|   | 
Details
   web
Records
Author Nicolas-Boluda, A.; Yang, Z.; Dobryden, I.; Carn, F.; Winckelmans, N.; Pechoux, C.; Bonville, P.; Bals, S.; Claesson, P.M.; Gazeau, F.; Pileni, M.P.
Title Intracellular fate of hydrophobic nanocrystal self-assemblies in tumor cells Type A1 Journal article
Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater
Volume 30 Issue (up) 40 Pages 2004274-15
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Control of interactions between nanomaterials and cells remains a biomedical challenge. A strategy is proposed to modulate the intralysosomal distribution of nanoparticles through the design of 3D suprastructures built by hydrophilic nanocrystals (NCs) coated with alkyl chains. The intracellular fate of two water-dispersible architectures of self-assembled hydrophobic magnetic NCs: hollow deformable shells (colloidosomes) or solid fcc particles (supraballs) is compared. These two self-assemblies display increased cellular uptake by tumor cells compared to dispersions of the water-soluble NC building blocks. Moreover, the self-assembly structures increase the NCs density in lysosomes and close to the lysosome membrane. Importantly, the structural organization of NCs in colloidosomes and supraballs are maintained in lysosomes up to 8 days after internalization, whereas initially dispersed hydrophilic NCs are randomly aggregated. Supraballs and colloidosomes are differently sensed by cells due to their different architectures and mechanical properties. Flexible and soft colloidosomes deform and spread along the biological membranes. In contrast, the more rigid supraballs remain spherical. By subjecting the internalized suprastructures to a magnetic field, they both align and form long chains. Overall, it is highlighted that the mechanical and topological properties of the self-assemblies direct their intracellular fate allowing the control intralysosomal density, ordering, and localization of NCs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000559913300001 Publication Date 2020-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19 Times cited 11 Open Access Not_Open_Access
Notes ; F.G. and M.P.P. contributed equally to this work. Dr. J. Teixeira from Laboratoire Leon Brillouin CEA Saclay is thanked for fruitful discussions on SAXS measurement. Dr. J.M. Guinier is thanked for cryoTEM experiments. A.N.-B. received a Ph.D. fellowship from the Institute thematique multi-organismes (ITMO) Cancer and the doctoral school Frontieres du Vivant (FdV)-Programme Bettencourt and the Fondation ARC pour la recherche sur le cancer. ; Approved Most recent IF: 19; 2020 IF: 12.124
Call Number UA @ admin @ c:irua:171145 Serial 6551
Permanent link to this record
 

 
Author Ji, Z.; Wang, H.; Canossa, S.; Wuttke, S.; Yaghi, O.M.
Title Pore Chemistry of Metal–Organic Frameworks Type A1 Journal article
Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater
Volume 30 Issue (up) 41 Pages 2000238
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The pores in metal–organic frameworks (MOFs) can be functionalized by placing chemical entities along the backbone and within the backbone. This chemistry is enabled by the architectural, thermal, and chemical robustness of the frameworks and the ability to characterize them by many diffraction and spectroscopic techniques. The pore chemistry of MOFs is articulated in terms of site isolation, coupling, and cooperation and relate that to their functions in guest recognition, catalysis, ion and electron transport, energy transfer, pore‐dynamic modulation, and interface construction. It is envisioned that the ultimate control of pore chemistry requires arranging functionalities into defined sequences and developing techniques for reading and writing such sequences within the pores.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000532830900001 Publication Date 2020-05-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19 Times cited Open Access OpenAccess
Notes (Not present) Approved Most recent IF: 19; 2020 IF: 12.124
Call Number EMAT @ emat @c:irua:169485 Serial 6422
Permanent link to this record
 

 
Author Canossa, S.; Wuttke, S.
Title Functionalization chemistry of porous materials Type Editorial
Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater
Volume 30 Issue (up) 41 Pages 2003875
Keywords Editorial; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000580514700004 Publication Date 2020-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19 Times cited 1 Open Access OpenAccess
Notes ; ; Approved Most recent IF: 19; 2020 IF: 12.124
Call Number UA @ admin @ c:irua:173614 Serial 6524
Permanent link to this record
 

 
Author Huijben, M.; Koster, G.; Kruize, M.K.; Wenderich, S.; Verbeeck, J.; Bals, S.; Slooten, E.; Shi, B.; Molegraaf, H.J.A.; Kleibeuker, J.E.; Van Aert, S.; Goedkoop, J.B.; Brinkman, A.; Blank, D.H.A.; Golden, M.S.; Van Tendeloo, G.; Hilgenkamp, H.; Rijnders, G.;
Title Defect engineering in oxide heterostructures by enhanced oxygen surface exchange Type A1 Journal article
Year 2013 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 23 Issue (up) 42 Pages 5240-5248
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The synthesis of materials with well-controlled composition and structure improves our understanding of their intrinsic electrical transport properties. Recent developments in atomically controlled growth have been shown to be crucial in enabling the study of new physical phenomena in epitaxial oxide heterostructures. Nevertheless, these phenomena can be influenced by the presence of defects that act as extrinsic sources of both doping and impurity scattering. Control over the nature and density of such defects is therefore necessary to fully understand the intrinsic materials properties and exploit them in future device technologies. Here, it is shown that incorporation of a strontium copper oxide nano-layer strongly reduces the impurity scattering at conducting interfaces in oxide LaAlO3SrTiO3(001) heterostructures, opening the door to high carrier mobility materials. It is proposed that this remote cuprate layer facilitates enhanced suppression of oxygen defects by reducing the kinetic barrier for oxygen exchange in the hetero-interfacial film system. This design concept of controlled defect engineering can be of significant importance in applications in which enhanced oxygen surface exchange plays a crucial role.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000327480900003 Publication Date 2013-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 87 Open Access
Notes Countatoms; Vortex; Fwo; Ifox ECASJO_; Approved Most recent IF: 12.124; 2013 IF: 10.439
Call Number UA @ lucian @ c:irua:109273UA @ admin @ c:irua:109273 Serial 615
Permanent link to this record
 

 
Author Solís, C.; Rossell, M.D.; Garcia, G.; Van Tendeloo, G.; Santiso, J.
Title Unusual strain accommodation and conductivity enhancement by structure modulation variations in Sr4Fe6O12+\delta epitaxial films Type A1 Journal article
Year 2008 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 18 Issue (up) 5 Pages 785-793
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000254448400014 Publication Date 2008-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X;1616-3028; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 10 Open Access
Notes Iap V-1; Gbou Approved Most recent IF: 12.124; 2008 IF: 6.808
Call Number UA @ lucian @ c:irua:70039 Serial 3818
Permanent link to this record
 

 
Author Parrilla, M.; De Wael, K.
Title Wearable self‐powered electrochemical devices for continuous health management Type A1 Journal article
Year 2021 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater
Volume 31 Issue (up) 50 Pages 2107042
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract The wearable revolution is already present in society through numerous gadgets. However, the contest remains in fully deployable wearable (bio)chemical sensing. Its use is constrained by the energy consumption which is provided by miniaturized batteries, limiting the autonomy of the device. Hence, the combination of materials and engineering efforts to develop sustainable energy management is paramount in the next generation of wearable self-powered electrochemical devices (WeSPEDs). In this direction, this review highlights for the first time the incorporation of innovative energy harvesting technologies with top-notch wearable self-powered sensors and low-powered electrochemical sensors toward battery-free and self-sustainable devices for health and wellbeing management. First, current elements such as wearable designs, electrochemical sensors, energy harvesters and storage, and user interfaces that conform WeSPEDs are depicted. Importantly, the bottlenecks in the development of WeSPEDs from an analytical perspective, product side, and power needs are carefully addressed. Subsequently, energy harvesting opportunities to power wearable electrochemical sensors are discussed. Finally, key findings that will enable the next generation of wearable devices are proposed. Overall, this review aims to bring new strategies for an energy-balanced deployment of WeSPEDs for successful monitoring of (bio)chemical parameters of the body toward personalized, predictive, and importantly, preventive healthcare.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000694642500001 Publication Date 2021-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 12.124
Call Number UA @ admin @ c:irua:181306 Serial 8750
Permanent link to this record