|   | 
Details
   web
Records
Author Huang, W.; Zhang, X.-B.; Tu, J.; Kong, F.; Ning, Y.; Xu, J.; Van Tendeloo, G.
Title Synthesis and characterization of graphite nanofibers deposited on nickel foams Type A1 Journal article
Year 2002 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 4 Issue 21 Pages 5325-5329
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nickel foams were used as catalysts to dissociate acetylene and deposit carbon atoms. Graphite nanofibers with distinct structures were developed at 550degreesC with nickel foams pretreated with hydrogen. HREM observations showed that the graphite layers of the nanofibers were aligned at a certain angle to the fiber axis. It is suggested that hydrogen treatment and metal catalysts have a tremendous impact on the yields and microstructures of the graphite nanofibers. The growth mechanism of these fish-bone graphite nanofibers is also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000178635300016 Publication Date 2002-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 20 Open Access
Notes Approved Most recent IF: 4.123; 2002 IF: 1.838
Call Number UA @ lucian @ c:irua:94938 Serial 3411
Permanent link to this record
 

 
Author Filez, M.; Redekop, E.A.; Galvita, V.V.; Poelman, H.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Bell, A.T.; Marin, G.B.
Title The role of hydrogen during Pt-Ga nanocatalyst formation Type A1 Journal article
Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 18 Issue 18 Pages 3234-3243
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hydrogen plays an essential role during the in situ assembly of tailored catalytic materials, and serves as key ingredient in multifarious chemical reactions promoted by these catalysts. Despite intensive debate for several decades, the existence and nature of hydrogen-involved mechanisms – such as hydrogen-spillover, surface migration – have not been unambiguously proven and elucidated up to date. Here, Pt-Ga alloy formation is used as a probe reaction to study the behavior and atomic transport of H and Ga, starting from Pt nanoparticles on hydrotalcite-derived Mg(Ga)(Al)Ox supports. In situ XANES spectroscopy, time-resolved TAP kinetic experiments, HAADF-STEM imaging and EDX mapping are combined to probe Pt, Ga and H in a series of H2 reduction experiments up to 650 degrees C. Mg(Ga)(Al)Ox by itself dissociates hydrogen, but these dissociated hydrogen species do not induce significant reduction of Ga3+ cations in the support. Only in the presence of Pt, partial reduction of Ga3+ into Gadelta+ is observed, suggesting that different reaction mechanisms dominate for Pt- and Mg(Ga)(Al)Ox-dissociated hydrogen species. This partial reduction of Ga3+ is made possible by Pt-dissociated H species which spillover onto non-reducible Mg(Al)Ox or partially reducible Mg(Ga)(Al)Ox and undergo long-range transport over the support surface. Moderately mobile Gadelta+Ox migrates towards Pt clusters, where Gadelta+ is only fully reduced to Ga0 on condition of immediate stabilization inside Pt-Ga alloyed nanoparticles.
Address Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 914, B-9052 Ghent, Belgium. hilde.poelman@ugent.be
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000369506000106 Publication Date 2016-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 10 Open Access
Notes This work was supported by the Fund for Scientific Research Flanders (FWO: G.0209.11), the ‘Long Term Structural Methusalem Funding by the Flemish Government’, the IAP 7/05 Interuniversity Attraction Poles Programme – Belgian State – Belgian Science Policy, and the Fund for Scientific Research Flanders (FWO-Vlaanderen) in supplying financing of beam time at the DUBBLE beam line of the ESRF and travel costs and a postdoctoral fellowship for S.T. The authors acknowledge the assistance from D. Banerjee (XAS campaign 26-01-979) at DUBBLE. E. A. Redekop acknowledges the Marie Curie International Incoming Fellowship granted by the European Commission (Grant Agreement No. 301703). The authors also express their gratitude to V. Bliznuk for acquisition of the TEM images. Approved Most recent IF: 4.123
Call Number c:irua:132315 Serial 4000
Permanent link to this record
 

 
Author Serrano-Sevillano, J.; Reynaud, M.; Saracibar, A.; Altantzis, T.; Bals, S.; van Tendeloo, G.; Casas-Cabanas, M.
Title Enhanced electrochemical performance of Li-rich cathode materials through microstructural control Type A1 Journal article
Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 20 Issue 20 Pages 23112-23122
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The microstructural complexity of Li-rich cathode materials has so far hampered understanding the critical link between size, morphology and structural defects with both capacity and voltage fadings that this family of materials exhibits. Li2MnO3 is used here as a model material to extract reliable structure–property

relationships that can be further exploited for the development of high-performing and long-lasting Li-rich oxides. A series of samples with microstructural variability have been prepared and thoroughly characterized using the FAULTS software, which allows quantification of planar defects and extraction of

average crystallite sizes. Together with transmission electron microscopy (TEM) and density functional theory (DFT) results, the successful application of FAULTS analysis to Li2MnO3 has allowed rationalizing the synthesis conditions and identifying the individual impact of concurrent microstructural features on

both voltage and capacity fadings, a necessary step for the development of high-capacity Li-ion cathode materials with enhanced cycle life.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000445220500071 Publication Date 2018-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 36 Open Access OpenAccess
Notes This work was supported by the Spanish Ministerio de la Economı´a y de la Competitividad through the project IONSTORE (MINECO ref. ENE2016-81020-R). The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3). JSS and AS are grateful for computing time provided by the Spanish i2Basque Centers. MR acknowledges the Spanish State for its financial support through her post-doctoral grant Juan de la Cierva – Formacio´n (MINECO ref. FJCI-2014-19990) and her international mobility grant Jose´ Castillejos (MECD ref. CAS15/00354). S. B. acknowledges funding from the European Research Council (ERC starting grant #335078 Colouratom) and T. A. a postdoctoral grant from the Research Foundation Flanders (FWO). (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ecas_sara Approved Most recent IF: 4.123
Call Number EMAT @ emat @c:irua:154782UA @ admin @ c:irua:154782 Serial 5062
Permanent link to this record
 

 
Author Ghica, C.; Enculescu, I.; Nistor, L.C.; Matei, E.; Van Tendeloo, G.
Title Electrochemical growth and characterization of nanostructured ZnO thin films Type A1 Journal article
Year 2008 Publication Journal of optoelectronics and advanced materials Abbreviated Journal J Optoelectron Adv M
Volume 10 Issue 12 Pages 3237-3240
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract ZnO is a wide band-gap (ca. 3.4 eV) semiconductor, piezoelectric, pyroelectric, biocompatible, transparent in the visible spectrum and UV light emitting material. The fabrication in 2001 of the first nanobelts of semiconductor oxide materials lead to a rapid expansion of researches concerning one dimensional nanostructures (nanotubes, nanowires, nanobelts), given their possible application in optics, optoelectronics, piezoelectricity, catalysis. Researches carried on up to date evidenced the possibility to obtain an extraordinary variety of ZnO nanostructures, in function of the experimental parameters and the used growth methods. In this work we present morphostructural results on nanostructured ZnO layers obtained by electrochemical deposition. The films have been grown on gold covered glass plates and Si wafers, in various experimental conditions such as: nature of the wetting agents, electrical polarization of the substrate (continuous, pulsed). The influence of the growth conditions on the crystalline structure and morphology of the films is revealed by scanning and transmission electron microscopy studies. The films show a variety of growth morphologies, from entangled-wires-like to honeycomb-like layers. These large-specific-surface layers will be tested as nanostructured substrates for photovoltaic cells with improved efficiency.
Address
Corporate Author Thesis
Publisher Place of Publication Bucharest Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1454-4164 ISBN Additional Links UA library record; WoS full record;
Impact Factor 0.449 Times cited Open Access
Notes Approved Most recent IF: 0.449; 2008 IF: 0.577
Call Number UA @ lucian @ c:irua:75746 Serial 899
Permanent link to this record
 

 
Author Ghica, C.; Nistor, L.; Van Tendeloo, G.
Title Revealing nanoscale structural TEM/HRTEM: application on ferroelectric ordering by PMN-PT relaxor ferroelectric Type A1 Journal article
Year 2008 Publication Journal of optoelectronics and advanced materials Abbreviated Journal J Optoelectron Adv M
Volume 10 Issue 9 Pages 2328-2333
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nano-scale ordering may be revealed in transmission electron microscopy (TEM) by at least three techniques that will be presented in this work: selected area electron diffraction, conventional TEM and high-resolution TEM. Digital image processing is used to extract additional information from the high-resolution micrographs. The described methods are illustrated in a microstructural and compositional study of a 90%Pb(Mg1/3Nb2/3)O-3-10%PbTiO2 ceramic sample. High-resolution images reveal the presence of ordered compositional nano-domains, observable in two specific crystallographic orientations. Antiphase boundaries lying in the (111) planes separate them, while (100) and (111) facets separate the ordered domains from the disordered matrix.
Address
Corporate Author Thesis
Publisher Place of Publication Bucharest Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1454-4164 ISBN Additional Links UA library record; WoS full record;
Impact Factor 0.449 Times cited Open Access
Notes Approved Most recent IF: 0.449; 2008 IF: 0.577
Call Number UA @ lucian @ c:irua:76520 Serial 2901
Permanent link to this record
 

 
Author Malesevic, A.; Kemps, R.; Zhang, L.; Erni, R.; Van Tendeloo, G.; Vanhulsel, A.; van Haesendonck, C.
Title A versatile plasma tool for the synthesis of carbon nanotubes and few-layer graphene sheets Type A1 Journal article
Year 2008 Publication Journal of optoelectronics and advanced materials Abbreviated Journal J Optoelectron Adv M
Volume 10 Issue 8 Pages 2052-2055
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Bucharest Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1454-4164 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.449 Times cited Open Access
Notes Approved Most recent IF: 0.449; 2008 IF: 0.577
Call Number UA @ lucian @ c:irua:70636 Serial 3839
Permanent link to this record
 

 
Author Armelao, L.; Barreca, D.; Bottaro, G.; Gasparotto, A.; Maccato, C.; Tondello, E.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G.; Štangar, U.L.
Title Rational design of Ag/TiO2 nanosystems by a combined RF-sputtering/sol-gel approach Type A1 Journal article
Year 2009 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
Volume 10 Issue 18 Pages 3249-3259
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The present work is devoted to the preparation of Ag/TiO2 nanosystems by an original synthetic strategy, based on the radio-frequency (RF) sputtering of silver particles on titania-based xerogels prepared by the sol-gel (SG) route. This approach takes advantage of the synergy between the microporous xerogel structure and the infiltration power characterizing RF-sputtering, whose combination enables the obtainment of a tailored dispersion of Ag-containing particles into the titania matrix. In addition, the systems chemico-physical features can be tuned further through proper ex situ thermal treatments in air at 400 and 600 °C. The synthesized composites are extensively characterized by the joint use of complementary techniques, that is, X-ray photoelectron and X-ray excited Auger electron spectroscopies (XPS, XE-AES), secondary ion mass spectrometry (SIMS), glancing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron diffraction (ED), high-angle annular dark field scanning TEM (HAADF-STEM), energy-filtered TEM (EF-TEM) and optical absorption spectroscopy. Finally, the photocatalytic performances of selected samples in the decomposition of the azo-dye Plasmocorinth B are preliminarily investigated. The obtained results highlight the possibility of tailoring the system characteristics over a broad range, directly influencing their eventual functional properties.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000273410600015 Publication Date 2009-10-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1439-4235;1439-7641; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 56 Open Access
Notes Esteem 026019 Approved Most recent IF: 3.075; 2009 IF: 3.453
Call Number UA @ lucian @ c:irua:80561 Serial 2811
Permanent link to this record
 

 
Author Felten, A.; Suarez-Martinez, I.; Ke, X.; Van Tendeloo, G.; Ghijsen, J.; Pireaux, J.-J.; Drube, W.; Bittencourt, C.; Ewels, C.P.
Title The role of oxygen at the interface between titanium and carbon nanotubes Type A1 Journal article
Year 2009 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
Volume 10 Issue 11 Pages 1799-1804
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We study the interface between carbon nanotubes (CNTs) and surface-deposited titanium using electron microscopy and photoemission spectroscopy, supported by density functional calculations. Charge transfer from the Ti atoms to the nanotube and carbide formation is observed at the interface which indicates strong interaction. Nevertheless, the presence of oxygen between the Ti and the CNTs significantly weakens the Ti-CNT interaction. Ti atoms at the surface will preferentially bond to oxygenated sites. Potential sources of oxygen impurities are examined, namely oxygen from any residual atmosphere and pre-existing oxygen impurities on the nanotube surface, which we enhance through oxygen plasma surface pre-treatment. Variation in literature data concerning Ohmic contacts between Ti and carbon nanotubes is explained via sample pre-treatment and differing vacuum levels, and we suggest improved treatment routes for reliable Schottky barrier-free Ti-nanotube contact formation.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000268817800015 Publication Date 2009-05-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1439-4235;1439-7641; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 38 Open Access
Notes Pai Approved Most recent IF: 3.075; 2009 IF: 3.453
Call Number UA @ lucian @ c:irua:77939 Serial 2918
Permanent link to this record
 

 
Author Bittencourt, C.; van Lier, G.; Ke, X.; Suarez-Martinez, I.; Felten, A.; Ghijsen, J.; Van Tendeloo, G.; Ewels, C.O.
Title Spectroscopy and defect identification for fluorinated carbon nanotubes Type A1 Journal article
Year 2009 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
Volume 10 Issue 6 Pages 920-925
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Multi-wall carbon nanotubes (MWCNTs) were exposed to a CF4 radio-frequency (rf) plasma. High-resolution photoelectron spectroscopy shows that the treatment effectively grafts fluorine atoms onto the MWCNTs, altering the valence electronic states. Fluorine surface concentration can be tuned by varying the exposure time. Evaporation of gold onto MWCNTs is used to mark active site formation. High-resolution transmission electron microscopy coupled with density functional theory (DFT) modelling is used to characterise the surface defects formed, indicating that the plasma treatment does not etch the tube surface. We suggest that this combination of theory and microscopy of thermally evaporated gold atoms onto the CNT surface may be a powerful approach to characterise both surface defect density as well as defect type.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000265469200011 Publication Date 2009-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1439-4235;1439-7641; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 14 Open Access
Notes Iuap; Fwo Approved Most recent IF: 3.075; 2009 IF: 3.453
Call Number UA @ lucian @ c:irua:77315 Serial 3073
Permanent link to this record
 

 
Author Bekermann, D.; Gasparotto, A.; Barreca, D.; Devi, A.; Fischer, R.A.; Kete, M.; Štangar, U.L.; Lebedev, O.I.; Maccato, C.; Tondello, E.; Van Tendeloo, G.
Title ZnO nanorod arrays by plasma-enhanced CVD for light-activated functional applications Type A1 Journal article
Year 2010 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
Volume 11 Issue 11 Pages 2337-2340
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Switch of the surface properties: Supported ZnO nanorod arrays with tailored roughness and aspect ratios are successfully synthesized by plasma-enhanced chemical vapor deposition. Such nanostructures exhibit significant superhydrophilic and photocatalytic properties tunable as a function of their morphological organization (see picture). This renders them promising building blocks for the fabrication of stimuli-responsive materials.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000281061500008 Publication Date 2010-06-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1439-4235;1439-7641; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 38 Open Access
Notes Esteem 026019 Approved Most recent IF: 3.075; 2010 IF: 3.340
Call Number UA @ lucian @ c:irua:84594 Serial 3935
Permanent link to this record
 

 
Author Colomer, J.-F.; Henrard, L.; Lambin, P.; Van Tendeloo, G.
Title Electron diffraction and microscopy of single-wall carbon nanotube bundles produced by different methods Type A1 Journal article
Year 2002 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
Volume 27 Issue 1 Pages 111-118
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000176258200013 Publication Date 2004-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.461 Times cited 43 Open Access
Notes Approved Most recent IF: 1.461; 2002 IF: 1.741
Call Number UA @ lucian @ c:irua:54780 Serial 915
Permanent link to this record
 

 
Author Willems, B.L.; Taylor, D.M.J.; Fritzsche, J.; Malfait, M.; Vanacken, J.; Moshchalkov, V.V.; Montoya, E.; Van Tendeloo, G.
Title Temperature and magnetic field dependence of the voltagein GaAs films with superconducting Ga grains Type A1 Journal article
Year 2008 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
Volume 66 Issue 1 Pages 25-28
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have studied granular films consisting of nanoscale Ga droplets formed on GaAs films via a method of vacuum annealing to promote As evaporation. For temperatures and magnetic fields below the bulk Ga critical parameters, the samples are very sensitive towards external microwave radiation when two point voltage measurements are performed. Together with the observation of an oscillating magnetic field dependence of the voltage, a scenario in which the samples consist of Josephson-coupled loops seems to be the most likely one for explaining the obtained results.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000262831300004 Publication Date 2008-10-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record
Impact Factor 1.461 Times cited Open Access
Notes Approved Most recent IF: 1.461; 2008 IF: 1.568
Call Number UA @ lucian @ c:irua:75997 Serial 3496
Permanent link to this record
 

 
Author Hervieu, M.; Martin, C.; Maignan, A.; Van Tendeloo, G.; Raveau, B.
Title Charge ordering-disordering in Th-doped CaMnO3 Type A1 Journal article
Year 1999 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
Volume 10 Issue Pages 397-408
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000082579200001 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1434-6028; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.461 Times cited 6 Open Access
Notes Approved Most recent IF: 1.461; 1999 IF: 1.705
Call Number UA @ lucian @ c:irua:29718 Serial 337
Permanent link to this record
 

 
Author Michel, A.; Pierron-Bohnes, V.; Jay, J.P.; Panissod, P.; Lefebvre, S.; Bessière, M.; Fischer, H.E.; Van Tendeloo, G.
Title Stabilisation of fcc cobalt layers by 0.4 nm thick manganese layers in Co/Mn superlattices Type A1 Journal article
Year 2001 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
Volume 19 Issue 2 Pages 225-239
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000167425800008 Publication Date 2003-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1434-6028; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.461 Times cited 8 Open Access
Notes Approved Most recent IF: 1.461; 2001 IF: 1.811
Call Number UA @ lucian @ c:irua:54779 Serial 3116
Permanent link to this record
 

 
Author Isaeva, A.A.; Makarevich, O.N.; Kutznetsov, A.N.; Doert, T.; Abakumov, A.M.; Van Tendeloo, G.
Title Mixed tellurides Ni3-xGaTe2 (0\leq x\leq0.65): crystal and electronic structures, properties, and nickel deficiency effects on vacancy ordering Type A1 Journal article
Year 2010 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem
Volume Issue 9 Pages 1395-1404
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The Ni3-xGaTe2 series of compounds (0 x 0.65) was synthesized by a high-temperature ceramic technique at 750 °C. Crystal structures of three compounds in the series were determined by X-ray powder diffraction: Ni2.98(1)GaTe2 (RI = 0.042, Rp = 0.023, Rwp = 0.035), Ni2.79(1)GaTe2 (RI = 0.053, Rp = 0.028, Rwp = 0.039), Ni2.58(1)GaTe2 (RI = 0.081, Rp = 0.037, Rwp = 0.056); the structures were verified by electron diffraction and, for the former compound, high-resolution electron microscopy. The compounds crystallize in a hexagonal lattice with P63/mmc, and the structures can be regarded as a hexagonal close-packed array with a -Ga-Te-Te- stacking sequence. The octahedral and trigonal bipyramidal voids in the hcp structure are selectively filled with Ni atoms to form one entirely occupied and two partially occupied sites, thus allowing variations in the nickel content in the series of compounds Ni3-xGaTe2 (0 x 0.65). A superstructure with asup = 2asub (P63/mmc) has been identified for Ni3-xGaTe2 (0.5 x 0.65) by electron diffraction. Real-space, high-resolution images confirm an ordering of Ni atoms and vacancies inthe ab plane. Quantum-chemical calculations performed forNi3-xGaTe2 (x = 0, 0.25, 0.75, 1) suggest anisotropic metallic conductivity and Pauli paramagnetic behavior that are experimentally confirmed for Ni3GaTe2.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000276370300009 Publication Date 2010-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1434-1948;1099-0682; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.444 Times cited 8 Open Access
Notes Approved Most recent IF: 2.444; 2010 IF: 2.910
Call Number UA @ lucian @ c:irua:82266 Serial 2090
Permanent link to this record
 

 
Author Avila-Brande, D.; Otero-Díaz, L.C.; Landa-Cánovas, A.R.; Bals, S.; Van Tendeloo, G.
Title A new Bi4Mn1/3W2/3O8Cl Sillén-Aurivillius intergrowth: synthesis and structural characterisation by quantitative transmission electron microscopy Type A1 Journal article
Year 2006 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem
Volume Issue 9 Pages 1853-1858
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The synthesis and structural characterisation of a new phase with nominal composition Bi4Mn1/3W2/3O8Cl is presented. Conventional and analytical transmission electron microscopy are used to determine the composition, unit-cell symmetry and space group of the compound, whereas a structural model is deducted by exit-wave reconstruction in the transmission electron microscope. This technique allows the microscope information limit of 1.1 angstrom to be reached and the (light) oxygen atoms in the presence of heavier atoms (Bi, W, Mn) to be imaged. The average structure is refined from Xray powder diffraction data using the Rietveld method yielding an orthorhombic unit cell with lattice parameters a 5.467(4) angstrom, b = 5.466(7) angstrom and c = 14.159(3) angstrom and space group Cm2m, which could be described as a Sillen-Aurivillius intergrowth. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000237617800016 Publication Date 2006-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1434-1948;1099-0682; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.444 Times cited 12 Open Access
Notes Approved Most recent IF: 2.444; 2006 IF: 2.704
Call Number UA @ lucian @ c:irua:59436 Serial 2335
Permanent link to this record
 

 
Author Müller, M.; Turner, S.; Lebedev, O.I.; Wang, Y.; Van Tendeloo, G.; Fischer, R.A.
Title Au@MOF-5 and Au/Mox@MOF-5 (M = Zn, Ti; x = 1, 2) : preparation and microstructural characterisation Type A1 Journal article
Year 2011 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem
Volume Issue 12 Pages 1876-1887
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The Zn-carboxylate-based porous coordination polymer MOF-5 [Zn4O(bdc)3] and the metal oxide loaded materials ZnO@MOF-5 and TiO2@MOF-5 were loaded in a second step with the precursor [ClAuCO] to yield intermediate materials denoted as [ClAuCO]@MOF-5, [ClAuCO]/ZnO@MOF-5 and [ClAuCO]/TiO2@MOF-5. These composites were decomposed to Au@MOF-5, Au/ZnO@MOF-5 and Au/TiO2@MOF-5 under hydrogen at 100 °C. The nanoparticle-loaded hybrid materials were characterised by powder X-ray diffraction (PXRD), IR spectroscopy, X-ray photoelectron spectroscopy (XPS) and N2 sorption measurements, which reveal an intact MOF-5 structure that maintains a high specific surface area. For Au@MOF-5, crystalline Au nanoparticles were distributed over the MOF matrix in a homogeneous fashion with a size of ca. 13 nm, evidenced by high resolution transmission electron microscopy. In the case of Au/ZnO@MOF-5, the Au and metal oxide particles of a few nm in size were coexistent in a given volume of the MOF-5 matrix and were not separated in different crystalline MOF particles. For the TiO2 loaded materials the oxide is preferentially located near the outer surface of the MOF particles, leading to an increase of larger exterior Au particles in comparison to very small interior Au particles as observed for the other materials. Au@MOF-5, Au/ZnO@MOF-5 and Au/TiO2@MOF-5 were tested in liquid-phase oxidation of alcohols. Preliminary results show a high activity for the Au loaded materials in this reaction. This observation is attributed to the microstructure of the composites with very small Au particles distributed homogeneously over the MOF matrix.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000289644300004 Publication Date 2011-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1434-1948; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.444 Times cited 75 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 2.444; 2011 IF: 3.049
Call Number UA @ lucian @ c:irua:88644 Serial 205
Permanent link to this record
 

 
Author Carraro, G.; Maccato, C.; Bontempi, E.; Gasparotto, A.; Lebedev, O.I.; Turner, S.; Depero, L.E.; Van Tendeloo, G.; Barreca, D.
Title Insights on growth and nanoscopic investigation of uncommon iron oxide polymorphs Type A1 Journal article
Year 2013 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem
Volume Issue 31 Pages 5454-5461
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Si(100)-supported Fe2O3 nanomaterials were developed by a chemical vapor deposition (CVD) approach. The syntheses, which were performed at temperatures between 400 and 550 °C, selectively yielded the scarcely studied β- and ϵ-Fe2O3 polymorphs under O2 or O2 + H2O reaction environments, respectively. Correspondingly, the observed morphology underwent a progressive evolution from interconnected nanopyramids to vertically aligned nanorods. The present study aims to provide novel insights into Fe2O3 nano-organization by a systematic investigation of the system structure/morphology and of their interrelations with growth conditions. In particular, for the first time, the β- and ϵ-Fe2O3 preparation process has been accompanied by a thorough multitechnique investigation, which, beyond X-ray photoelectron spectroscopy (XPS) and field-emission scanning electron microscopy (FESEM), is carried out by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDXS), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), scanning TEM electron energy-loss spectroscopy (STEM-EELS), and high-angle annular dark-field STEM (HAADF-STEM). Remarkably, the target materials showed a high structural and compositional homogeneity throughout the whole thickness of the nanodeposit. In particular, spatially resolved EELS chemical maps through the spectrum imaging (SI) technique enabled us to gain important information on the local Fe coordination, which is of crucial importance in determining the system reactivity. The described preparation method is in fact a powerful tool to simultaneously tailor phase composition and morphology of iron(III) oxide nanomaterials, the potential applications of which include photocatalysis, magnetic devices, gas sensors, and anodes for Li-ion batteries.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000330567000009 Publication Date 2013-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1434-1948; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.444 Times cited 18 Open Access
Notes Fwo; Countatoms Approved Most recent IF: 2.444; 2013 IF: 2.965
Call Number UA @ lucian @ c:irua:110946 Serial 1676
Permanent link to this record
 

 
Author Meilikhov, M.; Yusenko, K.; Esken, D.; Turner, S.; Van Tendeloo, G.; Fischer, R.A.
Title Metals@MOFs – loading MOFs with metal nanoparticles for hybrid functions Type A1 Journal article
Year 2010 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem
Volume 2010 Issue 24 Pages 3701-3714
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Metalorganic frameworks (MOFs) as well as porous coordination polymers (PCPs) are porous, organicinorganic hybrid solids with zeolite-like structures and properties. Due to their extraordinarily high surface area and well defined pore structure MOFs can be used for the stabilization of metal nanoparticles with adjustable size. The embedded metal nanoparticles are still accessible for other reagents due to the high porosity of the MOF systems. This fact makes metal@MOF systems especially interesting for heterogeneous catalysis, gas storage and chemical sensing. This review compiles the cases of metal nanoparticles supported by or embedded into MOFs reported so far and the main aspects and problems associated with these novel nanocomposite systems. The determination of the dispersion and the location of the particles at the MOF support, the control of the loading degree and its effect on the catalytic activity of the system are discussed as well as the partial degradation of the MOF structure upon particle formation. Examples of the introduction of stabilizing groups into the MOF network that direct the loading and can influence the size and shape of the embedded particles are still rare and point into the possible direction of future investigations. Finally, the formation of bimetallic nanoparticles, which are stabilized and supported by a MOF network, will also be reviewed.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000281684300001 Publication Date 2010-07-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1434-1948; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.444 Times cited 366 Open Access
Notes Esteem 026019 Approved Most recent IF: 2.444; 2010 IF: 2.910
Call Number UA @ lucian @ c:irua:85495 Serial 2014
Permanent link to this record
 

 
Author Vernimmen, J.; Meynen, V.; Herregods, S.J.F.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Cool, P.
Title New insights in the formation of combined zeolitic/mesoporous materials by using a one-pot templating synthesis Type A1 Journal article
Year 2011 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem
Volume Issue 27 Pages 4234-4240
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Zeolitic growth is often absent or occurs in separate phases when synthetic strategies based on the combination of zeolite templates and mesopore templating agents are applied. In this work, zeolitic growth and mesopore formation have been investigated at different temperatures by applying a one-pot templating approach, based on a TS-1 zeolite synthesis whereby part of the microtemplate (tetrapropylammonium hydroxide, TPAOH) is replaced by a mesotemplate (hexadecyltrimethylammonium bromide, CTMABr). Moreover, the synthesis duration and the molar ratio of the microtemplate/mesotemplate have also been studied. The different syntheses clearly show the inherent competitive mechanism between zeolitic growth and mesopore formation. These insights have led to the conclusion that by following a one-pot templating strategy with standard, nonexotic commercial templates, i.e. CTMABr and TPAOH, it is not possible to develop a true hierarchical mesoporous zeolite, meaning a mesoporous siliceous material with highly crystalline zeolitic walls. The resultant materials are instead combined zeolitic/mesoporous composite structures with, however, highly tuneable and controllable porosity characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000296143500014 Publication Date 2011-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1434-1948; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.444 Times cited 7 Open Access
Notes Fwo Approved Most recent IF: 2.444; 2011 IF: 3.049
Call Number UA @ lucian @ c:irua:91574 Serial 2315
Permanent link to this record
 

 
Author Folens, K.; Leus, K.; Nicomel, N.R.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Du Laing, G.; Van Der Voort, P.
Title Fe3O4@MIL-101-A selective and regenerable adsorbent for the removal of as species from water Type A1 Journal article
Year 2016 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem
Volume 2016 Issue 2016 Pages 4395-4401
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The chromium-based metal organic framework MIL-101(Cr) served as a host for the in situ synthesis of Fe3O4 nano particles. This hybrid nanomaterial was tested as an adsorbent for arsenite and arsenate species in groundwater and surface water and showed excellent affinity towards As-III and As-V species. The adsorption capacities of 121.5 and 80.0 mg g(-1) for arsenite and arsenate species, respectively, are unprecedented. The presence of Ca2+, Mg2+, and phosphate ions and natural organic matter does not affect the removal efficiency or the selectivity. The structural integrity of the hybrid nanomaterial was maintained during the adsorption process and even after desorption through phosphate elution. Additionally, no significant leaching of Cr or Fe species was observed.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000386166900019 Publication Date 2016-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1434-1948 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.444 Times cited 27 Open Access
Notes Approved Most recent IF: 2.444
Call Number UA @ lucian @ c:irua:139220 Serial 4442
Permanent link to this record
 

 
Author Villani, K.; Kirschhock, C.E.A.; Liang, D.; Van Tendeloo, G.; Martens, J.A.
Title Catalytic carbon oxidation over ruthenium-based catalysts Type A1 Journal article
Year 2006 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 45 Issue 19 Pages 3106-3109
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000237533400016 Publication Date 2006-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1433-7851;1521-3773; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 36 Open Access
Notes Approved Most recent IF: 11.994; 2006 IF: 10.232
Call Number UA @ lucian @ c:irua:59449 Serial 291
Permanent link to this record
 

 
Author Abakumov, A.M.; Hadermann, J.; Bals, S.; Nikolaev, I.V.; Antipov, E.V.; Van Tendeloo, G.
Title Crystallographic shear structures as a route to anion-deficient perovskites Type A1 Journal article
Year 2006 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 45 Issue 40 Pages 6697-6700
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000241474500022 Publication Date 2006-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1433-7851;1521-3773; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 62 Open Access
Notes Approved Most recent IF: 11.994; 2006 IF: 10.232
Call Number UA @ lucian @ c:irua:61689 Serial 589
Permanent link to this record
 

 
Author Kirschhock, C.E.A.; Liang, D.; Aerts, A.; Aerts, C.A.; Kremer, S.P.B.; Jacobs, P.A.; Van Tendeloo, G.; Martens, J.A.
Title On the TEM and AFM evidence of zeosil nanoslabs present during the synthesis of silicalite-1 : reply Type L1 Letter to the editor
Year 2004 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 43 Issue 35 Pages 4562-4564
Keywords L1 Letter to the editor; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000224008400003 Publication Date 2004-08-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1433-7851;1521-3773; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited Open Access
Notes Fwo; Iap-Pai Approved Most recent IF: 11.994; 2004 IF: 9.161
Call Number UA @ lucian @ c:irua:103253 Serial 2457
Permanent link to this record
 

 
Author Yan, L.; Niu, H.; Bridges, C.A.; Marshall, P.A.; Hadermann, J.; Van Tendeloo, G.; Chalker, P.R.; Rosseinsky, M.J.
Title Unit-cell-level assembly of metastable transition-metal oxides by pulsed-laser deposition Type A1 Journal article
Year 2007 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 46 Issue 24 Pages 4539-4542
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000247500600026 Publication Date 2007-05-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1433-7851;1521-3773; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 16 Open Access
Notes Approved Most recent IF: 11.994; 2007 IF: 10.031
Call Number UA @ lucian @ c:irua:65593 Serial 3812
Permanent link to this record
 

 
Author Filez, M.; Poelman, H.; Redekop, E.A.; Galvita, V.V.; Alexopoulos, K.; Meledina, M.; Ramachandran, R.K.; Dendooven, J.; Detavernier, C.; Van Tendeloo, G.; Safonova, O.V.; Nachtegaal, M.; Weckhuysen, B.M.; Marin, G.B.
Title Kinetics of lifetime changes in bimetallic nanocatalysts revealed by quick X-ray absorption spectroscopy Type A1 Journal article
Year 2018 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 57 Issue 38 Pages 12430-12434
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Alloyed metal nanocatalysts are of environmental and economic importance in a plethora of chemical technologies. During the catalyst lifetime, supported alloy nanoparticles undergo dynamic changes which are well-recognized but still poorly understood. High-temperature O-2-H-2 redox cycling was applied to mimic the lifetime changes in model Pt13In9 nanocatalysts, while monitoring the induced changes by insitu quick X-ray absorption spectroscopy with one-second resolution. The different reaction steps involved in repeated Pt13In9 segregation-alloying are identified and kinetically characterized at the single-cycle level. Over longer time scales, sintering phenomena are substantiated and the intraparticle structure is revealed throughout the catalyst lifetime. The insitu time-resolved observation of the dynamic habits of alloyed nanoparticles and their kinetic description can impact catalysis and other fields involving (bi)metallic nanoalloys.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000444225100038 Publication Date 2018-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 4 Open Access OpenAccess
Notes ; M.F. acknowledges a European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement (No. 748563). E.A.R acknowledges the Marie Curie International Incoming Fellowship granted by the European Commission (No. 301703). This work was supported by the Fund for Scientific Research Flanders (G.0209.11), the “Long Term Structural Methusalem Funding by the Flemish Government”. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7 /2007-2013) under grant agreement No. 312284 (CALIPSO). We thanks the Swiss Light Source for providing beamtime at the SuperXAS beamline. ; Approved Most recent IF: 11.994
Call Number UA @ lucian @ c:irua:153633 Serial 5111
Permanent link to this record
 

 
Author Kundu, P.; Heidari, H.; Bals, S.; Ravishankar, N.; Van Tendeloo, G.
Title Formation and thermal stability of gold-silica nanohybrids : insight into the mechanism and morphology by electron tomography Type A1 Journal article
Year 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 53 Issue 15 Pages 3970-3974
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Gold-silica hybrids are appealing in different fields of applications like catalysis, sensorics, drug delivery, and biotechnology. In most cases, the morphology and distribution of the heterounits play significant roles in their functional behavior. Methods of synthesizing these hybrids, with variable ordering of the heterounits, are replete; however, a complete characterization in three dimensions could not be achieved yet. A simple route to the synthesis of Au-decorated SiO2 spheres is demonstrated and a study on the 3D ordering of the heterounits by scanning transmission electron microscopy (STEM) tomography is presentedat the final stage, intermediate stages of formation, and after heating the hybrid. The final hybrid evolves from a soft self-assembled structure of Au nanoparticles. The hybrid shows good thermal stability up to 400 degrees C, beyond which the Au particles start migrating inside the SiO2 matrix. This study provides an insight in the formation mechanism and thermal stability of the structures which are crucial factors for designing and applying such hybrids in fields of catalysis and biotechnology. As the method is general, it can be applied to make similar hybrids based on SiO2 by tuning the reaction chemistry as needed.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000333634800036 Publication Date 2014-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 10 Open Access OpenAccess
Notes This research has received funding from the European Community’s Seventh Framework Program (ERC; grant number 246791)— COUNTATOMS, COLOURATOMS, as well as from the IAP 7/05 Programme initiated by the Belgian Science Policy Office. Funding from the Department of Science and Technology (DST) is also acknowledged.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994; 2014 IF: 11.261
Call Number UA @ lucian @ c:irua:117186 Serial 1251
Permanent link to this record
 

 
Author Lueangchaichaweng, W.; Brooks, N.R.; Fiorilli, S.; Gobechiya, E.; Lin, K.; Li, L.; Parres-Esclapez, S.; Javon, E.; Bals, S.; Van Tendeloo, G.; Martens, J.A.; Kirschhock, C.E.A.; Jacobs, P.A.; Pescarmona, P.P.;
Title Gallium oxide nanorods : novel, template-free synthesis and high catalytic activity in epoxidation reactions Type A1 Journal article
Year 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 53 Issue 6 Pages 1585-1589
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Gallium oxide nanorods with unprecedented small dimensions (20-80nm length and 3-5nm width) were prepared using a novel, template-free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H2O2, rivaling the industrial benchmark microporous titanosilicate TS-1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000330558400021 Publication Date 2014-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 61 Open Access OpenAccess
Notes START 1; Methusalem; Prodex; IAP-PAI; and the ERC (grant number 24691-COUNTATOMS and grant number 335078-COLOURATOM) projects; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994; 2014 IF: 11.261
Call Number UA @ lucian @ c:irua:115726 Serial 1314
Permanent link to this record
 

 
Author Tan, H.; Tian, H.; Verbeeck, J.; Janssens, K.; Van Tendeloo, G.
Title Nanoscale investigation of the degradation mechanism of a historical chrome yellow paint by quantitative electron energy loss spectroscopy mapping of chromium species Type A1 Journal article
Year 2013 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 52 Issue 43 Pages 11360-11363
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Getting the picture: The investigation of 100 year old chrome yellow paint by transmission electron microscopy and spectroscopy has led to the identification of four types of coreshell particles. This nanoscale investigation has allowed a mechanism to be proposed for the darkening of some bright yellow colors in Van Gogh's paintings (e.g. in Falling leaves (Les Alyscamps), 1888).
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000330735800026 Publication Date 2013-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 29 Open Access
Notes Esteem2; Vortex; Countatoms; esteem2jra3 ECASJO; Approved Most recent IF: 11.994; 2013 IF: 11.336
Call Number UA @ lucian @ c:irua:110947UA @ admin @ c:irua:110947 Serial 2266
Permanent link to this record
 

 
Author Ovsyannikov, S.V.; Abakumov, A.M.; Tsirlin, A.A.; Schnelle, W.; Egoavil, R.; Verbeeck, J.; Van Tendeloo, G.; Glazyrin, K.V.; Hanfland, M.; Dubrovinsky, L.
Title Perovskite-like Mn2O3 : a path to new manganites Type A1 Journal article
Year 2013 Publication Angewandte Chemie Abbreviated Journal Angew Chem Int Edit
Volume 52 Issue 5 Pages 1494-1498
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Korund-artiges ε-Mn2O3 und Perowskit-artiges ζ-Mn2O3, zwei neue Phasen von Mn2O3, wurden unter hohen Drücken bei hohen Temperaturen synthetisiert. Die Manganatome können vollständig die A- und B-Positionen der Perowskitstruktur besetzen. ζ-Mn2O3 (siehe Bild, A-Positionsordnung) enthält Mn in den drei Oxidationsstufen +II, +III und +IV.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000313913300027 Publication Date 2012-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 84 Open Access
Notes This work was supported by the DFG (project OV-110/1-1), Alexander von Humboldt foundation, European Union Council (FP7)-Grant no. 246102 IFOX, European Research Council (FP7)-ERC Starting Grant no. 278510 VORTEX and ERC Grant no. 246791-COUNTATOMS, and Hercules fund from the Flemish Government. ECASJO_; Approved Most recent IF: 11.994; 2013 IF: 11.336
Call Number UA @ lucian @ c:irua:108765UA @ admin @ c:irua:108765 Serial 2573
Permanent link to this record