; Peeters, F.M.
Title Magneto-excitons in planar type II quantum dots Type A1 Journal article
Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 64 Issue (up) 15 Pages
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study an exciton in a type-II quantum dot, where the electron is confined in the dot, but the hole is located in the barrier material. The exciton properties are studied as a function of a perpendicular magnetic field using a Hartree-Fock mesh calculation. Our model system consists of a planar quantum disk. Angular momentum (l) transitions are predicted with increasing magnetic field. We, also study the transition from a type-I to a type-H quantum dot which is induced by changing the confinement potential of the hole. For sufficiently large magnetic fields a reentrant behavior is found from l(h) = 0 to l(h) not equal 0 and back to l(h) = 0, which results in a transition from type II to type I.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000171694600068 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 56 Open Access
Notes Approved Most recent IF: 3.836; 2001 IF: NA
Call Number UA @ lucian @ c:irua:37281 Serial 1900
Permanent link to this record
 

 
Author Tan, H.; Egoavil, R.; Béché, A.; Martinez, G.T.; Van Aert, S.; Verbeeck, J.; Van Tendeloo, G.; Rotella, H.; Boullay, P.; Pautrat, A.; Prellier, W.
Title Mapping electronic reconstruction at the metal-insulator interface in LaVO3/SrVO3 heterostructures Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue (up) 15 Pages 155123-155126
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A (LaVO3)6/(SrVO3)(3) superlattice is studied with a combination of sub-A resolved scanning transmission electron microscopy and monochromated electron energy-loss spectroscopy. The V oxidation state is mapped with atomic spatial resolution enabling us to investigate electronic reconstruction at the LaVO3/SrVO3 interfaces. Surprisingly, asymmetric charge distribution is found at adjacent chemically symmetric interfaces. The local structure is proposed and simulated with a double channeling calculation which agrees qualitatively with our experiment. We demonstrate that local strain asymmetry is the likely cause of the electronic asymmetry of the interfaces. The electronic reconstruction at the interfaces extends much further than the chemical composition, varying from 0.5 to 1.2 nm. This distance corresponds to the length of charge transfer previously found in the (LaVO3)./(SrVO3). metal/insulating and the (LaAlO3)./(SrTiO3). insulating/insulating interfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000326087100003 Publication Date 2013-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 15 Open Access
Notes Hercules; 246791 COUNTATOMS; 278510 VORTEX; 246102 IFOX; 312483 ESTEEM2; FWO; GOA XANES meets ELNES; esteem2jra3 ECASJO; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:112733UA @ admin @ c:irua:112733 Serial 1944
Permanent link to this record
 

 
Author Jorissen, K.; Rehr, J.J.; Verbeeck, J.
Title Multiple scattering calculations of relativistic electron energy loss spectra Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue (up) 15 Pages 155108,1-155108,6
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A generalization of the real-space Greens-function approach is presented for ab initio calculations of relativistic electron energy loss spectra (EELS) which are particularly important in anisotropic materials. The approach incorporates relativistic effects in terms of the transition tensor within the dipole-selection rule. In particular, the method accounts for relativistic corrections to the magic angle in orientation resolved EELS experiments. The approach is validated by a study of the graphite C  K edge, for which we present an accurate magic angle measurement consistent with the predicted value.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000277210500038 Publication Date 2010-04-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 24 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:82805UA @ admin @ c:irua:82805 Serial 2230
Permanent link to this record
 

 
Author Smondyrev, M.A.; Vansant, P.; Peeters, F.M.; Devreese, J.T.
Title Nonlinear Schrödinger equation on a circle Type A1 Journal article
Year 1995 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 52 Issue (up) 15 Pages 11231-11237
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract The nonlinear Schrodinger equation is solved on an infinitesimal thin ring or circle. We obtained the exact real wave functions with their corresponding energies for the ground state and the excited states. Critical values of the circle perimeter are found at which the ground state changes its structure and additional higher excited states appear. Also, the complex wave functions that correspond to energy levels with finite angular momentum are studied.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1995TA85200087 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 5 Open Access
Notes Approved PHYSICS, APPLIED 47/145 Q2 #
Call Number UA @ lucian @ c:irua:11697 Serial 2356
Permanent link to this record
 

 
Author Xu, W.; Peeters, F.M.; Devreese, J.T.
Title Normal and hot electro-phonon resonance effect in a quasi-two-dimensional semiconductor system Type A1 Journal article
Year 1993 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 5 Issue (up) 15 Pages 2307-2320
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract The electro-phonon resonance effect is a consequence of a resonant interaction between two electric subbands mediated by an optical phonon. It occurs in a quasi-two-dimensional electron system each time the energy difference between two electric subbands equals the energy of a Lo phonon. We study the influence of this effect on the electron mobility by using the momentum balance equation. The temperature and electron density dependences of the resonances are studied in the linear and non-linear response regimes.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1993KX70100004 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.346 Times cited 18 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:102984 Serial 2367
Permanent link to this record
 

 
Author Földi, P.; Kálmán, O.; Benedict, M.G.; Peeters, F.M.
Title Quantum rings as electron spin beam splitters Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 73 Issue (up) 15 Pages 155325,1-5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000237155100075 Publication Date 2006-04-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 145 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:58274 Serial 2783
Permanent link to this record
 

 
Author Lavor, I.R.; da Costa, D.R.; Chaves, A.; Farias, G.A.; Macedo, R.; Peeters, F.M.
Title Magnetic field induced vortices in graphene quantum dots Type A1 Journal article
Year 2020 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat
Volume 32 Issue (up) 15 Pages 155501
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The energy spectrum and local current patterns in graphene quantum dots (QD) are investigated for different geometries in the presence of an external perpendicular magnetic field. Our results demonstrate that, for specific geometries and edge configurations, the QD exhibits vortex and anti-vortex patterns in the local current density, in close analogy to the vortex patterns observed in the probability density current of semiconductor QD, as well as in the order parameter of mesoscopic superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000520149200001 Publication Date 2019-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited 5 Open Access
Notes ; This work was financially supported by the CAPES foundation and CNPq (Science Without Borders, PQ and FUNCAP/PRONEX programs). ; Approved Most recent IF: 2.7; 2020 IF: 2.649
Call Number UA @ admin @ c:irua:167670 Serial 6558
Permanent link to this record
 

 
Author Cassiers, K.; van der Voort, P.; Linssen, T.; Vansant, E.F.; Lebedev, O.; van Landuyt, J.
Title A counterion-catalyzed (S0H+)(X-I+) pathway toward heat- and steam-stable mesostructured silica assembled from amines in acidic conditions Type A1 Journal article
Year 2003 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B
Volume 107 Issue (up) 16 Pages 3690-3696
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract An alternative pathway to assemble mesoporous molecular sieve silicas is developed using nonionic alkylamines and N,N-dimethylalkylamines (SO) as structure-directing agents in acidic conditions. The synthesized mesostructures possess wormhole-like frameworks with pore sizes and pore volumes in the range of 20-90 Angstrom and 0.5-1.3 cm(3)/g, respectively. The formation of the mesophase is controlled by a counterion-mediated mechanism of the type (S(0)H(+))(X(-)I(+)), where S(0)H(+) are protonated water molecules that are hydrogen bonded to the lone electron pairs on the amine surfactant headgroups (S(0)H(+)), X(-) is the counteranion originating from the acid, and I(+) are the positively charged (protonated) silicate species. We found that the stronger the ion X(-) is bonded to S(0)H(+), the more it catalyzes the silica condensation into (S(0)H(+))(X(-)I(+)). Br(-) is shown to be a strong binding anion and therefore a fast silica polymerization promoter compared to Cl(-) resulting in the formation of a higher quality mesophase for the Br(-) syntheses. We also showed that the polymerization rate of the silica, dictated by the counterion, controls the morphology of the mesostructures from nonuniform agglomerated blocks in the case of Br(-) syntheses to spherical particles for the Cl(-) syntheses. Next to many benefits such as low temperature, short synthesis time, and the use of inexpensive, nontoxic, and easily extractable amine templates, the developed materials have a remarkable higher thermal and hydrothermal stability compared to hexagonal mesoporous silica, which is also prepared with nonionic amines but formed through the S(0)I(0) mechanism.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000182350200005 Publication Date 2003-04-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.177 Times cited 9 Open Access
Notes Approved Most recent IF: 3.177; 2003 IF: 3.679
Call Number UA @ lucian @ c:irua:103300 Serial 24
Permanent link to this record
 

 
Author Sahin, H.; Tongay, S.; Horzum, S.; Fan, W.; Zhou, J.; Li, J.; Wu, J.; Peeters, F.M.
Title Anomalous Raman spectra and thickness-dependent electronic properties of WSe2 Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue (up) 16 Pages 165409-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Typical Raman spectra of transition-metal dichalcogenides (TMDs) display two prominent peaks, E-2g and A(1g), that are well separated from each other. We find that these modes are degenerate in bulk WSe2 yielding one single Raman peak in contrast to other TMDs. As the dimensionality is lowered, the observed peak splits in two. In contrast, our ab initio calculations predict that the degeneracy is retained even for WSe2 monolayers. Interestingly, for minuscule biaxial strain, the degeneracy is preserved, but once the crystal symmetry is broken by a small uniaxial strain, the degeneracy is lifted. Our calculated phonon dispersion for uniaxially strained WSe2 shows a good match to the measured Raman spectrum, which suggests that uniaxial strain exists in WSe2 flakes, possibly induced during the sample preparation and/or as a result of the interaction between WSe2 and the substrate. Furthermore, we find that WSe2 undergoes an indirect-to-direct band-gap transition from bulk to monolayers, which is ubiquitous for semiconducting TMDs. These results not only allow us to understand the vibrational and electronic properties of WSe2, but also point to effects of the interaction between the monolayer TMDs and the substrate on the vibrational and electronic properties. DOI: 10.1103/PhysRevB.87.165409
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000317195400007 Publication Date 2013-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 365 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. S. is supported by the FWO Pegasus Marie Curie Long Fellowship program. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:108471 Serial 134
Permanent link to this record
 

 
Author Matsubara, M.; Amini, M.N.; Saniz, R.; Lamoen, D.; Partoens, B.
Title Attracting shallow donors : hydrogen passivation in (Al,Ga,In)-doped ZnO Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue (up) 16 Pages 165207
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract The hydrogen interstitial and the substitutional AlZn, GaZn, and InZn are all shallow donors in ZnO and lead to n-type conductivity. Although shallow donors are expected to repel each other, we show by first-principles calculations that in ZnO these shallow donor impurities attract and form a complex, leading to a donor level deep in the band gap. This puts a limit on the n-type conductivity of (Al,Ga,In)-doped ZnO in the presence of hydrogen.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000310131300008 Publication Date 2012-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes Iwt; Fwo; Bof-Noi Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:101780 Serial 202
Permanent link to this record
 

 
Author Baumgartner, A.; Ihn, T.; Ensslin, K.; Papp, G.; Peeters, F.; Maranowski, K.; Gossard, A.C.;
Title Classical hall effect in scanning gate experiments Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 74 Issue (up) 16 Pages 7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000241723700112 Publication Date 2006-10-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 20 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:61360 Serial 366
Permanent link to this record
 

 
Author Tadić, M.; Peeters, F.M.; Janssens, K.L.
Title Effect of isotropic versus anisotropic elasticity on the electronic structure of cylindrical InP/In0.49Ga0.51P self-assembled quantum dots Type A1 Journal article
Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 65 Issue (up) 16 Pages 165333-13
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic structure of disk-shaped InP/InGaP self-assembled quantum dots is calculated within the effective-mass theory. The strain-dependent 6x6 multiband Hamiltonian for the valence band is simplified into an axially symmetric form. Both the continuum mechanical model, discretized by finite elements, and the isotropic model are used to calculate the strain distribution and their results are critically compared. The dependence of the electron and the hole energy levels on the dimensions of the quantum dot is investigated. We found that both the electron and hole energies are underestimated if the strain distribution is calculated by the isotropic elasticity theory. The agreement between the electron energies for the two approaches is better for thinner quantum dots. The heavy holes are confined inside the quantum dot, while the light holes are located outside the disk, but confined by the strain field near the edge of the disk periphery. We found that the (h) over bar /2 hole ground state crosses the 3 (h) over bar /2 ground state when the height of the quantum dot increases and becomes the ground state for sufficiently thick quantum disks. The higher hole levels exhibit both crossings between the states of the different parity and anticrossings between the states of the same parity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000175325000097 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 72 Open Access
Notes Approved Most recent IF: 3.836; 2002 IF: NA
Call Number UA @ lucian @ c:irua:103361 Serial 819
Permanent link to this record
 

 
Author Shakouri, K.; Szafran, B.; Esmaeilzadeh, M.; Peeters, F.M.
Title Effective spin-orbit interaction Hamiltonian for quasi-one-dimensional quantum rings Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue (up) 16 Pages 165314-165314,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effective Hamiltonian for an electron in a quasi-one-dimensional quantum ring in the presence of spin-orbit interactions is derived. We demonstrate that, when both coupling types are simultaneously present, the effective Hamiltonian derived by the lowest-radial-state approximation produces energy spectra and charge densities which deviate strongly from the exact ones. For equal Rashba and Dresselhaus coupling constants the lowest-radial-state approximation opens artifactal avoided crossings in the energy spectra and deforms the circular symmetry of the confined charge densities. In this case, there does not exist a ring thin enough to justify the restriction to the lowest radially quantized energy state. We derive the effective Hamiltonian accounting for both the lowest and the first excited radial states, and show that the inclusion of the latter restores the correct features of the exact solution. Relation of this result to the states of a quantum wire is also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000303068800006 Publication Date 2012-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 32 Open Access
Notes ; This work was partially supported by Polish Ministry of Science and Higher Education and its grants for Scientific Research. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:98258 Serial 855
Permanent link to this record
 

 
Author Hernández-Nieves, A.D.; Partoens, B.; Peeters, F.M.
Title Electronic and magnetic properties of superlattices of graphene/graphane nanoribbons with different edge hydrogenation Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue (up) 16 Pages 165412-165412,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Zigzag graphene nanoribbons patterned on graphane are studied using spin-polarized ab initio calculations. We found that the electronic and magnetic properties of the graphene/graphane superlattice strongly depends on the degree of hydrogenation at the interfaces between the two materials. When both zigzag interfaces are fully hydrogenated, the superlattice behaves like a freestanding zigzag graphene nanoribbon, and the magnetic ground state is antiferromagnetic. When one of the interfaces is half hydrogenated, the magnetic ground state becomes ferromagnetic, and the system is very close to being a half metal with possible spintronics applications whereas the magnetic ground state of the superlattice with both interfaces half hydrogenated is again antiferromagnetic. In this last case, both edges of the graphane nanoribbon also contribute to the total magnetization of the system. All the spin-polarized ground states are semiconducting, independent of the degree of hydrogenation of the interfaces. The ab initio results are supplemented by a simple tight-binding analysis that captures the main qualitative features. Our ab initio results show that patterned hydrogenation of graphene is a promising way to obtain stable graphene nanoribbons with interesting technological applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000282569500011 Publication Date 2010-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 46 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the Belgian Science Policy (IAP), and the collaborative project FWO-MINCyT (FW/08/01). A. D. H. acknowledges also support from ANPCyT (under Grant No. PICT2008-2236) ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:85030 Serial 996
Permanent link to this record