toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S.
  Title General conclusions and future perspectives Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
  Volume Issue Pages 243-253
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
  Abstract This chapter provides an overview of statistical and quantitative methodologies that have pushed (scanning) transmission electron microscopy ((S)TEM) toward accurate and precise measurements of unknown structure parameters for understanding the relation between the structure of a material and its properties. Hereby, statistical parameter estimation theory has extensively been used which enabled not only measuring atomic column positions, but also quantifying the number of atoms, and detecting atomic columns as accurately and precisely as possible from experimental images. As a general conclusion, it can be stated that advanced statistical techniques are ideal tools to perform quantitative electron microscopy at the atomic scale. In the future, statistical methods will continue to be developed and novel quantification procedures will open up new possibilities for studying material structures at the atomic scale.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2021-03-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume 217 Series Issue Edition
  ISSN (down) ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record
  Impact Factor Times cited Open Access Not_Open_Access
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:177533 Serial 6781
Permanent link to this record
 

 
Author Fatermans, J.; de Backer, A.; den Dekker, A.J.; Van Aert, S.
  Title Image-quality evaluation and model selection with maximum a posteriori probability Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
  Volume Issue Pages 215-242
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
  Abstract The maximum a posteriori (MAP) probability rule for atom column detection can also be used as a tool to evaluate the relation between scanning transmission electron microscopy (STEM) image quality and atom detectability. In this chapter, a new image-quality measure is proposed that correlates well with atom detectability, namely the integrated contrast-to-noise ratio (ICNR). Furthermore, the working principle of the MAP probability rule is described in detail showing a close relation to the principles of model-selection methods.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2021-03-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume 217 Series Issue Edition
  ISSN (down) ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record
  Impact Factor Times cited Open Access Not_Open_Access
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:177532 Serial 6782
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S.
  Title Introduction Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
  Volume Issue Pages 1-28
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2021-03-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume 217 Series Issue Edition
  ISSN (down) ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record
  Impact Factor Times cited Open Access Not_Open_Access
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:177525 Serial 6784
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S.
  Title Optimal experiment design for nanoparticle atom counting from ADF STEM images Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
  Volume Issue Pages 145-175
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
  Abstract In this chapter, the principles of detection theory are used to quantify the probability of error for atom counting from high-resolution scanning transmission electron microscopy (HRSTEM) images. Binary and multiple hypothesis testing have been investigated in order to determine the limits to the precision with which the number of atoms in a projected atomic column can be estimated. The probability of error has been calculated when using STEM images, scattering cross-sections or peak intensities as a criterion to count atoms. Based on this analysis, we conclude that scattering cross-sections perform almost equally well as images and perform better than peak intensities. Furthermore, the optimal STEM detector design can be derived for atom counting using the expression of the probability of error. We show that for very thin objects the low-angle annular dark-field (LAADF) regime is optimal and that for thicker objects the optimal inner detector angle increases.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2021-03-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume 217 Series Issue Edition
  ISSN (down) ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record
  Impact Factor Times cited Open Access Not_Open_Access
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:177530 Serial 6785
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S.
  Title Statistical parameter estimation theory : principles and simulation studies Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
  Volume Issue Pages 29-72
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
  Abstract In this chapter, the principles of statistical parameter estimation theory for a quantitative analysis of atomic-resolution electron microscopy images are introduced. Within this framework, electron microscopy images are described by a parametric statistical model. Here, parametric models are introduced for different types of electron microscopy images: reconstructed exit waves, annular dark-field (ADF) scanning transmission electron microscopy (STEM) images, and simultaneously acquired ADF and annular bright-field (ABF) STEM images. Furthermore, the Cramér-Rao lower bound (CRLB) is introduced, i.e. a theoretical lower bound on the variance of any unbiased estimator. This CRLB is used to quantify the precision of the structure parameters of interest, such as the atomic column positions and the integrated atomic column intensities.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2021-03-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume 217 Series Issue Edition
  ISSN (down) ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record
  Impact Factor Times cited Open Access Not_Open_Access
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:177527 Serial 6788
Permanent link to this record
 

 
Author de Backer, J.; Vanderveken, O.; Vos, W.; Devolder, A.; Verhulst, S.; Verbraecken, J.
  Title Functional imaging to predict treatment success of mandibular advancement devices in sleep-disordered breathing Type H3 Book chapter
  Year 2008 Publication Abbreviated Journal
  Volume Issue Pages 141-155
  Keywords H3 Book chapter; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP); Translational Neurosciences (TNW)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Antwerpen Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:72885 Serial 1298
Permanent link to this record
 

 
Author Parizel, P.M.; Corthouts, B.; Snoeckx, A.; de Backer, J.; de Backer, W.
  Title Klinische semiologie en radiologie Type H3 Book chapter
  Year 2007 Publication Abbreviated Journal
  Volume Issue Pages 133-146
  Keywords H3 Book chapter; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Acco Place of Publication Leuven Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:63801 Serial 1765
Permanent link to this record
 

 
Author de Backer, A.
  Title Quantitative atomic resolution electron microscopy using advanced statistical techniques Type Doctoral thesis
  Year 2015 Publication Abbreviated Journal
  Volume Issue Pages
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Antwerpen Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:125636 Serial 2747
Permanent link to this record
 

 
Author De Backer, J.
  Title The versatile nature of cytoglobin, the Swiss army knife among globins, with a preference for oxidative stress Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal
  Volume Issue Pages XVIII, 232 p.
  Keywords Doctoral thesis; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Proteinscience, proteomics and epigenetic signaling (PPES)
  Abstract Since its discovery 20 years ago, many studies have been performed to gain insight into the functional role of cytoglobin (Cygb). However, Cygb has been proven to be a promiscuous protein. Yet, there is a consensus that Cygb is a cytoprotective protein involved in redox homeostasis. CYGB is a ubiquitously expressed hexacoordinated globin that is highly expressed in melanocytes and is often found to be downregulated during melanocyte-to-melanoma transition. In Chapter III, we investigated the molecular mechanism through which CYGB could be involved in redox regulation. Here, we showed that CYGB contains two redox-sensitive cysteine residues and that the formation of an intramolecular disulfide bridge resulted in the heme group becoming more accessible to external ligands. This supports the hypothesis that Cys38 and Cys83 serve as sensitive redox sensors. In Chapter IV we showed that CYGB mRNA and protein levels were elevated upon exposure to hypoxia. Interestingly, this upregulation was most likely HIF-2α-dependent. We propose that in melanoma, HIF-2α, rather than HIF-1α, positively regulates CYGB under hypoxic conditions in a cell type specific way. In Chapter V, the cytotoxic effect of indirect NTP treatment in two melanoma cell lines with divergent endogenous CYGB expression levels was investigated. We confirmed that NTP endows cytotoxicity that induces cell death through apoptosis and that this was mediated through the production of ROS. Moreover, we showed that CYGB protects melanoma cells from ROS-induced apoptosis by the scavenging of ROS. Interestingly, CYGB expression influenced the expression of NRF2 and HO-1. We identified the lncRNA MEG3 as a possible mechanism through which NRF2 expression and its downstream target HO-1 can be regulated by CYGB. In chapter VI, increased basal ROS levels and higher degree of lipid peroxidation upon RSL3 treatment contributed to the increased sensitivity of CYGB knockdown G361 cells to ferroptosis. Furthermore, transcriptome analysis demonstrates the enrichment of multiple cancer malignancy pathways upon CYGB knockdown, supporting a tumor-suppressive role for CYGB. Remarkably, CYGB expression regulation was identified as a critical determinant of the ferroptosis–pyroptosis therapy response. This suggests that CYGB is involved in the regulation of multiple modes of programmed cell death. FInally, we sought to delineate the RONS that are responsible for plasma-induced ICD. Our results highlight the importance of the short-lived species. Furthermore, we are first to demonstrate that NTP-created vaccine is safely prepared and offers complete protection. Moreover, we provide conclusive evidence that direct application of NTP induces ICD in melanoma.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:193568 Serial 7277
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: