|   | 
Details
   web
Records
Author van Landuyt, J.; Van Tendeloo, G.; Amelinckx, S.; Zhang, X.F.; Zhang, X.B.; Luyten, W.
Title Crystallography of fullerites and related graphene textures Type A1 Journal article
Year 1994 Publication Materials science forum Abbreviated Journal
Volume 150/151 Issue (down) Pages 53-64
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos A1994BC12F00004 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0255-5476; 1662-9752 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:10001 Serial 590
Permanent link to this record
 

 
Author Calestani, G.; Salsi, G.; Francesconi, M.G.; Masini, M.; Dimesso, L.; Migliori, A.; Zhang, X.F.; Van Tendeloo, G.
Title Effects of the annealing conditions on the structural and superconducting properties of Bi2-xPbxSr2Y0.2Ca0.8Cu2Oz Type A1 Journal article
Year 1993 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 206 Issue (down) Pages 33-42
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1993KM09500006 Publication Date 2002-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.942 Times cited 10 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:6791 Serial 871
Permanent link to this record
 

 
Author Zhang, X.B.; Vasiliev, A.L.; Van Tendeloo, G.; He, Y.; Yu, L.-M.; Thiry, P.A.
Title EM, XPS and LEED study of deposition of Ag on hydrogenated Si substrate prepared by wet chemical treatments Type A1 Journal article
Year 1995 Publication Surface science : a journal devoted to the physics and chemistry of interfaces Abbreviated Journal Surf Sci
Volume 340 Issue (down) Pages 317-327
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1995TA17600013 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-6028; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.925 Times cited 11 Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:13319 Serial 1032
Permanent link to this record
 

 
Author Zhang, X.F.; Zhang, X.B.; Van Tendeloo, G.; Meijer, G.
Title “Harmless” carbon tubes around “dangerous” asbestos fibres Type A1 Journal article
Year 1994 Publication Carbon Abbreviated Journal Carbon
Volume 32 Issue (down) Pages 363-366
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos A1994NC96800026 Publication Date 2003-06-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.196 Times cited 2 Open Access
Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 135/271 Q2 # PHYSICS, APPLIED 70/145 Q2 # PHYSICS, CONDENSED MATTER 40/67 Q3 #
Call Number UA @ lucian @ c:irua:10029 Serial 1411
Permanent link to this record
 

 
Author Bernaerts, D.; Zhang, X.; Zhang, X.; Van Tendeloo, G.; Vanlanduyt, J.; Amelinckx, S.
Title HREM study of Rb6C60 and helical shaped carbon nanotubules Type P1 Proceeding
Year 1994 Publication Sciences Abbreviated Journal
Volume Issue (down) Pages 305-306
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Editions physique Place of Publication Les ulis Editor
Language Wos A1994BE09Y00147 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2-86883-226-1 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved COMPUTER SCIENCE, INTERDISCIPLINARY 11/104 Q1 # PHYSICS, MATHEMATICAL 1/53 Q1 #
Call Number UA @ lucian @ c:irua:95938 Serial 1512
Permanent link to this record
 

 
Author Bernaerts, D.; Zhang, X.B.; Zhang, X.F.; Van Tendeloo, G.; van Landuyt, J.; Amelinckx, S.
Title HREM study of Rb6C60 and helical carbon nanotubules Type A3 Journal article
Year 1994 Publication Icem Abbreviated Journal
Volume 13 Issue (down) Pages 305-306
Keywords A3 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved COMPUTER SCIENCE, INTERDISCIPLINARY 11/104 Q1 # PHYSICS, MATHEMATICAL 1/53 Q1 #
Call Number UA @ lucian @ c:irua:10056 Serial 1514
Permanent link to this record
 

 
Author Briers, J.; Eevers, W.; Cos, P.; Geise, H.J.; Mertens, R.; Nagels, P.; Zhang, X.B.; Van Tendeloo, G.; Herrebout, W.; van der Veken, B.
Title Molecular orientation and conductivity in highly oriented poly(p-phenylene vinylene) Type A1 Journal article
Year 1994 Publication Polymer Abbreviated Journal Polymer
Volume 35 Issue (down) Pages 4569-4572
Keywords A1 Journal article; Molecular Spectroscopy (MolSpec); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Guildford Editor
Language Wos A1994PM11600014 Publication Date 2003-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0032-3861; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.562 Times cited 16 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:8539 Serial 2180
Permanent link to this record
 

 
Author Cheng, J.-P.; Zhang, X.B.; Ye, Y.; Tu, J.P.; Liu, F.; Tao, X.Y.; Geise, H.J.; Van Tendeloo, G.
Title Production of carbon nanotubes with marine manganese nodule as a versatile catalyst Type A1 Journal article
Year 2005 Publication Microporous and mesoporous materials Abbreviated Journal Micropor Mesopor Mat
Volume 81 Issue (down) Pages 73-78
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000229665200008 Publication Date 2005-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 20 Open Access
Notes Approved Most recent IF: 3.615; 2005 IF: 3.355
Call Number UA @ lucian @ c:irua:54791 Serial 2722
Permanent link to this record
 

 
Author Zhang, X.B.; Zhang, X.F.; Amelinckx, S.; Van Tendeloo, G.; van Landuyt, J.
Title The reciprocal space of carbon tubes: a detailed interpretation of the electron diffraction effects Type A1 Journal article
Year 1994 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 54 Issue (down) Pages 237-249
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1994PA59800016 Publication Date 2002-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.436 Times cited 59 Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:10006 Serial 2844
Permanent link to this record
 

 
Author Zhang, X.F.; Van Tendeloo, G.; Hu, D.W.; Brabers, V.A.M.
Title Room temperature (2a x 2b) superstructure formed in Sr-submitted Bi2(Sr1.6Y0.4)CaCu2Oy single crystals Type A1 Journal article
Year 1997 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 278 Issue (down) Pages 31-38
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1997XB79300004 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN Additional Links UA library record; WoS full record;
Impact Factor 1.404 Times cited Open Access
Notes Approved Most recent IF: 1.404; 1997 IF: 2.199
Call Number UA @ lucian @ c:irua:21436 Serial 2928
Permanent link to this record
 

 
Author Zhang, X.F.; Zhang, X.B.; Bernaerts, D.; Van Tendeloo, G.; Amelinckx, S.; van Landuyt, J.; Werner, H.
Title A simple preparation method for air-sensitive specimens for transmission electron microscopy demonstrated by Rb6C60 Type A1 Journal article
Year 1994 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 55 Issue (down) Pages 25-30
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this paper a particularly simple but efficient method is presented by which samples of alkali-doped C-60 materials or other air-sensitive materials can be prepared and transferred into a transmission electron microscope for direct observations and investigations. Flexible, transparent glove bags are used which are filled to a slight overpressure with dry nitrogen. Under this protective atmosphere, the air-sensitive sample is mounted in the specimen holder and inserted in the vacuum of the electron microscope. Rb6C60 which is prepared and transferred into the microscope in this way has been investigated by transmission electron microscopy (TEM). The results confirm the bcc structure and especially the location of the rubidium atoms.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1994PE30800005 Publication Date 2002-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.436 Times cited 2 Open Access
Notes Approved CHEMISTRY, PHYSICAL 77/144 Q3 # MATHEMATICS, INTERDISCIPLINARY 19/101 Q1 # PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 17/35 Q2 #
Call Number UA @ lucian @ c:irua:10007 Serial 3002
Permanent link to this record
 

 
Author Bernaerts, D.; Amelinckx, S.; Zhang, X.B.; Van Tendeloo, G.; van Landuyt, J.
Title Structural aspects of carbon nanotubes Type P3 Proceeding
Year 1995 Publication Abbreviated Journal
Volume Issue (down) Pages 551-555
Keywords P3 Proceeding; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher World Scientific Place of Publication Singapore Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:13295 Serial 3206
Permanent link to this record
 

 
Author Zhang, X.F.; Van Tendeloo, G.
Title Structural evolution of Bi2Sr2CaCu2O8+\delta single crystals studies by “in situ” heating electron microscopy Type A1 Journal article
Year 1994 Publication Philosophical magazine: A: physics of condensed matter: defects and mechanical properties Abbreviated Journal
Volume 70 Issue (down) Pages 549-560
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1994PG03500011 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-8610; 1364-2804 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 5 Open Access
Notes Approved PHYSICS, APPLIED 47/145 Q2 #
Call Number UA @ lucian @ c:irua:10038 Serial 3235
Permanent link to this record
 

 
Author Amelinckx, S.; Bernaerts, D.; Zhang, X.B.; Van Tendeloo, G.; van Landuyt, J.
Title A structure model and growth mechanism for multishell carbon nanotubes Type A1 Journal article
Year 1995 Publication Science Abbreviated Journal Science
Volume 267 Issue (down) Pages 1334-1338
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos A1995QK06800041 Publication Date 2006-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075;1095-9203; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 33.611 Times cited 169 Open Access
Notes Approved PHYSICS, APPLIED 28/145 Q1 #
Call Number UA @ lucian @ c:irua:13309 Serial 3305
Permanent link to this record
 

 
Author Ivanov, V.; Nagy, J.B.; Lambin, P.; Lucas, A.; Zhang, X.B.; Zhang, X.F.; Bernaerts, D.; Van Tendeloo, G.; Amelinckx, S.; van Landuyt, J.
Title The study of carbon nanotubes produced by catalytic method Type A1 Journal article
Year 1994 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett
Volume 223 Issue (down) Pages 329-335
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1994NT08000011 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2614 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.897 Times cited 405 Open Access
Notes Approved PHYSICS, APPLIED 28/145 Q1 #
Call Number UA @ lucian @ c:irua:10002 Serial 3326
Permanent link to this record
 

 
Author Zhao, Z.X.; Ma, X.; Cao, S.; Li, Y.Y.; Zeng, C.Y.; Wang, D.X.; Yao, X.; Deng, Z.J.; Zhang, X.P.
Title Identification of nano-width variants in a fully monoclinic martensitic Ni50Ti50 alloy by scanning electron microscope-based transmission Kikuchi diffraction and improved groupoid structure approach Type A1 Journal article
Year 2020 Publication Materials Letters Abbreviated Journal Mater Lett
Volume 281 Issue (down) Pages 128624
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nano-width martensite plates in a fully martensitic Ni50Ti50 alloy are indexed successfully by using the off-axis transmission Kikuchi diffraction in scanning electron microscope (i.e., SEM-based TKD). The data obtained by SEM-TKD are effectively interpreted using an improved approach based on the framework of the theoretical groupoid structure method, where the equivalent variants transformed from the monoclinic variants are introduced to calculate all theoretical axis/angle pairs of rotation, and to formulate a complete list of source martensite to target martensite pairs. Consequently, B19' monoclinic martensite variants in NiTi alloys are identified unambiguously, by using numerical comparison between the experimental and theoretical rotation components, without the reference of retained parent phase. (C) 2020 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000581134200033 Publication Date 2020-09-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-577x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3 Times cited Open Access Not_Open_Access
Notes ; This work was supported by National Natural Science Foundation of China under Grant Nos. 51571092 and 51401081, and Guangdong Provincial Natural Science Foundation under Grant Nos. 2018B0303110012 and 2017A030313323. ; Approved Most recent IF: 3; 2020 IF: 2.572
Call Number UA @ admin @ c:irua:173509 Serial 6540
Permanent link to this record
 

 
Author Cao, S.; Zeng, C.Y.; Li, Y.Y.; Yao, X.; Ma, X.; Samaee, V.; Schryvers, D.; Zhang, X.P.
Title Quantitative FIB/SEM three-dimensional characterization of a unique Ni₄Ti₃ network in a porous Ni50.8Ti49.2 alloy undergoing a two-step martensitic transformation Type A1 Journal article
Year 2020 Publication Materials Characterization Abbreviated Journal Mater Charact
Volume 169 Issue (down) Pages 110595
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The three-dimensional (3D) nanostructure of Ni4Ti3 precipitates in a porous Ni50.8Ti49.2 alloy has been re-constructed by “Slice-and-View” in a Focused Ion Beam/Scanning Electron Microscope (FIB/SEM). The 3D configuration of these precipitates forming a network structure in the B2 austenite matrix has been characterized via 3D visualization and quantitative analysis including volume fraction, skeleton, degree of anisotropy and local thickness. It is found that dense Ni4Ti3 precipitates occupy 54% of the volume in the B2 austenite matrix. Parallel Ni4Ti3 precipitates grow alongside the surface of a micro-pore, yielding an asymmetric structure, while nano voids do not seem to affect the growth of Ni4Ti3 precipitates. The small average local thickness of the precipitates around 60 nm allows their coherency with the matrix, and further induces the R-phase transformation in the matrix. On the other hand, the B2 matrix exhibits a winding and narrow structure with a skeleton of 18.20 mm and a thickness similar to the precipitates. This discontinuous matrix segmented by the Ni4Ti3 network and pores is responsible for the gradual transformation by stalling the martensite propagation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000584353100001 Publication Date 2020-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.7 Times cited Open Access OpenAccess
Notes ; This work was supported by the National Natural Science Foundation of China under Grant Nos. 51401081 and 51571092, the Natural Science Foundation of Guangdong Province through Key Project under Grant No. 2018B0303110012 and General Project under Grant No. 2017A030313323, and China Scholarship Council (CSC). ; Approved Most recent IF: 4.7; 2020 IF: 2.714
Call Number UA @ admin @ c:irua:173547 Serial 6590
Permanent link to this record
 

 
Author Cui, Z.; Zhou, C.; Jafarzadeh, A.; Meng, S.; Yi, Y.; Wang, Y.; Zhang, X.; Hao, Y.; Li, L.; Bogaerts, A.
Title SF₆ catalytic degradation in a γ-Al₂O₃ packed bed plasma system : a combined experimental and theoretical study Type A1 Journal article
Year 2022 Publication High voltage Abbreviated Journal
Volume Issue (down) Pages 1-11
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Effective abatement of the greenhouse gas sulphur hexafluoride (SF6) waste is of great importance for the environment protection. This work investigates the size effect and the surface properties of gamma-Al2O3 pellets on SF6 degradation in a packed bed dielectric barrier discharge (PB-DBD) system. Experimental results show that decreasing the packing size improves the filamentary discharges and promotes the ignition and the maintenance of plasma, enhancing the degradation performance at low input powers. However, too small packing pellets decrease the gas residence time and reduce the degradation efficiency, especially for the input power beyond 80 W. Besides, lowering the packing size promotes the generation of SO2, while reduces the yields of S-O-F products, corresponding to a better degradation. After the discharge, the pellet surface becomes smoother with the appearance of S and F elements. Density functional theory calculations show that SF6 is likely to be adsorbed at the Al-III site over the gamma-Al2O3(110) surface, and it is much more easily to decompose than in the gas phase. The fluorine gaseous products can decompose and stably adsorb on the pellet surface to change the surface element composition. This work provides a better understanding of SF6 degradation in a PB-DBD system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000827312700001 Publication Date 2022-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2397-7264 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.4
Call Number UA @ admin @ c:irua:189603 Serial 7208
Permanent link to this record
 

 
Author Cui, Z.; Zhou, C.; Jafarzadeh, A.; Zhang, X.; Hao, Y.; Li, L.; Bogaerts, A.
Title SF₆ degradation in γ-Al₂O₃ packed DBD system : effects of hydration, reactive gases and plasma-induced surface charges Type A1 Journal article
Year 2023 Publication Plasma chemistry and plasma processing Abbreviated Journal
Volume 43 Issue (down) Pages 635-656
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Packed-bed DBD (PB-DBD) plasmas hold promise for effective degradation of greenhouse gases like SF6. In this work, we conducted a combined experimental and theoretical study to investigate the effect of the packing surface structure and the plasma surface discharge on the SF6 degradation in a gamma-Al2O3 packing DBD system. Experimental results show that both the hydration effect of the surface (upon moisture) and the presence of excessive reactive gases in the plasma can significantly reduce the SF6 degradation, but they hardly change the discharge behavior. DFT results show that the pre-adsorption of species such as H, OH, H2O and O-2 can occupy the active sites (Al-III site) which negatively impacts the SF6 adsorption. H2O molecules pre-adsorbed at neighboring sites can promote the activation of SF6 molecules and lower the reaction barrier for the S-F bond-breaking process. Surface-induced charges and local external electric fields caused by the plasma can both improve the SF6 adsorption and enhance the elongation of the S-F bonds. Our results indicate that both the surface structure of the packing material and the plasma surface discharge are crucial for SF6 degradation performance, and the packing beads should be kept dry during the degradation. This work helps to understand the underlying mechanisms of SF6 degradation in a PB-DBD system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000966639200001 Publication Date 2023-04-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.6; 2023 IF: 2.355
Call Number UA @ admin @ c:irua:196033 Serial 8516
Permanent link to this record
 

 
Author Brognara, A.; Kashiwar, A.; Jung, C.; Zhang, X.; Ahmadian, A.; Gauquelin, N.; Verbeeck, J.; Djemia, P.; Faurie, D.; Dehm, G.; Idrissi, H.; Best, J.P.; Ghidelli, M.
Title Tailoring mechanical properties and shear band propagation in ZrCu metallic glass nanolaminates through chemical heterogeneities and interface density Type A1 Journal article
Year 2024 Publication Small Structures Abbreviated Journal
Volume Issue (down) Pages 2400011-11
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The design of high‐performance structural thin films consistently seeks to achieve a delicate equilibrium by balancing outstanding mechanical properties like yield strength, ductility, and substrate adhesion, which are often mutually exclusive. Metallic glasses (MGs) with their amorphous structure have superior strength, but usually poor ductility with catastrophic failure induced by shear bands (SBs) formation. Herein, we introduce an innovative approach by synthesizing MGs characterized by large and tunable mechanical properties, pioneering a nanoengineering design based on the control of nanoscale chemical/structural heterogeneities. This is realized through a simplified model Zr 24 Cu 76 /Zr 61 Cu 39 , fully amorphous nanocomposite with controlled nanoscale periodicity ( Λ , from 400 down to 5 nm), local chemistry, and glass–glass interfaces, while focusing in‐depth on the SB nucleation/propagation processes. The nanolaminates enable a fine control of the mechanical properties, and an onset of crack formation/percolation (>1.9 and 3.3%, respectively) far above the monolithic counterparts. Moreover, we show that SB propagation induces large chemical intermixing, enabling a brittle‐to‐ductile transition when Λ  ≤ 50 nm, reaching remarkably large plastic deformation of 16% in compression and yield strength ≈2 GPa. Overall, the nanoengineered control of local heterogeneities leads to ultimate and tunable mechanical properties opening up a new approach for strong and ductile materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2688-4062 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:205798 Serial 9176
Permanent link to this record