|   | 
Details
   web
Records
Author Sahin, H.; Sivek, J.; Li, S.; Partoens, B.; Peeters, F.M.
Title Stone-Wales defects in silicene : formation, stability, and reactivity of defect sites Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue (up) 4 Pages 045434-45436
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract During the synthesis of ultrathin materials with hexagonal lattice structure Stone-Wales (SW) type of defects are quite likely to be formed and the existence of such topological defects in the graphenelike structures results in dramatic changes of their electronic and mechanical properties. Here we investigate the formation and reactivity of such SW defects in silicene. We report the energy barrier for the formation of SW defects in freestanding (similar to 2.4 eV) and Ag(111)-supported (similar to 2.8 eV) silicene and found it to be significantly lower than in graphene (similar to 9.2 eV). Moreover, the buckled nature of silicene provides a large energy barrier for the healing of the SW defect and therefore defective silicene is stable even at high temperatures. Silicene with SW defects is semiconducting with a direct band gap of 0.02 eV and this value depends on the concentration of defects. Furthermore, nitrogen substitution in SW-defected silicene shows that the defect lattice sites are the least preferable substitution locations for the N atoms. Our findings show the easy formation of SW defects in silicene and also provide a guideline for band gap engineering in silicene-based materials through such defects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000322113300007 Publication Date 2013-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 93 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109805 Serial 3162
Permanent link to this record
 

 
Author Yang, W.; Nelissen, K.; Kong, M.; Zeng, Z.; Peeters, F.M.
Title Structure of binary colloidal systems confined in a quasi-one-dimensional channel Type A1 Journal article
Year 2009 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 79 Issue (up) 4 Pages 041406,1-041406,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The structural properties of a binary colloidal quasi-one-dimensional system confined in a narrow channel are investigated through modified Monte Carlo simulations. Two species of particles with different magnetic moment interact through a repulsive dipole-dipole force are confined in a quasi-one-dimensional channel. The impact of three decisive parameters (the density of particles, the magnetic-moment ratio, and the fraction between the two species) on the transition from disordered phase to crystal-like phases and the transitions among the different mixed phases are summarized in a phase diagram.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000265941300077 Publication Date 2009-04-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 11 Open Access
Notes Approved Most recent IF: 2.366; 2009 IF: 2.400
Call Number UA @ lucian @ c:irua:77021 Serial 3308
Permanent link to this record
 

 
Author Ao, Z.M.; Hernández-Nieves, A.D.; Peeters, F.M.; Li, S.
Title The electric field as a novel switch for uptake/release of hydrogen for storage in nitrogen doped graphene Type A1 Journal article
Year 2012 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 14 Issue (up) 4 Pages 1463-1467
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Nitrogen-doped graphene was recently synthesized and was reported to be a catalyst for hydrogen dissociative adsorption under a perpendicular applied electric field (F). In this work, the diffusion of H atoms on N-doped graphene, in the presence and absence of an applied perpendicular electric field, is studied using density functional theory. We demonstrate that the applied field can significantly facilitate the binding of hydrogen molecules on N-doped graphene through dissociative adsorption and diffusion on the surface. By removing the applied field the absorbed H atoms can be released efficiently. Our theoretical calculation indicates that N-doped graphene is a promising hydrogen storage material with reversible hydrogen adsorption/desorption where the applied electric field can act as a switch for the uptake/release processes.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000298754500018 Publication Date 2011-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 67 Open Access
Notes ; Financial support of the Vice-Chancellor's Postdoctoral Research Fellowship Program (SIR50/PS19184) and the ECR grant (SIR30/PS24201) from the University of New South Wales are acknowledged. This work is also supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.123; 2012 IF: 3.829
Call Number UA @ lucian @ c:irua:96266 Serial 3578
Permanent link to this record
 

 
Author Costamagna, S.; Neek-Amal, M.; Los, J.H.; Peeters, F.M.
Title Thermal rippling behavior of graphane Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue (up) 4 Pages 041408-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Thermal fluctuations of single layer hydrogenated graphene (graphane) are investigated using large scale atomistic simulations. By analyzing the mean square value of the height fluctuations < h(2)> and the height-height correlation function H(q) for different system sizes and temperatures, we show that hydrogenated graphene is an unrippled system in contrast to graphene. The height fluctuations are bounded, which is confirmed by a H(q) tending to a constant in the long wavelength limit instead of showing the characteristic scaling law q(4-eta)(eta similar or equal to 0.85) predicted by membrane theory. This unexpected behavior persists up to temperatures of at least 900 K and is a consequence of the fact that in graphane the thermal energy can be accommodated by in-plane bending modes, i.e., modes involving C-C-C bond angles in the buckled carbon layer, instead of leading to significant out-of-plane fluctuations that occur in graphene.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000306649200002 Publication Date 2012-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 46 Open Access
Notes ; We thank A. Fasolino, A. Dobry, and K. H. Michel for their useful comments. S.C. is supported by the Belgian Science Foundation (BELSPO). This work is supported by the ESF-EuroGRAPHENE project CONGRAN and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:100840 Serial 3630
Permanent link to this record
 

 
Author Doria, M.M.; Romaguera, A.R. de C.; Milošević, M.V.; Peeters, F.M.
Title Threefold onset of vortex loops in superconductors with a magnetic core Type A1 Journal article
Year 2007 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 79 Issue (up) 4 Pages 47006,1-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000248980000014 Publication Date 2007-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 27 Open Access
Notes Approved Most recent IF: 1.957; 2007 IF: 2.206
Call Number UA @ lucian @ c:irua:69644 Serial 3658
Permanent link to this record
 

 
Author Kong, M.; Partoens, B.; Peeters, F.M.
Title Transition between ground state and metastable states in classical two-dimensional atoms Type A1 Journal article
Year 2002 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 65 Issue (up) 4 Pages 046602,1-13
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000175146600036 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 51 Open Access
Notes Approved Most recent IF: 2.366; 2002 IF: 2.397
Call Number UA @ lucian @ c:irua:62440 Serial 3697
Permanent link to this record
 

 
Author Papp, G.; Peeters, F.M.
Title Tunable giant magnetoresistance with magnetic barriers Type A1 Journal article
Year 2006 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 100 Issue (up) 4 Pages 043707,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000240236800056 Publication Date 2006-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 49 Open Access
Notes Approved Most recent IF: 2.068; 2006 IF: 2.316
Call Number UA @ lucian @ c:irua:60812 Serial 3742
Permanent link to this record
 

 
Author Milton Pereira, J.; Vasilopoulos, P.; Peeters, F.M.
Title Tunable quantum dots in bilayer graphene Type A1 Journal article
Year 2007 Publication Nano letters Abbreviated Journal Nano Lett
Volume 7 Issue (up) 4 Pages 946-949
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000245600500017 Publication Date 2007-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 167 Open Access
Notes Approved Most recent IF: 12.712; 2007 IF: 9.627
Call Number UA @ lucian @ c:irua:64118 Serial 3745
Permanent link to this record
 

 
Author Liu, Y.; Cheng, F.; Li, X.J.; Peeters, F.M.; Chang, K.
Title Tuning of the two electron states in quantum rings through the spin-orbit interaction Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue (up) 4 Pages 1-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of the Coulomb interaction on the energy spectrum and anisotropic distribution of two electron states in a quantum ring in the presence of Rashba spin-orbit interaction (RSOI) and Dresselhaus SOI (DSOI) is investigated in the presence of a perpendicular magnetic field. We find that the interplay between the RSOI and DSOI makes the single quantum ring behaves like a laterally coupled quantum dot and the interdot coupling can be tuned by changing the strengths of the SOIs. The interplay can lead to singlet-triplet state mixing and anticrossing behavior when the singlet and triplet states meet with increasing magnetic field. The two electron ground state displays a bar-bell-like spatial anisotropic distribution in a quantum ring at a specific crystallographic direction, i.e., [110] or [11̅ 0], which can be switched by reversing the direction of the perpendicular electric field. The ground state exhibits a singlet-triplet state transition with increasing magnetic field and strengths of RSOI and DSOI. An anisotropic electron distribution is predicted which can be detected through the measurement of its optical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000280234100006 Publication Date 2010-07-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work was supported by NSFC under Grants No. 60525405 and No. 10874175 and the Belgium Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:84087 Serial 3756
Permanent link to this record
 

 
Author Yang, W.; Kong, M.; Milošević, M.V.; Zeng, Z.; Peeters, F.M.
Title Two-dimensional binary clusters in a hard-wall trap: structural and spectral properties Type A1 Journal article
Year 2007 Publication Physical review E Abbreviated Journal Phys Rev E
Volume 76 Issue (up) 4 Pages art.041404:part 1
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000250621900066 Publication Date 2007-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 9 Open Access
Notes Approved Most recent IF: 2.366; 2007 IF: 2.483
Call Number UA @ lucian @ c:irua:67325 Serial 3772
Permanent link to this record
 

 
Author Pereira, J.M.; Peeters, F.M.; Costa Filho, R.N.; Farias, G.A.
Title Valley polarization due to trigonal warping on tunneling electrons in graphene Type A1 Journal article
Year 2009 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 21 Issue (up) 4 Pages 045301,1-045301,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of trigonal warping on the transmission of electrons tunneling through potential barriers in graphene is investigated. We present calculations of the transmission coefficient for single and double barriers as a function of energy, incidence angle and barrier heights. The results show remarkable valley-dependent directional effects for barriers oriented parallel to the armchair or parallel to the zigzag direction. These results indicate that electrostatic gates can be used as valley filters in graphene-based devices.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000262354700004 Publication Date 2008-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 78 Open Access
Notes Approved Most recent IF: 2.649; 2009 IF: 1.964
Call Number UA @ lucian @ c:irua:75736 Serial 3834
Permanent link to this record
 

 
Author Szafran, B.; Poniedziałek, M.R.; Peeters, F.M.
Title Violation of Onsager symmetry for a ballistic channel Coulomb coupled to a quantum ring Type A1 Journal article
Year 2009 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 87 Issue (up) 4 Pages 47002,1-47002,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate a scattering of electron which is injected individually into an empty ballistic channel containing a cavity that is Coulomb coupled to a quantum ring charged with a single electron. We solve the time-dependent Schrödinger equation for the electron pair with an exact account for the electron-electron correlation. Absorption of energy and angular momentum by the quantum ring is not an even function of the external magnetic field. As a consequence we find that the electron backscattering probability is asymmetric in the magnetic field and thus violates Onsager symmetry.
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000270146400017 Publication Date 2009-09-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 4 Open Access
Notes Approved Most recent IF: 1.957; 2009 IF: 2.893
Call Number UA @ lucian @ c:irua:79734 Serial 3847
Permanent link to this record
 

 
Author Fernandez, M.S.; Peeters, F.M.; Neek-Amal, M.
Title Electric-field-induced structural changes in water confined between two graphene layers Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue (up) 4 Pages 045436
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract An external electric field changes the physical properties of polar liquids due to the reorientation of their permanent dipoles. Using molecular dynamics simulations, we predict that an in-plane electric field applied parallel to the channel polarizes water molecules which are confined between two graphene layers, resulting in distinct ferroelectricity and electrical hysteresis. We found that electric fields alter the in-plane order of the hydrogen bonds: Reversing the electric field does not restore the system to the nonpolar initial state, instead a residual dipole moment remains in the system. The square-rhombic structure of 2D ice is transformed into two rhombic-rhombic structures. Our study provides insights into the ferroelectric state of water when confined in nanochannels and shows how this can be tuned by an electric field.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000381485200005 Publication Date 2016-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 31 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:144684 Serial 4649
Permanent link to this record
 

 
Author Milovanović, S.P.; Tadic, M.Z.; Peeters, F.M.
Title Graphene membrane as a pressure gauge Type A1 Journal article
Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 111 Issue (up) 4 Pages 043101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Straining graphene results in the appearance of a pseudo-magnetic field which alters its local electronic properties. Applying a pressure difference between the two sides of the membrane causes it to bend/bulge resulting in a resistance change. We find that the resistance changes linearly with pressure for bubbles of small radius while the response becomes non-linear for bubbles that stretch almost to the edges of the sample. This is explained as due to the strong interference of propagating electronic modes inside the bubble. Our calculations show that high gauge factors can be obtained in this way which makes graphene a good candidate for pressure sensing. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000406779700035 Publication Date 2017-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 11 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem program, the Erasmus+ programme, and the Serbian Ministry of Education, Science and Technological Development. ; Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:145202 Serial 4718
Permanent link to this record
 

 
Author Lane, T.L.M.; Andelkovic, M.; Wallbank, J.R.; Covaci, L.; Peeters, F.M.; Fal'ko, V.I.
Title Ballistic electron channels including weakly protected topological states in delaminated bilayer graphene Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 97 Issue (up) 4 Pages 045301
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('We show that delaminations in bilayer graphene (BLG) with electrostatically induced interlayer symmetry can provide one with ballistic channels for electrons with energies inside the electrostatically induced BLG gap. These channels are formed by a combination of valley-polarized evanescent states propagating along the delamination edges (which persist in the presence of a strong magnetic field) and standing waves bouncing between them inside the delaminated region (in a strong magnetic field, these transform into Landau levels in the monolayers). For inverted stackings in BLGs on the left and right of the delamination (AB-2ML-BA or BA-2ML-AB, where 2ML indicates two decoupled monolayers of graphene), the lowest-energy ballistic channels are gapless, have linear dispersion, and appear to be weakly topologically protected. When BLG stackings on both sides of the delamination are the same (AB-2ML-AB or BA-2ML-BA), the lowest-energy ballistic channels are gapped, with a gap epsilon(g) scaling as epsilon(g) alpha W-1 with delamination width and epsilon(g) alpha delta(-1) with the on-layer energy difference in the delaminated part of the structure. Depending on the width, delaminations may also support several \u0022higher-energy\u0022 waveguide modes. Our results are based on both the analytical study of the wave matching of Dirac states and tight-binding model calculations, and we analyze in detail the dependence of the delamination spectrum on the electrostatic conditions in the structure, such as the vertical displacement field.'));
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000419772200005 Publication Date 2018-01-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 11 Open Access
Notes ; This work was funded by EPSRC via EPSRC Grand Engineering Chellenges Grant No. EP/N010345, the Manchester NOWNANO CDT EP/L-1548X, the Flemish Science Foundation (FWO-VI), the European Graphene Flagship project, ERC Synergy grant Hetero2D, and FLAG-ERA project TRANS2DTMD. The authors would like to acknowledge useful discussions with M. Zarenia, S. Slizovskiy, E. McCann, and K. Novesolov. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:148441UA @ admin @ c:irua:148441 Serial 4868
Permanent link to this record
 

 
Author Domingos, J.L.C.; Peeters, F.M.; Ferreira, W.P.
Title Self-assembly and clustering of magnetic peapod-like rods with tunable directional interaction Type A1 Journal article
Year 2018 Publication PLoS ONE Abbreviated Journal Plos One
Volume 13 Issue (up) 4 Pages e0195552
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Based on extensive Langevin Dynamics simulations we investigate the structural properties of a two-dimensional ensemble of magnetic rods with a peapod-like morphology, i.e, rods consisting of aligned single dipolar beads. Self-assembled configurations are studied for different directions of the dipole with respect to the rod axis. We found that with increasing misalignment of the dipole from the rod axis, the smaller the packing fraction at which the percolation transition is found. For the same density, the system exhibits different aggregation states for different misalignment. We also study the stability of the percolated structures with respect to temperature, which is found to be affected by the microstructure of the assembly of rods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.806 Times cited Open Access
Notes Approved Most recent IF: 2.806
Call Number UA @ lucian @ c:irua:150778UA @ admin @ c:irua:150778 Serial 4977
Permanent link to this record
 

 
Author Demiroglu, I.; Peeters, F.M.; Gulseren, O.; Cakir, D.; Sevik, C.
Title Alkali metal intercalation in MXene/graphene heterostructures : a new platform for ion battery applications Type A1 Journal article
Year 2019 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
Volume 10 Issue (up) 4 Pages 727-734
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The adsorption and diffusion of Na, K, and Ca atoms on MXene/graphene heterostructures of MXene systems Sc2C(OH)(2), Ti2CO2, and V2CO2 are systematically investigated by using first-principles methods. We found that alkali metal intercalation is energetically favorable and thermally stable for Ti2CO2/graphene and V2CO2/graphene heterostructures but not for Sc2C(OH)(2). Diffusion kinetics calculations showed the advantage of MXene/graphene heterostructures over sole MXene systems as the energy barriers are halved for the considered alkali metals. Low energy barriers are found for Na and K ions, which are promising for fast charge/discharge rates. Calculated voltage profiles reveal that estimated high capacities can be fully achieved for Na ion in V2CO2/graphene and Ti2CO2/graphene heterostructures. Our results indicate that Ti2CO2/graphene and V2CO2/graphene electrode materials are very promising for Na ion battery applications. The former could be exploited for low voltage applications while the latter will be more appropriate for higher voltages.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000459948800005 Publication Date 2019-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.353 Times cited 88 Open Access
Notes ; We acknowledge the support from the TUBITAK (116F080) and the BAGEP Award of the Science Academy. Part of this work was supported by the FLAG -ERA project TRANS-2D-TMD. A part of this work was supported by University of North Dakota Early Career Award (Grant number: 20622-4000-02624). We also acknowledge financial support from ND EPSCoR through NSF grant OIA-1355466. Computational resources were provided by the High Performance and Grid Computing Center (TRGrid e-Infrastructure) of TUBITAK ULAKBIM, the National Center for High Performance Computing (UHeM) of Istanbul Technical University, and Computational Research Center (HPC Linux cluster) at the University of North Dakota. This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility, and supported by the U.S. Department of Energy, Office of Science, under contract no. DE-AC02-06CH11357. ; Approved Most recent IF: 9.353
Call Number UA @ admin @ c:irua:158618 Serial 5194
Permanent link to this record
 

 
Author Abdullah, H.M.; da Costa, D.R.; Bahlouli, H.; Chaves, A.; Peeters, F.M.; Van Duppen, B.
Title Electron collimation at van der Waals domain walls in bilayer graphene Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 100 Issue (up) 4 Pages 045137
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We show that a domain wall separating single-layer graphene and AA-stacked bilayer graphene (AA-BLG) can be used to generate highly collimated electron beams which can be steered by a magnetic field. Two distinct configurations are studied, namely, locally delaminated AA-BLG and terminated AA-BLG whose terminal edge types are assumed to be either zigzag or armchair. We investigate the electron scattering using semiclassical dynamics and verify the results independently with wave-packet dynamics simulations. We find that the proposed system supports two distinct types of collimated beams that correspond to the lower and upper cones in AA-BLG. Our computational results also reveal that collimation is robust against the number of layers connected to AA-BLG and terminal edges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000477892800005 Publication Date 2019-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes ; H.M.A. and H.B. acknowledge the support of King Fahd University of Petroleum and Minerals under research group Project No. RG181001. D.R.C and A.C. were financially supported by the Brazilian Council for Research (CNPq) and CAPES foundation. B.V.D. is supported by a postdoctoral fellowship by the Research Foundation Flanders (FWO-Vl). ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:161887 Serial 5410
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Sevik, C.; Peeters, F.M.
Title Electronic, vibrational, elastic, and piezoelectric properties of monolayer Janus MoSTe phases: A first-principles study Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 100 Issue (up) 4 Pages 045415
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By performing density functional theory based first-principles calculations, the electronic, vibrational, elastic, and piezoelectric properties of two dynamically stable crystal phases of monolayer Janus MoSTe, namely 1H-MoSTe and 1T'-MoSTe, are investigated. Vibrational frequency analysis reveals that the other possible crystal structure, 1T-MoSTe, of this Janus monolayer does not exhibit dynamical stability. The 1H-MoSTe phase is found to be an indirect band-gap semiconductor while 1T'-MoSTe is predicted as small-gap semiconductor. Notably, in contrast to the direct band-gap nature of monolayers 1H-MoS2 and 1H-MoTe2, 1H-MoSTe is found to be an indirect gap semiconductor driven by the induced surface strains on each side of the structure. The calculated Raman spectrum of each structure shows unique character enabling us to clearly distinguish the stable crystal phases via Raman measurements. The systematic piezoelectric stress and strain coefficient analysis reveals that out-of-plane piezoelectricity appears in 1H-MoSTe and the noncentral symmetric 1T'-MoSTe has large piezoelectric coefficients. Static total-energy calculations show clearly that the formation of 1T'-MoSTe is feasible by using 1T'-MoTe2 as a basis monolayer. Therefore, we propose that the Janus MoSTe structure can be fabricated in two dynamically stable phases which possess unique electronic, dynamical, and piezoelectric properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000476687800003 Publication Date 2019-07-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 128 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). This work was supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:161899 Serial 5411
Permanent link to this record
 

 
Author Van Pottelberge, R.; Moldovan, D.; Milovanović, S.P.; Peeters, F.M.
Title Molecular collapse in monolayer graphene Type A1 Journal article
Year 2019 Publication 2D materials Abbreviated Journal 2D Mater
Volume 6 Issue (up) 4 Pages 045047
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Atomic collapse is a phenomenon inherent to relativistic quantum mechanics where electron states dive in the positron continuum for highly charged nuclei. This phenomenon was recently observed in graphene. Here we investigate a novel collapse phenomenon when multiple sub- and supercritical charges of equal strength are put close together as in a molecule. We construct a phase diagram which consists of three distinct regions: (1) subcritical, (2) frustrated atomic collapse, and (3) molecular collapse. We show that the single impurity atomic collapse resonances rearrange themselves to form molecular collapse resonances which exhibit a distinct bonding, anti-bonding and non-bonding character. Here we limit ourselves to systems consisting of two and three charges. We show that by tuning the distance between the charges and their strength a high degree of control over the molecular collapse resonances can be achieved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000487692200003 Publication Date 2019-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 10 Open Access
Notes ; We thank Matthias Van der Donck for fruitful discussions. This work was supported by the Research Foundation of Flanders (FWO-V1) through an aspirant research Grant for RVP and a postdoctoral Grant for SPM. ; Approved Most recent IF: 6.937
Call Number UA @ admin @ c:irua:163756 Serial 5422
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Mogulkoc, Y.; Akgenc, B.; Mogulkoc, A.; Peeters, F.M.
Title Prediction of monoclinic single-layer Janus Ga₂ Te X (X = S and Se) : strong in-plane anisotropy Type A1 Journal article
Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 104 Issue (up) 4 Pages 045425
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By using density functional theory (DFT) based first-principles calculations, electronic, vibrational, piezo-electric, and optical properties of monoclinic Janus single-layer Ga2TeX (X = S or Se) are investigated. The dynamical, mechanical, and thermal stability of the proposed Janus single layers are verified by means of phonon bands, stiffness tensor, and quantum molecular dynamics simulations. The calculated vibrational spectrum reveals the either pure or coupled optical phonon branches arising from Ga-Te and Ga-X atoms. In addition to the in-plane anisotropy, single-layer Janus Ga2TeX exhibits additional out-of-plane asymmetry, which leads to important consequences for its electronic and optical properties. Electronic band dispersions indicate the direct band-gap semiconducting nature of the constructed Janus structures with energy band gaps falling into visible spectrum. Moreover, while orientation-dependent linear-elastic properties of Janus single layers indicate their strong anisotropy, the calculated in-plane stiffness values reveal the ultrasoft nature of the structures. In addition, predicted piezoelectric coefficients show that while there is a strong in-plane anisotropy between piezoelectric constants along armchair (AC) and zigzag (ZZ) directions, there exists a tiny polarization along the out-of-plane direction as a result of the formation of Janus structure. The optical response to electromagnetic radiation has been also analyzed through density functional theory by considering the independent-particle approximation. Finally, the optical spectra of Janus Ga2TeX structures is investigated and it showed a shift from the ultraviolet region to the visible region. The fact that the spectrum is between these regions will allow it to be used in solar energy and many nanoelectronics applications. The predicted monoclinic single-layer Janus Ga2TeX are relevant for promising applications in optoelectronics, optical dichroism, and anisotropic nanoelasticity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000678811100007 Publication Date 2021-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:180404 Serial 7013
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V.
Title Tailoring weak and metallic phases in a strong topological insulator by strain and disorder : conductance fluctuations signatures Type A1 Journal article
Year 2024 Publication Physical review B Abbreviated Journal
Volume 109 Issue (up) 4 Pages 045129-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Transport measurements are readily used to probe different phases in disordered topological insulators (TIs), where determining topological invariants explicitly is challenging. On that note, universal conductance fluctuations (UCF) theory asserts the conductance G for an ensemble has a Gaussian distribution, and that standard deviation 8G depends solely on the symmetries and dimensions of the system. Using a real-space tight -binding Hamiltonian on a system with Anderson disorder, we explore conductance fluctuations in a thin Bi2Se3 film and demonstrate the agreement of their behavior with UCF hypotheses. We further show that magnetic field applied out-of-plane breaks the time -reversal symmetry and transforms the system's Wigner-Dyson class from root symplectic to unitary, increasing 8G by 2. Finally, we reveal that while Bi2Se3 is a strong TI, weak TI and metallic phases can be stabilized in presence of strain and disorder, and detected by monitoring the conductance fluctuations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001173938400008 Publication Date 2024-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 1 Open Access
Notes Approved Most recent IF: 3.7; 2024 IF: 3.836
Call Number UA @ admin @ c:irua:204765 Serial 9177
Permanent link to this record
 

 
Author Ferreira, W.P.; Peeters, F.M.; Farias, G.A.
Title Melting and evaporation in classical two-dimensional clusters confined by a Coulomb potential Type A1 Journal article
Year 2005 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 72 Issue (up) 4 Part 1 Pages 041502-41507
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The thermal properties of a two-dimensional classical cluster of negatively charged particles bound by a punctual positive charge are presented. The melting phenomenon is analyzed and the features which characterize such a solid-liquid transition are highlighted. We found that the presence of metastable states strongly modifies the melting scenario, and that the melting temperature of the system is determined by the height of the saddle point energy separating the ground state and the metastable state. Due to the particular type of confinement potential considered in this paper, we also found that, at sufficiently large temperature, the cluster can become thermally ionized.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000232930600030 Publication Date 2005-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 4 Open Access
Notes Approved Most recent IF: 2.366; 2005 IF: 2.418
Call Number UA @ lucian @ c:irua:104067 Serial 1983
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Adsorption of small molecules on graphene Type A1 Journal article
Year 2009 Publication Microelectronics journal Abbreviated Journal Microelectron J
Volume 40 Issue (up) 4/5 Pages 860-862
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the adsorption process of small molecules on graphene through first-principles calculations and show the presence of two main charge transfer mechanisms. Which mechanism is the dominant one depends on the magnetic properties of the adsorbing molecules. We explain these mechanisms through the density of states of the system and the molecular orbitals of the adsorbates, and demonstrate the possible difficulties in calculating the charge transfer from first principles between a graphene sheet and a molecule. Our results are in good agreement with experiment.
Address
Corporate Author Thesis
Publisher Place of Publication Luton Editor
Language Wos 000265870200058 Publication Date 2008-12-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.163 Times cited 116 Open Access
Notes Approved Most recent IF: 1.163; 2009 IF: 0.778
Call Number UA @ lucian @ c:irua:77030 Serial 65
Permanent link to this record
 

 
Author Slachmuylders, A.F.; Partoens, B.; Magnus, W.; Peeters, F.M.
Title Neutral shallow donors near a metallic interface Type A1 Journal article
Year 2009 Publication Microelectronics journal Abbreviated Journal Microelectron J
Volume 40 Issue (up) 4/5 Pages 753-755
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of a metallic gate on the bound states of a shallow donor located near the gate is studied. We calculate the energy spectrum as a function of the distance between the metallic gate and the donor and find an anti-crossing behavior in the energy levels for certain distances. We show how a transverse electric field can tune the average position of the electron with respect to the metallic gate and the impurity.
Address
Corporate Author Thesis
Publisher Place of Publication Luton Editor
Language Wos 000265870200024 Publication Date 2009-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.163 Times cited 1 Open Access
Notes Approved Most recent IF: 1.163; 2009 IF: 0.778
Call Number UA @ lucian @ c:irua:77029 Serial 2296
Permanent link to this record
 

 
Author Ferreira, W.P.; Munarin, F.F.; Farias, G.A.; Peeters, F.M.;
Title Melting of a two-dimensional binary cluster of charged particles confined in a parabolic trap Type A1 Journal article
Year 2006 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 18 Issue (up) 41 Pages 9385-9401
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000241277900011 Publication Date 2006-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 12 Open Access
Notes Approved Most recent IF: 2.649; 2006 IF: 2.038
Call Number UA @ lucian @ c:irua:61314 Serial 1985
Permanent link to this record
 

 
Author Zhang, Z.Z.; Wu, Z.H.; Chang, K.; Peeters, F.M.
Title Resonant tunneling through S- and U-shaped graphene nanoribbons Type A1 Journal article
Year 2009 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 20 Issue (up) 41 Pages 415203,1-415203,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We theoretically investigate resonant tunneling through S- and U-shaped nanostructured graphene nanoribbons. A rich structure of resonant tunneling peaks is found emanating from different quasi-bound states in the middle region. The tunneling current can be turned on and off by varying the Fermi energy. Tunability of resonant tunneling is realized by changing the width of the left and/or right leads and without the use of any external gates.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000269930100007 Publication Date 2009-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 32 Open Access
Notes Approved Most recent IF: 3.44; 2009 IF: 3.137
Call Number UA @ lucian @ c:irua:79311 Serial 2893
Permanent link to this record
 

 
Author Abdullah, H.M.; Van Duppen, B.; Zarenia, M.; Bahlouli, H.; Peeters, F.M.
Title Quantum transport across van der Waals domain walls in bilayer graphene Type A1 Journal article
Year 2017 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 29 Issue (up) 42 Pages 425303
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Bilayer graphene can exhibit deformations such that the two graphene sheets are locally detached from each other resulting in a structure consisting of domains with different van der Waals inter-layer coupling. Here we investigate how the presence of these domains affects the transport properties of bilayer graphene. We derive analytical expressions for the transmission probability, and the corresponding conductance, across walls separating different inter-layer coupling domains. We find that the transmission can exhibit a valley-dependent layer asymmetry and that the domain walls have a considerable effect on the chiral tunnelling properties of the charge carriers. We show that transport measurements allow one to obtain the strength with which the two layers are coupled. We perform numerical calculations for systems with two domain walls and find that the availability of multiple transport channels in bilayer graphene significantly modifies the conductance dependence on inter-layer potential asymmetry.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000410958400001 Publication Date 2017-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 15 Open Access
Notes ; HMA and HB acknowledge the Saudi Center for Theoretical Physics (SCTP) for their generous support and the support of KFUPM under physics research group projects RG1502-1 and RG1502-2. This work is supported by the Flemish Science Foundation (FWO-VI) by a post-doctoral fellowship (BVD). ; Approved Most recent IF: 2.649
Call Number UA @ lucian @ c:irua:146664 Serial 4793
Permanent link to this record
 

 
Author Chen, Y.; Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.
Title Superconducting nanowires: quantum confinement and spatially dependent Hartree-Fock potential Type A1 Journal article
Year 2009 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 21 Issue (up) 43 Pages 435701,1-435701,7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract It is well known that, in bulk, the solution of the Bogoliubovde Gennes equations is the same whether or not the HartreeFock term is included. Here the HartreeFock potential is position independent and so gives the same contribution to both the single-electron energies and the Fermi level (the chemical potential). Thus, the single-electron energies measured from the Fermi level (they control the solution) stay the same. This is not the case for nanostructured superconductors, where quantum confinement breaks the translational symmetry and results in a position-dependent HartreeFock potential. In this case its contribution to the single-electron energies depends on the relevant quantum numbers. We numerically solved the Bogoliubovde Gennes equations with the HartreeFock term for a clean superconducting nanocylinder and found a shift of the curve representing the thickness-dependent oscillations of the critical superconducting temperature to larger diameters.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000270642700012 Publication Date 2009-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 12 Open Access
Notes Approved Most recent IF: 2.649; 2009 IF: 1.964
Call Number UA @ lucian @ c:irua:79162 Serial 3360
Permanent link to this record
 

 
Author Chaney, G.; Cakir, D.; Peeters, F.M.; Ataca, C.
Title Stability of adsorption of Mg and Na on sulfur-functionalized MXenes Type A1 Journal article
Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys
Volume 23 Issue (up) 44 Pages 25424-25433
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional materials composed of transition metal carbides and nitrides (MXenes) are poised to revolutionize energy conversion and storage. In this work, we used density functional theory (DFT) to investigate the adsorption of Mg and Na adatoms on five M2CS2 monolayers (where M = Mo, Nb, Ti, V, and Zr) for battery applications. We assessed the stability of the adatom (i.e. Na and Mg)-monolayer systems by calculating adsorption and formation energies, as well as voltages as a function of surface coverage. For instance, we found that Mo2CS2 cannot support a full layer of Na nor even a single Mg atom. Na and Mg exhibit the strongest binding on Zr2CS2, followed by Ti2CS2, Nb2CS2 and V2CS2. Using the nudged elastic band method (NEB), we computed promising diffusion barriers for both dilute and nearly full ion surface coverage cases. In the dilute ion adsorption case, a single Mg and Na atom on Ti2CS2 experience similar to 0.47 eV and similar to 0.10 eV diffusion barriers between the lowest energy sites, respectively. For a nearly full surface coverage, a Na ion moving on Ti2CS2 experiences a similar to 0.33 eV energy barrier, implying a concentration-dependent diffusion barrier. Our molecular dynamics results indicate that the three (one) layers (layer) of the Mg (Na) ion on both surfaces of Ti2CS2 remain stable at T = 300 K. While, according to voltage calculations, Zr2CS2 can store Na up to three atomic layers, our MD simulations predict that the outermost layers detach from the Zr2CS2 monolayer due to the weak interaction between Na ions and the monolayer. This suggests that MD simulations are essential to confirm the stability of an ion-electrode system – an insight that is mostly absent in previous studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000716024400001 Publication Date 2021-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 7 Open Access Not_Open_Access
Notes Approved Most recent IF: 4.123
Call Number UA @ admin @ c:irua:184075 Serial 7020
Permanent link to this record