|   | 
Details
   web
Records
Author Schneidewind, U.; Haest, P.J.; Atashgahi, S.; Seuntjens, P.; et al.
Title Kinetics of dechlorination by Dehalococcoides mccartyi using different carbon sources Type A1 Journal article
Year 2014 Publication Journal of contaminant hydrology Abbreviated Journal
Volume 157 Issue (down) Pages 25-36
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Stimulated anaerobic dechlorination is generally considered a valuable step for the remediation of aquifers polluted with chlorinated ethenes (CEs). Correct simulation and prediction of this process in situ, however, require good knowledge of the associated biological reactions. The aim of this study was to evaluate the dechlorination reaction in an aquifer contaminated with trichloroethene (TCE) and its daughter products, discharging into the Zenne River. Different carbon sources were used in batch cultures and these were related to the dechlorination reaction, together with the monitored biomarkers. Appropriate kinetic formulations were assessed. Reductive dechlorination of TCE took place only when external carbon sources were added to microcosms, and occurred concomitant with a pronounced increase in the Dehalococcoides mccartyi cell count as determined by 16S rRNA gene-targeted qPCR. This indicates that native dechlorinating bacteria are present in the aquifer of the Zenne site and that the oligotrophic nature of the aquifer prevents a complete degradation to ethene. The type of carbon source, the cell number of D. mccartyi or the reductive dehalogenase genes, however, did not unequivocally explain the observed differences in degradation rates or the extent of dechlorination. Neither first-order, Michaelis-Menten nor Monod kinetics could perfectly simulate the dechlorination reactions in TCE spiked microcosms. A sensitivity analysis indicated that the inclusion of donor limitation would not significantly enhance the simulations without a clear process understanding. Results point to the role of the supporting microbial community but it remains to be verified how the complexity of the microbial (inter)actions should be represented in a model framework. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000331507700003 Publication Date 2013-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-7722 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:115794 Serial 8138
Permanent link to this record
 

 
Author Carniato, L.; Schoups, G.; Seuntjens, P.; Van Nooten, T.; Simons, Q.; Bastiaens, L.
Title Predicting longevity of iron permeable reactive barriers using multiple iron deactivation models Type A1 Journal article
Year 2012 Publication Journal of contaminant hydrology Abbreviated Journal
Volume 142 Issue (down) Pages 93-108
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In this study we investigate the model uncertainties involved in predicting long-term permeable reactive barrier (PRB) remediation efficiency based on a lab-scale column experiment under accelerated flow conditions. A PRB consisting of 20% iron and 80% sand was simulated in a laboratory-scale column and contaminated groundwater was pumped into the column for approximately 1 year at an average groundwater velocity of 3.7E – 1 m d(-1). Dissolved contaminants (PCE. TCE, cis-DCE, trans-DCE and VC) and inorganic (Ca2+, Fe2+, TIC and pH) concentrations were measured in groundwater sampled at different times and at eight different distances along the column. These measurements were used to calibrate a multi-component reactive transport model, which subsequently provided predictions of long-term PRB efficiency under reduced flow conditions (i.e., groundwater velocity of 1.4E -3 m d(-1)), representative of a field site of interest in this study. Iron reactive surface reduction due to mineral precipitation and iron dissolution was simulated using four different models. All models were able to reasonably well reproduce the column experiment measurements, whereas the extrapolated long-term efficiency under different flow rates was significantly different between the different models. These results highlight significant model uncertainties associated with extrapolating long-term PRB performance based on lab-scale column experiments. These uncertainties should be accounted for at the PRB design phase, and may be reduced by independent experiments and field observations aimed at a better understanding of reactive surface deactivation mechanisms in iron PRBs. (C) 2012 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000312753000009 Publication Date 2012-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-7722 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:106010 Serial 8402
Permanent link to this record
 

 
Author Rezaei, M.; Saey, T.; Seuntjens, P.; Joris, I.; Boenne, W.; Van Meirvenne, M.; Cornelis, W.
Title Predicting saturated hydraulic conductivity in a sandy grassland using proximally sensed apparent electrical conductivity Type A1 Journal article
Year 2016 Publication Journal of applied geophysics Abbreviated Journal
Volume 126 Issue (down) Pages 35-41
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Finding a correspondence between soil hydraulic properties, such as saturated hydraulic conductivity (Ks) and apparent electrical conductivity (ECa) as an easily measurable parameter, may be a way forward to estimate the spatial distribution of hydraulic properties at the field scale. In this study, the spatial distributions of Ks, of soil ECa measured by a DUALEM-21S sensor and of soil physical properties were investigated in a sandy grassland. To predict field scale Ks, the statistical relationship between co-located soil Ks, and EMI-ECa was evaluated. Results demonstrated the large spatial variability of all studied properties with Ks being the most variable one (CV = 86.21%) followed by ECa (CV >= 53.77%). A significant negative correlation was found between In-transformed Ks and ECa (r = 0.83; P <= 0.01) at two depths of exploration (0-50 and 0-100 cm). This site specific relation between In Ks and ECa was used to predict saturated hydraulic conductivity over 0-50 cm depth for the whole field. The empirical relation was validated using an independent dataset of measured Ks. The statistical results demonstrate the robustness of this empirical relation with mean estimation error MEE = 0.46 (cm h(-1)), root-mean-square estimation errors RMSEE = 0.74 (cm h(-1)), coefficient of determination r(2) = 0.67 and coefficient of model efficiency Ce = 0.64. The relationship was then used to produce a detailed map of Ks for the whole field. The result will allow model predictions of spatially distributed water content in view of irrigation management. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371361200004 Publication Date 2016-01-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-9851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:132349 Serial 8403
Permanent link to this record
 

 
Author Tang, T.; Boenne, W.; Desmet, N.; Seuntjens, P.; Bronders, J.; van Griensven, A.
Title Quantification and characterization of glyphosate use and loss in a residential area Type A1 Journal article
Year 2015 Publication The science of the total environment Abbreviated Journal
Volume 517 Issue (down) Pages 207-214
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Urban runoff can be a significant source of pesticides in urban streams. However, quantification of this source has been difficult because pesticide use by urban residents (e.g., on pavements or in gardens) is often unknown, particularly at the scale of a residential catchment. Proper quantification and characterization of pesticide loss via urban runoff require sound information on the use and occurrence of pesticides at hydrologically-relevant spatial scales, involving various hydrological conditions. We conducted a monitoring study in a residential area (9.5 ha, Flanders, Belgium) to investigate the use and loss of a widely-used herbicide (glyphosate) and its major degradation product (aminomethylphosphonic acid, AMPA). The study covered 13 rainfall events over 67 days. Overall, less than 0.5% of glyphosate applied was recovered from the storm drain outflow in the catchment. Maximum detected concentrations were 6.1 mu g/L and 5.8 mu g/L for glyphosate and AMPA, respectively, both of which are below the predicted no-effect concentration for surface water proposed by the Flemish environmental agency (10 mu g/L), but are above the EU drinking water standard (0.1 mu g/L). The measured concentrations and percentage loss rates can be attributed partially to the strong sorption capacity of glyphosate and low runoff potential in the study area. However, glyphosate loss varied considerably among rainfall events and event load of glyphosate mass was mainly controlled by rainfall amount, according to further statistical analyses. To obtain urban pesticide management insights, robust tools are required to investigate the loss and occurrence of pesticides influenced by various factors, particularly the hydrological and spatial factors. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000352663800020 Publication Date 2015-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:125992 Serial 8431
Permanent link to this record
 

 
Author Rezaei, M.; De Pue, J.; Seuntjens, P.; Joris, I.; Cornelis, W.
Title Quasi 3D modelling of vadose zone soil-water flow for optimizing irrigation strategies : challenges, uncertainties and efficiencies Type A1 Journal article
Year 2017 Publication Environmental modelling and software Abbreviated Journal
Volume 93 Issue (down) Pages 59-77
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract A quasi 3D modelling approach was developed by integrating a crop growth (LINGRA-N) and a hydrological model (Hydrus-1D) to simulate and visualize water flow, soil-water storage, water stress and crop yield over a heterogeneous sandy field. We assessed computational efficiency and uncertainty with low to high-spatial resolution input factors (soil-hydraulic properties, soil-layer thickness and groundwater level) and evaluated four irrigation scenarios (no, current, optimized and triggered) to find the optimal and cost-effective irrigation scheduling. Numerical results showed that the simulation uncertainty was reduced when using the high-resolution information while a fast performance was maintained. The approach accurately determined the field scale irrigation requirements, taking into account spatial variations of input information. Optimal irrigation scheduling is obtained by triggered-irrigation resulting in saving up to similar to 300% water as compared to the current-irrigation, while yield increased similar to 1%. Overall, the approach can be useful to help decision makers and applicants in precision farming. (C) 2017 Published by Elsevier Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403512500005 Publication Date 2017-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:144167 Serial 8445
Permanent link to this record
 

 
Author Beames, A.; Broekx, S.; Lookman, R.; Touchant, K.; Seuntjens, P.
Title Sustainability appraisal tools for soil and groundwater remediation : how is the choice of remediation alternative influenced by different sets of sustainability indicators and tool structures? Type A1 Journal article
Year 2014 Publication The science of the total environment Abbreviated Journal
Volume 470 Issue (down) Pages 954-966
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The state-of-the-science in sustainability assessment of soil and groundwater remediation is evaluated with the application of four decision support systems (DSSs) to a large-scale brownfield revitalization case study. The DSSs were used to perform sustainability appraisals of four technically feasible remediation alternatives proposed for the site. The first stage of the review compares the scope of each tool's sustainability indicators, how these indicators are measured and how the tools differ in terms of standardization and weighting procedures. The second stage of the review compares the outputs from the tools and determines the key factors that result in differing results between tools. The evaluation of indicator sets and tool structures explains why the tools generate differing results. Not all crucial impact areas, as identified by sustainable remediation forums, are thoroughly considered by the tools, particularly with regard to the social and economic aspects of sustainability. Variations in boundary conditions defined between technologies, produce distorted environmental impact results, especially when in-situ and ex-situ technologies are compared. The review draws attention to the need for end users to be aware of which aspects of sustainability are considered, how the aspects are measured and how all aspects are ultimately balanced in the evaluation of potential remediation strategies. Existing tools can be improved by considering different technologies within the same boundary conditions and by expanding indicator sets to include indicators deemed to be relevant by remediation forums. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000331415600102 Publication Date 2013-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:115827 Serial 8628
Permanent link to this record
 

 
Author Rezaei, M.; Seuntjens, P.; Shahidi, R.; Joris, I.; Boenne, W.; Al-Barri, B.; Cornelis, W.
Title The relevance of in-situ and laboratory characterization of sandy soil hydraulic properties for soil water simulations Type A1 Journal article
Year 2016 Publication Journal of hydrology Abbreviated Journal
Volume 534 Issue (down) Pages 251-265
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Field water flow processes can be precisely delineated with proper sets of soil hydraulic properties derived from in situ and/or laboratory experiments. In this study we analyzed and compared soil hydraulic properties obtained by traditional laboratory experiments and inverse optimization tension infiltrometer data along the vertical direction within two typical Podzol profiles with sand texture in a potato field. The main goal was to identify proper sets of hydraulic parameters and to evaluate their relevance on hydrological model performance for irrigation management purposes. Tension disc infiltration experiments were carried out at four and five different depths for both profiles at consecutive negative pressure heads of 12, 6, 3 and 0.1 cm. At the same locations and depths undisturbed samples were taken to determine Mualem-van Genuchten (MVG) hydraulic parameters (theta(r), residual water content, theta(s), saturated water content, alpha and n, shape parameters and K-ls, saturated hydraulic conductivity) in the laboratory. Results demonstrated horizontal differences and vertical variability of hydraulic properties. The tension disc infiltration data fitted well in inverse modeling using Hydrus 2D/3D in combination with final water content at the end of the experiment, theta(f). Four MVG parameters (theta(s), alpha, n and field saturated hydraulic conductivity K-fs) were estimated (theta(r) set to zero), with estimated K-ls and alpha values being relatively similar to values from Wooding's solution which used as initial value and estimated theta(s) corresponded to (effective) field saturated water content, theta(f). The laboratory measurement of K-ls yielded 2-30 times higher values than the field method K-fs from top to subsoil layers, while there was a significant correlation between both K-s values (r = 0.75). We found significant differences of MVG parameters theta(s), n and alpha values between laboratory and field measurements, but again a significant correlation was observed between laboratory and field MVG parameters namely K-s, n, theta(s) (r >= 0.59). Assessment of the parameter relevance in 1-D model simulations, illustrated that the model over predicted and under predicted top soil-water content using laboratory and field experiments data sets respectively. The field MVG parameter data set resulted in better agreement to observed soil-water content as compared to the laboratory data set at nodes 10 and 20 cm. However, better simulation results were achieved using the laboratory data set at 30-60 cm depths. Results of our study do not confirm whether laboratory or field experiments data sets are most appropriate to predict soil water fluctuations in a complete soil profile, while field experiments are preferred in many studies. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371940900022 Publication Date 2016-01-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:133161 Serial 8657
Permanent link to this record
 

 
Author De Valck, J.; Beames, A.; Liekens, I.; Bettens, M.; Seuntjens, P.; Broekx, S.
Title Valuing urban ecosystem services in sustainable brownfield redevelopment Type A1 Journal article
Year 2019 Publication Ecosystem services Abbreviated Journal
Volume 35 Issue (down) Pages 139-149
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Urban environments provide opportunities for greater resource efficiency and the fostering of urban ecosystems. Brownfield areas are a typical example of underused land resources. Brownfield redevelopment projects that include green infrastructure allow for further ecosystems to be accommodated in urban environments. Green infrastructure also deliver important urban ecosystem services (UES) to local residents, which can greatly contribute to improving quality of life in cities. In this case study, we quantify and assess the economic value of five UES for a brownfield redevelopment project in Antwerp, Belgium. The assessment is carried out using the “Nature Value Explorer” modelling tool. The case includes three types of green infrastructure (green corridor, infiltration gullies and green roofs) primarily intended to connect nature reserves on the urban periphery and to avoid surface runoff. The green infrastructure also provides air filtration, climate regulation, carbon sequestration and recreation ecosystem services. The value of recreation far exceeds other values, including the value of avoided runoff. The case study raises crucial questions as to whether existing UES valuation approaches adequately account for the range of UES provided and whether such approaches can be improved to achieve more accurate and reliable value estimates in future analyses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000457119300016 Publication Date 2018-12-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-0416 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:157539 Serial 8733
Permanent link to this record