toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ruelle, B.; Felten, A.; Ghijsen, J.; Drube, W.; Johnson, R.L.; Liang, D.; Erni, R.; Van Tendeloo, G.; Sophie, P.; Dubois, P.; Godfroid, T.; Hecq, M.; Bittencourt, C.; pdf  doi
openurl 
  Title Functionalization of MWCNTs with atomic nitrogen Type A1 Journal article
  Year 2009 Publication Micron Abbreviated Journal Micron  
  Volume 40 Issue (up) 1 Pages 85-88  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this study of the changes induced by exposing MWCNTs to a nitrogen plasma, it was found by HRTEM that the atomic nitrogen exposure does not significantly etch the surface of the carbon nanotube (CNT). Nevertheless, the atomic nitrogen generated by a microwave plasma effectively grafts amine, nitrile, amide, and oxime groups onto the CNT surface, as observed by XPS, altering the density of valence electronic states, as seen in UPS. (C) 2008 Elsevier Ltd. All fights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000261420900017 Publication Date 2008-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.98 Times cited 24 Open Access  
  Notes Pai 6/1; Pa 6/27 Approved Most recent IF: 1.98; 2009 IF: 1.626  
  Call Number UA @ lucian @ c:irua:103080 Serial 1305  
Permanent link to this record
 

 
Author Ruelle, B.; Felten, A.; Ghijsen, J.; Drube, W.; Johnson, R.L.; Liang, D.; Erni, R.; Van Tendeloo, G.; Dubois, P.; Hecq, M.; Bittencourt, C.; pdf  doi
openurl 
  Title Functionalization of MWCNTs with atomic nitrogen : electronic structure Type A1 Journal article
  Year 2008 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 41 Issue (up) 4 Pages 045202-45204  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The changes induced by exposing multi-walled carbon nanotubes (CNTs) to atomic nitrogen were analysed by high-resolution transmission electron microscopy (HRTEM), x-ray and ultraviolet photoelectron spectroscopy. It was found that the atomic nitrogen generated by a microwave plasma effectively grafts chemical groups onto the CNT surface altering the density of valence electronic states. HRTEM showed that the exposure to atomic nitrogen does not significantly damage the CNT surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000253177900018 Publication Date 2008-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 16 Open Access  
  Notes Approved Most recent IF: 2.588; 2008 IF: 2.104  
  Call Number UA @ lucian @ c:irua:102633 Serial 1306  
Permanent link to this record
 

 
Author Goffin, A.-L.; Duquesne, E.; Raquez, J.-M.; Miltner, H.E.; Ke, X.; Alexandre, M.; Van Tendeloo, G.; van Mele, B.; Dubois, P. pdf  doi
openurl 
  Title From polyester grafting onto POSS nanocage by ring-opening polymerization to high performance polyester/POSS nanocomposites Type A1 Journal article
  Year 2010 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 20 Issue (up) 42 Pages 9415-9422  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Polyester-grafted polyhedral oligomeric silsesquioxane (POSS) nanohybrids selectively produced by ring-opening polymerization of ε-caprolactone and L,L-lactide (A.-L. Goffin, E. Duquesne, S. Moins, M. Alexandre, Ph. Dubois, Eur. Polym. Journal, 2007, 43, 4103) were studied as masterbatches by melt-blending within their corresponding commercial polymeric matrices, i.e., poly(ε-caprolactone) (PCL) and poly(L,L-lactide) (PLA). For the sake of comparison, neat POSS nanoparticles were also dispersed in PCL and PLA. The objective was to prepare aliphatic polyester-based nanocomposites with enhanced crystallization behavior, and therefore, enhanced thermo-mechanical properties. Wide-angle X-ray scattering and transmission electron microscopy attested for the dispersion of individualized POSS nanoparticles in the resulting nanocomposite materials only when the polyester-grafted POSS nanohybrid was used as a masterbatch. The large impact of such finely dispersed (grafted) nanoparticles on the crystallization behavior for the corresponding polyester matrices was noticed, as evidenced by differential scanning calorimetry analysis. Indeed, well-dispersed POSS nanoparticles acted as efficient nucleating sites, significantly increasing the crystallinity degree of both PCL and PLA matrices. As a result, a positive impact on thermo-mechanical properties was highlighted by dynamic mechanical thermal analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000283264500017 Publication Date 2010-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 42 Open Access  
  Notes Fwo; Iap-6 Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:85784 Serial 1284  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: