|   | 
Details
   web
Records
Author Nuyts, G.; Cagno, S.; Jaroszewicz, J.; Wouters, H.; De Vis, K.; Caen, J.; Janssens, K.
Title High-resolution desktop microcomputed tomography for the evaluation of reducing treatments on historical glass suffering from manganese browning Type H2 Book chapter
Year 2013 Publication Abbreviated Journal
Volume Issue (down) Pages 201-209
Keywords H2 Book chapter; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract Historical glass, especially non-durable mediaeval glass, can undergo corrosion. This sometimes results in the formation of dark-coloured manganese-rich inclusions or stains that reduce the transparency of the glass. A conservation treatment with reducing or chelating agents may be considered with the aim of improving the transparency. In this paper, high-resolution desktop microcomputed tomography (µCT) is used in combination with element-specific twodimensional imaging methods for in situ monitoring of manganese removal by hydroxylamine hydrochloride from an archaeological stained-glass sample suffering from manganese browning and from artificially corroded model glass samples. µCT also proved itself useful for the study of the (re-)penetration of manganese into the gel layer during artificial corrosion of a model glass.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-8932-113-8 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:114604 Serial 5641
Permanent link to this record
 

 
Author Caen, J.; Legrand, S.; van der Snickt, G.; Janssens, K.
Title Macro X-ray fluorescence (MA-XRF) scanning : a new and efficient method for documenting stained-glass panels Type P3 Proceeding
Year 2015 Publication Abbreviated Journal
Volume Issue (down) Pages
Keywords P3 Proceeding; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-2-9543731-1-9 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:126832 Serial 5697
Permanent link to this record
 

 
Author Caen, J.; Schalm, O.; Pires De Matos, A.; Ruivo, A.; Ferreira, M.; Janssens, K.
Title Reproduction of 16-17th centuries enamels for stained glass after orignal compositions and recipes Type P3 Proceeding
Year 2008 Publication Abbreviated Journal
Volume Issue (down) Pages
Keywords P3 Proceeding; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:112032 Serial 5814
Permanent link to this record
 

 
Author Caen, J.; Cagno, S.; Janssens, K.
Title The stained-glass panel depicting the anointing at Bethany : art historical research, technical analysis, and treatment Type H2 Book chapter
Year 2013 Publication Abbreviated Journal
Volume Issue (down) Pages 247-257
Keywords H2 Book chapter; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract In 2008, Museum M in Louvain (Flanders, Belgium) acquired a panel depicting The Anointing at Bethany that is believed once to have adorned the citys former Charterhouse. The panel required conservation treatment, which was preceded by a thorough art-historical and technical examination. It emerged that comparable panels are kept at the Metropolitan Museum of Art and the Riverside Church in New York. Chemical analyses show most of the glass in the panel to have a typical 16th century high-limelow-alkali composition. The conservation treatment was based on the evaluation of these findings and focused very strongly on enhancing the aesthetic balance for an improved reading of the panel.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-8932-113-8 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:114605 Serial 5847
Permanent link to this record
 

 
Author De Vis, K.; Jacobs, P.; Caen, J.; Janssens, K.
Title The use of glass bricks in architecture in the 19th and 20th centuries : a case study Type P2 Proceeding
Year 2010 Publication Abbreviated Journal
Volume Issue (down) Pages 194-201
Keywords P2 Proceeding; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-0-87290-182-7 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:124194 Serial 5892
Permanent link to this record
 

 
Author Cagno, S.; van der Snickt, G.; Legrand, S.; Caen, J.; Patin, M.; Meulebroeck, W.; Dirkx, Y.; Hillen, M.; Steenackers, G.; Rousaki, A.; Vandenabeele, P.; Janssens, K.
Title Comparison of four mobile, non‐invasive diagnostic techniques for differentiating glass types in historical leaded windows : MA‐XRF , UV–Vis–NIR, Raman spectroscopy and IRT Type A1 Journal article
Year 2020 Publication X-Ray Spectrometry Abbreviated Journal X-Ray Spectrom
Volume Issue (down) Pages xrs.3185-17
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract This paper critically compares the performance of four non-invasive techniques that match the accuracy, flexibility, time-efficiency, and transportability required for in situ characterization of leaded glass windows: macroscopic X-ray fluorescence imaging (MA-XRF), UV-Vis-NIR, Raman spectroscopy, and infrared thermography (IRT). In order to compare the techniques on equal grounds, all techniques were tested independently of each other by separate research groups on the same historical leaded window tentatively dated to the 17th century, without prior knowledge. The aim was to assess the ability of these techniques to document the conservation history of the window by classifying and grouping the colorless glass panes, based on differences in composition. IRT, MA-XRF and UV-Vis-NIR spectroscopy positively distinguished at least two glass groups, with MA-XRF providing the most detailed chemical information. In particular, based on the ratio between the network modifier (K) and network stabilizer (Ca) and on the level of colorants and decolorizers (Fe, Mn, As), the number of plausible glass families could be strongly reduced. In addition, UV-Vis-NIR detected cobalt at ppm level and gave more specific information on the chromophore Fe2+/Fe(3+)ratio. Raman spectroscopy was hampered by fluorescence caused by the metal ions of the decolorizer in most of the panes, but nevertheless identified one group as HLLA.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000561869600001 Publication Date 2020-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.2 Times cited Open Access
Notes ; Belgian Federal Science Policy Office, Grant/Award Number: BR/175/A3/FENESTRA; Fonds Wetenschappelijk Onderzoek, Grant/Award Number: 12X1919N; Baillet-Latour Fund ; Approved Most recent IF: 1.2; 2020 IF: 1.298
Call Number UA @ admin @ c:irua:170972 Serial 6473
Permanent link to this record
 

 
Author Gestels, A.; Van der Snickt, G.; Caen, J.; Nuyts, G.; Legrand, S.; Vanmeert, F.; Detry, F.; Janssens, K.; Steenackers, G.
Title Combined MA-XRF, MA-XRPD and SEM-EDX analysis of a medieval stained-glass panel formerly from Notre Dame, Paris reveals its material history Type A1 Journal article
Year 2022 Publication Microchemical journal Abbreviated Journal Microchem J
Volume 177 Issue (down) Pages 107304
Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract As part of its conservation-restoration, the 13th century stained-glass panel ‘the Annunciation’, was examined at the micro- and macro level. This window, since 1898 in the collection of the Museum Mayer Van den Bergh (Antwerp, B), was formerly a part of the southern Rose window of the Notre Dame Cathedral (Paris, F). The insigths emerging from a first phase of the analysis, comprising non-invasive analysis techniques such as optical microscopy combined with macroscopic X-ray fluorescence (MA-XRF) and X-ray diffraction (MA-XRPD) mapping, were used to select sampling positions for the second phase of investigation that involved micro-invasive analysis, namely scanning-electron microscopy coupled to energy-dispersive X-ray analysis (SEM-EDX). The aim of the investigation was fourfold: (1) to assess the applicability of MA-XRF scanning for the characterisation of stained glass windows prior to any conservation or restoration procedure, (2) to assess the applicability of MA-XRPD scanning to identify the degradation products formed on the surface of stained glass windows, (3) to establish a method to limit the set of sampled glass fragments taken from a glass panel for quantititive analysis while maintaining sufficient representativeness and (4) to distinguish the original glass panes and grisaille paint from non-original glass panes that were inserted during various past interventions. Most of the panes in this window proved to consist of medieval potash glass, consistent with the 13th c. origin of the window while a limited number of panes were identified as non-original infills, with divergent glass compositional types and/or colorants. Most panes derive their color from the pot metal glass (i.e. homogenously colored) they were made of. Some of the panes that originally had a red flashed layer on their surface, completely or partially lost this layer due to weathering. Three main compositional glass families with similar color could be defined. With the exception of the yellow and orange panes, the chromophoric elements responsible for the dark(er) and light(er) blue (Co), green (Cu), purple (Mn) and red colors (Cu) were identified. Two different grisaille paints were encountered, part of which were restored during the 19th century. On the basis of this information, all missing pieces were replaced by glass panes with appropriate colors and the panel could be successfully conserved to its former glory. On the surface of several panes, typical glass degradation products such as calcite, syngenite and gypsum were identified, together with lead based degradation products such as anglesite and palmierite. In addition, the presence of hematite and melanotekite in the grisailles was observed; also the presence of Zn, uncorrelated to Cu, in the grissailes on the right side of the window became apparent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000850000900001 Publication Date 2022-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.8 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.8
Call Number UA @ admin @ c:irua:187493 Serial 7138
Permanent link to this record
 

 
Author Grieten, E.; Storme, P.; Caen, J.; Schalm, O.; Schryvers, D.
Title Application of atmospheric plasma-jets for the conservation of cultural heritage Type P3 Proceeding
Year 2015 Publication Abbreviated Journal
Volume Issue (down) Pages
Keywords P3 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:149629 Serial 7466
Permanent link to this record
 

 
Author Caen, J.; Schalm, O.; Janssens, K.
Title Caractérisation historique et chimique des peintures en grisaille et du verre de vitrail dans l'oeuvre de J.-B. Capronnier (1814 – 1891) et J.-B. Bethune (1821 – 1894) Type P3 Proceeding
Year 2000 Publication Abbreviated Journal
Volume Issue (down) Pages
Keywords P3 Proceeding; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:112007 Serial 7576
Permanent link to this record
 

 
Author Legrand, S.; van der Snickt, G.; Cagno, S.; Caen, J.; Janssens, K.
Title MA-XRF imaging as a tool to characterize the 16th century heraldic stained-glass panels in Ghent Saint Bavo Cathedral Type A1 Journal article
Year 2019 Publication Journal of cultural heritage Abbreviated Journal
Volume 40 Issue (down) Pages 163-168
Keywords A1 Journal article; Art; History; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract MA-XRF is a novel macroscopic imaging technique originally developed for easel paintings and recently made available to glass conservators. This paper discusses the first real-life contribution of MA-XRF imaging to a conservation intervention of stained-glass panels. The six panels under study belong to the cathedral building since their creation in 1555-1559 AD. MA-XRF appeared an outstanding tool for first-line screening of stained-glass windows, providing readily interpretable information on glass type, coloring and alteration processes. In particular, the chemical imaging technique allowed distinguishing unambiguously the surviving original glass panes from later additions, thereby ensuring a correct historical understanding. From a more practical point of view, the experiments supplied accurate schemes that can be directly incorporated in condition reports and assist designing the ensuing conservation approach. (C0 2019 Elsevier Masson SAS. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000491173800017 Publication Date 2019-06-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1296-2074 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:167564 Serial 8191
Permanent link to this record
 

 
Author Vandevijvere, M.; Van de Voorde, L.; Caen, J.; van Espen, P.; Vekemans, B.; Vincze, L.; Schalm, O.
Title Manufacturing techniques and production defects of 16th-17th century majolica tiles from Antwerp (Belgium) Type H2 Book chapter
Year 2013 Publication Abbreviated Journal
Volume Issue (down) Pages 169-176 T2 - Recent advances in glass, stained-gla
Keywords H2 Book chapter; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-8932-113-8 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:115032 Serial 8199
Permanent link to this record
 

 
Author Van de Voorde, L.; Vandevijvere, M.; Vekemans, B.; Van Pevenage, J.; Caen, J.; Vandenabeele, P.; van Espen, P.; Vincze, L.
Title Study of a unique 16th century Antwerp majolica floor in the Rameyenhof castle's chapel by means of X-ray fluorescence and portable Raman analytical instrumentation Type A1 Journal article
Year 2014 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal
Volume 102 Issue (down) Pages 28-35
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract The most unique and only known 16th century Antwerp majolica tile floor in Belgium is situated in a tower of the Rameyenhof castle (Gestel, Belgium). This exceptional work of art has recently been investigated in situ by using X-ray fluorescence (XRF) and Raman spectroscopy in order to study the material characteristics. This study reports on the result of the analyses based on the novel combination of non-destructive and portable instrumentation, including a handheld XRF spectrometer for obtaining elemental information and a mobile Raman spectrometer for retrieving structural and molecular information on the floor tiles in the Rameyenhof castle and on a second, similar medallion, which is stored in the Rubens House museum in Antwerp (Belgium). The investigated material, majolica, is a type of ceramic, which fascinated many people and potters throughout history by its beauty and colourful appearance. In this study the characteristic major/minor and trace element signature of 16th century Antwerp majolica is determined and the pigments used for the colourful paintings present on the floor are identified. Furthermore, based on the elemental fingerprint of the white glaze, and in particular on the presence of zinc in the tiles – an element that was not used for making 16th century majolica – valuable information about the originality of the chapel floor and the two central medallions is acquired. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000347604100005 Publication Date 2014-10-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; 1873-3565 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:123850 Serial 8592
Permanent link to this record