toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Martin, J.M.L.; El-Yazal, J.; François, J.P.; Gijbels, R. doi  openurl
  Title Structures and thermochemistry of B3N3 and B4N4 Type A1 Journal article
  Year 1995 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett  
  Volume 232 Issue Pages 289-294  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1995QC33700018 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.897 Times cited 35 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:12278 Serial 3320  
Permanent link to this record
 

 
Author Scipioni, R.; Matsubara, M.; Ruiz, E.; Massobrio, C.; Boero, M. doi  openurl
  Title Thermal behavior of Si-doped fullerenes vs their structural stability at T = 0 K : a density functional study Type A1 Journal article
  Year 2011 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett  
  Volume 510 Issue 1/3 Pages 14-17  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We establish the topological conditions underlying the thermal stability of C30Si30 clusters. Two topologies have been considered: a segregated one, where Si and C atoms lie on neighboring and yet, separated parts of the cage, and a non-segregated one, where the number of SiC bonds is maximized. The segregated network is energetically favored against the non-segregated one, both structures being fully relaxed at T = 0 K. Conversely, the non-segregated structure is the only one stable at finite temperatures, regardless of the nature of the local states (d or p) included in the KleynmanBylander construction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000291478400002 Publication Date 2011-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.815 Times cited 14 Open Access  
  Notes Approved Most recent IF: 1.815; 2011 IF: 2.337  
  Call Number UA @ lucian @ c:irua:90453 Serial 3625  
Permanent link to this record
 

 
Author Neyts, E.C.; Ostrikov, K.K.; Sunkara, M.K.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma Catalysis: Synergistic Effects at the Nanoscale Type A1 Journal article
  Year 2015 Publication Chemical reviews Abbreviated Journal Chem Rev  
  Volume 115 Issue 115 Pages 13408-13446  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Thermal-catalytic gas processing is integral to many current industrial processes. Ever-increasing demands on conversion and energy efficiencies are a strong driving force for the development of alternative approaches. Similarly, synthesis of several functional materials (such as nanowires and nanotubes) demands special processing conditions. Plasma catalysis provides such an alternative, where the catalytic process is complemented by the use of plasmas that activate the source gas. This combination is often observed to result in a synergy between plasma and catalyst. This Review introduces the current state-of-the-art in plasma catalysis, including numerous examples where plasma catalysis has demonstrated its benefits or shows future potential, including CO2 conversion, hydrocarbon reforming, synthesis of nanomaterials, ammonia production, and abatement of toxic waste gases. The underlying mechanisms governing these applications, as resulting from the interaction between the plasma and the catalyst, render the process highly complex, and little is known about the factors leading to the often-observed synergy. This Review critically examines the catalytic mechanisms relevant to each specific application.  
  Address Department of Chemistry, Research Group PLASMANT, Universiteit Antwerpen , Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000367563000006 Publication Date 2015-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0009-2665 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 47.928 Times cited 204 Open Access  
  Notes ECN and AB gratefully acknowledge financial support from the Fund of Scientific Research Flanders (FWO), Belgium, Grant Number G.0217.14N. KO acknowledges partial support by the Australian Research Council and CSIRO’s OCE Science Leaders Program. MKS acknowledges partial support from US National Science Foundation through grants DMS 1125909 and EPSCoR 1355448 and also PhD students Babajide Ajayi, Apolo Nambo and Maria Carreon for their help. Approved Most recent IF: 47.928; 2015 IF: 46.568  
  Call Number c:irua:130001 Serial 3993  
Permanent link to this record
 

 
Author Hoffman, B.M.; Lukoyanov, D.; Yang, Z.-Y.; Dean, D.R.; Seefeldt, L.C. pdf  url
doi  openurl
  Title Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage Type A1 Journal Article
  Year 2014 Publication Chemical Reviews Abbreviated Journal Chem. Rev.  
  Volume 114 Issue 8 Pages 4041-4062  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Ammonia is a crucial nutrient used for plant growth and as a building block in pharmaceutical and chemical industry, produced via nitrogen fixation of the ubiquitous atmospheric N2. Current industrial ammonia production relies heavily on fossil resources, but a lot of work is put into developing non-fossil based pathways. Among these is the use of nonequilibrium plasma. In this work, we investigated water vapor as H source for nitrogen fixation into NH3 by non-equilibrium plasma. The highest selectivity towards NH3 was observed with low amounts of added H2O vapor, but the highest production rate was reached at high H2O vapor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2014-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0009-2665 ISBN Additional Links  
  Impact Factor Times cited Open Access  
  Notes We would like to thank Sylvia Dewilde (Department of Biomedical Sciences) for providing analytical equipment. Approved no  
  Call Number PLASMANT @ plasmant @ Serial 6337  
Permanent link to this record
 

 
Author van de Vijver, F.L.; Verbueken, A.H.; Van Grieken, R.E.; de Broe, M.E.; Visser, W.J. pdf  openurl
  Title Laser microprobe mass analysis : a tool for evaluating histochemical staining of trace elements Type L1 Letter to the editor
  Year 1985 Publication Clinical chemistry : international journal of laboratory medicine and molecular diagnostics Abbreviated Journal  
  Volume 31 Issue 2 Pages 351-352  
  Keywords L1 Letter to the editor; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0009-9147; 1530-8561 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116715 Serial 8154  
Permanent link to this record
 

 
Author Verbueken, A.H.; van de Vijver, F.L.; Van Grieken, R.E.; Paulus, G.J.; Visser, W.J.; d'Haese, P.; de Broe, M.E. pdf  openurl
  Title Ultrastructural localization of aluminum in patients with dialysis-associated osteomalacia Type A1 Journal article
  Year 1984 Publication Clinical chemistry : international journal of laboratory medicine and molecular diagnostics Abbreviated Journal  
  Volume 30 Issue 5 Pages 763-768  
  Keywords A1 Journal article; Pharmacology. Therapy; Pathophysiology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Using laser microprobe mass analysis, we studied the ultrastructural localization of aluminum in liver and bone tissue of chronic-hemodialysis patients with proven aluminum-induced osteomalacia. In the liver, aluminum was observed to be almost exclusively associated with iron. Detectable aluminum and large amounts of iron were found in lysosomes of both hepatocytes and Kupffer cells. In bone, aluminum was localized at the osteoid/calcified-bone interface and also was associated with iron in some cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1984SR66500043 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0009-9147; 1530-8561 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116713 Serial 8703  
Permanent link to this record
 

 
Author Semenov, M.Y.; Van Grieken, R. doi  openurl
  Title Base cation fluxes in mountain landscapes of Lake Baikal southern shore Type A1 Journal article
  Year 2007 Publication Communications in soil science and plant analysis Abbreviated Journal  
  Volume 38 Issue 19-20 Pages 2635-2646  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000251885800005 Publication Date 2007-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0010-3624 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:65351 Serial 7551  
Permanent link to this record
 

 
Author Arsoski, V.V.; Čukarić, N.A.; Tadic, M.Z.; Peeters, F.M. pdf  url
doi  openurl
  Title An efficient finite-difference scheme for computation of electron states in free-standing and core-shell quantum wires Type A1 Journal article
  Year 2015 Publication Computer physics communications Abbreviated Journal Comput Phys Commun  
  Volume 197 Issue 197 Pages 17-26  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electron states in axially symmetric quantum wires are computed by means of the effective-mass Schrodinger equation, which is written in cylindrical coordinates phi, rho, and z. We show that a direct discretization of the Schrodinger equation by central finite differences leads to a non-symmetric Hamiltonian matrix. Because diagonalization of such matrices is more complex it is advantageous to transform it in a symmetric form. This can be done by the Liouville-like transformation proposed by Rizea et al. (2008), which replaces the wave function psi(rho) with the function F(rho) = psi(rho)root rho and transforms the Hamiltonian accordingly. Even though a symmetric Hamiltonian matrix is produced by this procedure, the computed wave functions are found to be inaccurate near the origin, and the accuracy of the energy levels is not very high. In order to improve on this, we devised a finite-difference scheme which discretizes the Schrodinger equation in the first step, and then applies the Liouville-like transformation to the difference equation. Such a procedure gives a symmetric Hamiltonian matrix, resulting in an accuracy comparable to the one obtained with the finite element method. The superior efficiency of the new finite-difference scheme (FDM) is demonstrated for a few p-dependent one-dimensional potentials which are usually employed to model the electron states in free-standing and core shell quantum wires. The new scheme is compared with the other FDM schemes for solving the effective-mass Schrodinger equation, and is found to deliver energy levels with much smaller numerical error for all the analyzed potentials. It also gives more accurate results than the scheme of Rizea et al., except for the ground state of an infinite rectangular potential in freestanding quantum wires. Moreover, the PT symmetry is invoked to explain similarities and differences between the considered FDM schemes. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000362919500003 Publication Date 2015-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0010-4655 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.936 Times cited 4 Open Access  
  Notes ; This work was supported by the Ministry of Education, Science, and Technological Development of Serbia (project III 45003) and the Fonds Wetenschappelijk Onderzoek (Belgium). ; Approved Most recent IF: 3.936; 2015 IF: 3.112  
  Call Number UA @ lucian @ c:irua:129412 Serial 4139  
Permanent link to this record
 

 
Author Nakhaee, M.; Ketabi, S.A.; Peeters, F.M. pdf  doi
openurl 
  Title Tight-binding studio : a technical software package to find the parameters of tight-binding Hamiltonian Type A1 Journal article
  Year 2020 Publication Computer Physics Communications Abbreviated Journal Comput Phys Commun  
  Volume 254 Issue Pages 107379-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present the Tight-Binding Studio (TB Studio) software package that calculates the different parameters of a tight-binding Hamiltonian from a set of Bloch energy bands obtained from first principle theories such as density functional theory, Hartree-Fock calculations or semi-empirical band-structure theory. This will be helpful for scientists who are interested in studying electronic and optical properties of structures using Green's function theory within the tight-binding approximation. TB Studio is a cross-platform application written in C++ with a graphical user interface design that is user-friendly and easy to work with. This software is powered by Linear Algebra Package C interface library for solving the eigenvalue problems and the standard high performance OpenGL graphic library for real time plotting. TB Studio and its examples together with the tutorials are available for download from tight-binding.com. Program summary Program Title: Tight-Binding Studio Program Files doi:http://dx.doi.org/10.17632/j6x5mwzm2d.1 Licensing provisions: LGPL Programming language: C++ External routines: BLAS, LAPACK, LAPACKE, wxWidgets, OpenGL, MathGL Nature of problem: Obtaining Tight-Binding Hamiltonian from a set of Bloch energy bands obtained from first-principles calculations. Solution method: Starting from the simplified LCAO method, a tight-binding model in the two-center approximation is constructed. The Slater and Koster (SK) approach is used to calculate the parameters of the TB Hamiltonian. By using non-linear fitting approaches the optimal values of the SK parameters are obtained such that the TB energy eigenvalues are as close as possible to those from first-principles calculations. We obtain the expression for the Hamiltonian and the overlap matrix elements between the different orbitals of the different atoms in an orthogonal or non-orthogonal basis set. (C) 2020 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000541251200030 Publication Date 2020-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0010-4655 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.3 Times cited 14 Open Access  
  Notes ; This work was supported by the Methusalem program of the Flemish government, Belgium and M. Nakhaee was supported by a BOF-fellowship (UAntwerpen), Belgium. ; Approved Most recent IF: 6.3; 2020 IF: 3.936  
  Call Number UA @ admin @ c:irua:170149 Serial 6630  
Permanent link to this record
 

 
Author Sébilleau, D.; Natoli, C.; Gavaza, G.M.; Zhao, H.; da Pieve, F.; Hatada, K. pdf  doi
openurl 
  Title MsSpec-1.0 : a multiple scattering package for electron spectroscopies in material science Type A1 Journal article
  Year 2011 Publication Computer physics communications Abbreviated Journal Comput Phys Commun  
  Volume 182 Issue 12 Pages 2567-2579  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We present a multiple scattering package to calculate the cross-section of various spectroscopies namely photoelectron diffraction (PED), Auger electron diffraction (AED), X-ray absorption (XAS), low-energy electron diffraction (LEED) and Auger photoelectron coincidence spectroscopy (APECS). This package is composed of three main codes, computing respectively the cluster, the potential and the cross-section. In the latter case, in order to cover a range of energies as wide as possible, three different algorithms are provided to perform the multiple scattering calculation: full matrix inversion, series expansion or correlation expansion of the multiple scattering matrix. Numerous other small Fortran codes or bash/csh shell scripts are also provided to perform specific tasks. The cross-section code is built by the user from a library of subroutines using a makefile.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000295769700014 Publication Date 2011-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0010-4655; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.936 Times cited 6 Open Access  
  Notes Approved Most recent IF: 3.936; 2011 IF: 3.268  
  Call Number UA @ lucian @ c:irua:93288 Serial 2208  
Permanent link to this record
 

 
Author Ranjbar, S.; Shahmansouri, M.; Attri, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Effect of plasma-induced oxidative stress on the glycolysis pathway of Escherichia coli Type A1 Journal article
  Year 2020 Publication Computers In Biology And Medicine Abbreviated Journal Comput Biol Med  
  Volume 127 Issue Pages 104064  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Antibiotic resistance is one of the world’s most urgent public health problems. Due to its antibacterial properties, cold atmospheric plasma (CAP) may serve as an alternative method to antibiotics. It is claimed that oxidative stress caused by CAP is the main reason of bacteria inactivation. In this work, we computationally investigated the effect of plasma-induced oxidation on various glycolysis metabolites, by monitoring the production of the biomass. We observed that in addition to the significant reduction in biomass production, the rate of some re­actions has increased. These reactions produce anti-oxidant products, showing the bacterial defense mechanism to escape the oxidative damage. Nevertheless, the simulations show that the plasma-induced oxidation effect is much stronger than the defense mechanism, causing killing of the bacteria.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000603362700001 Publication Date 2020-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0010-4825 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.7 Times cited Open Access  
  Notes Ministry of Science and Technology of Iran; Hercules Foundation; Flemish Government; EWI; S. R. acknowledges funding from the Ministry of Science and Tech­nology of Iran. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Ant­werpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (depart­ment EWI) and the universitteit Antwerpen. We also would like to thank Dr. Charlotta Bengtson for her suggestions in writing this paper. Approved Most recent IF: 7.7; 2020 IF: 1.836  
  Call Number PLASMANT @ plasmant @c:irua:173860 Serial 6437  
Permanent link to this record
 

 
Author Oliveira, M.C.; Yusupov, M.; Cordeiro, R.M.; Bogaerts, A. pdf  url
doi  openurl
  Title Unraveling the permeation of reactive species across nitrated membranes by computer simulations Type A1 Journal Article;Reactive oxygen and nitrogen species
  Year 2021 Publication Computers In Biology And Medicine Abbreviated Journal Comput Biol Med  
  Volume 136 Issue Pages 104768  
  Keywords A1 Journal Article;Reactive oxygen and nitrogen species; Nitro-oxidative stress; Molecular dynamics simulations; Nitrated membranes; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Reactive oxygen and nitrogen species (RONS) are involved in many biochemical processes, including nitrooxidative stress that causes cancer cell death, observed in cancer therapies such as photodynamic therapy and cold atmospheric plasma. However, their mechanisms of action and selectivity still remain elusive due to the complexity of biological cells. For example, it is not well known how RONS generated by cancer therapies permeate the cell membrane to cause nitro-oxidative damage. There are many studies dedicated to the perme­ation of RONS across native and oxidized membranes, but not across nitrated membranes, another lipid product also generated during nitro-oxidative stress. Herein, we performed molecular dynamics (MD) simulations to calculate the free energy barrier of RONS permeation across nitrated membranes. Our results show that hy­drophilic RONS, such as hydroperoxyl radical (HO2) and peroxynitrous acid (ONOOH), have relatively low barriers compared to hydrogen peroxide (H2O2) and hydroxyl radical (HO), and are more prone to permeate the membrane than for the native or peroxidized membranes, and similar to aldehyde-oxidized membranes. Hy­drophobic RONS like molecular oxygen (O2), nitrogen dioxide (NO2) and nitric oxide (NO) even have insignif­icant barriers for permeation. Compared to native and peroxidized membranes, nitrated membranes are more permeable, suggesting that we must not only consider oxidized membranes during nitro-oxidative stress, but also nitrated membranes, and their role in cancer therapies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000696938800003 Publication Date 2021-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0010-4825 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.836 Times cited Open Access OpenAccess  
  Notes We thank University of Antwerp and Coordination of Superior Level Staff Improvement (CAPES, Brazil) for the scholarship granted and for providing the computational resources needed for completion of this work. M. Yusupov acknowledges the Flanders Research Foundation (grant 1200219N) for financial support. Approved Most recent IF: 1.836  
  Call Number PLASMANT @ plasmant @c:irua:181082 Serial 6807  
Permanent link to this record
 

 
Author Tunca, B.; Lapauw, T.; Callaert, C.; Hadermann, J.; Delville, R.; Caspi, E.'ad N.; Dahlqvist, M.; Rosen, J.; Marshal, A.; Pradeep, K.G.; Schneider, J.M.; Vleugels, J.; Lambrinou, K. pdf  doi
openurl 
  Title Compatibility of Zr₂AlC MAX phase-based ceramics with oxygen-poor, static liquid lead-bismuth eutectic Type A1 Journal article
  Year 2020 Publication Corrosion Science Abbreviated Journal Corros Sci  
  Volume 171 Issue Pages 108704-108719  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This work investigates the compatibility of Zr2AlC MAX phase-based ceramics with liquid LBE, and proposes a mechanism to explain the observed local Zr2AlC/LBE interaction. The ceramics were exposed to oxygen-poor (C-O <= 2.2 x 10(-10) mass%), static liquid LBE at 500 degrees C for 1000 h. A new Zr-2(Al,Bi,Pb)C MAX phase solid solution formed in-situ in the LBE-affected Zr2AlC grains. Out-of-plane ordering was favorable in the new solid solution, whereby A-layers with high and low-Bi/Pb contents alternated in the crystal structure, in agreement with first-principles calculations. Bulk Zr-2(Al,Bi,Pb)C was synthesized by reactive hot pressing to study the crystal structure of the solid solution by neutron diffraction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000537624600005 Publication Date 2020-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0010-938x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.3 Times cited 3 Open Access Not_Open_Access  
  Notes ; B.T. acknowledges the financial support of the SCK CEN Academy for Nuclear Science and Technology (Belgium). This research was partly funded by the European Atomic Energy Community's (Euratom) Seventh Framework Programme FP7/ 2007-2013 under Grant Agreement No. 604862 (FP7 MatISSE), the MYRRHA project (SCK CEN, Belgium), as well as by the Euratom research and training programme 2014-2018 under Grant Agreement No. 740415 (H2020 IL TROVATORE). The performed research falls within the framework of the EERA (European Energy Research Alliance) Joint Programme on Nuclear Materials (JPNM). The authors gratefully acknowledge the Hercules Foundation for Project AKUL/1319 (CombiS(T)EM)) and the Knut and Alice Wallenberg (KAW) foundation. The calculations were carried out using supercomputer resources provided by the Swedish National Infrastructure for Computing (SNIC) at the High Performance Computing Center North (HPC2N) and the PDC Center for High Performance Computing. E.N.C. thanks Offir Ozeri for his help in NPD data acquiring. ; Approved Most recent IF: 8.3; 2020 IF: 5.245  
  Call Number UA @ admin @ c:irua:170157 Serial 6475  
Permanent link to this record
 

 
Author Gong, X.; Marmy, P.; Volodin, A.; Amin-Ahmadi, B.; Qin, L.; Schryvers, D.; Gavrilov, S.; Stergar, E.; Verlinden, B.; Wevers, M.; Seefeldt, M. pdf  url
doi  openurl
  Title Multiscale investigation of quasi-brittle fracture characteristics in a 9Cr–1Mo ferritic–martensitic steel embrittled by liquid lead–bismuth under low cycle fatigue Type A1 Journal article
  Year 2016 Publication Corrosion science Abbreviated Journal  
  Volume 102 Issue 102 Pages 137-152  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Liquid metal embrittlement (LME) induced quasi-brittle fracture characteristics of a 9Cr–1Mo ferritic–martensitic steel (T91) after fatigue cracking in lead–bismuth eutectic (LBE) have been investigated at various length scales. The results show that the LME fracture morphology is primarily characterized by quasi-brittle translath flat regions partially covered by nanodimples, shallow secondary cracks propagating along the martensitic lath boundaries as well as tear ridges covered by micro dimples. These diverse LME fracture features likely indicate a LME mechanism involving multiple physical processes, such as weakening induced interatomic decohesion at the crack tip and plastic shearing induced nano/micro voiding in the plastic zone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000367275700014 Publication Date 2015-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0010938X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 16 Open Access  
  Notes The work is financially supported by the MYRRHA project,SCK•CEN, Belgium and partly funded by the European AtomicEnergy Community’s (Euratom) Seventh Framework ProgrammeFP7/2007-2013 under grant agreement No. 604862 (MatISSEproject) and in the framework of the EERA (European EnergyResearch Alliance) Joint Programme on Nuclear Materials. Dr. TomVan der Donck (KU Leuven) is acknowledged for the EBSD mea-surements. The authors are grateful to Dr. Van Renterghem Wouter(SCK•CEN) for fruitful discussion of the TEM results. Xing Gongsincerely acknowledges valuable suggestions from Dr. S.P. Lynch(Defence Science and Technology Organisation and Monash Uni-versity, Melbourne, Australia). Approved Most recent IF: NA  
  Call Number c:irua:129997 Serial 4013  
Permanent link to this record
 

 
Author Charalampopoulou, E.; Delville, R.; Verwerft, M.; Lambrinou, K.; Schryvers, D. pdf  url
doi  openurl
  Title Transmission electron microscopy study of complex oxide scales on DIN 1.4970 steel exposed to liquid Pb-Bi eutectic Type A1 Journal article
  Year 2019 Publication Corrosion science Abbreviated Journal Corrosion Science  
  Volume 147 Issue Pages 22-31  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The deployment of Gen-IV lead-cooled fast reactors requires a good compatibility between the selected structural/cladding steels and the inherently corrosive heavy liquid metal coolant. An effective liquid metal corrosion mitigation strategy involves the in-situ steel passivation in contact with the oxygen-containing Pb-alloy coolant. Transmission electron microscopy was used in this work to study the multi-layered oxide scales forming on an austenitic stainless steel fuel cladding exposed to oxygen-containing (CO ≈ 10−6 mass%) static liquid leadbismuth eutectic (LBE) for 1000 h between 400 and 500 °C. The oxide scale constituents were analyzed, including the intertwined phases comprising the innermost biphasic layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456902100003 Publication Date 2018-10-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0010938X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 5 Open Access OpenAccess  
  Notes The authors would like to thank J. Joris for the technical support during corrosion testing and J. Lim for the manufacturing and calibration of the oxygen sensors and oxygen pumps used in this work. E. Charalampopoulou personally thanks H. Heidari, S. Pourbabak, A. Orekhov (EMAT) and N. Cautaerts (EMAT, SCK•CEN), for their valuable help with the training of the FEI Tecnai Osiris S/TEM and Jeol 3000 S/ TEM, respectively, as well as S. Van den Broeck (EMAT), J. Pakarinen (SCK•CEN) and W. Van Renterghem (SCK•CEN) for FIB sample preparation. Moreover, the authors gratefully acknowledge the funding provided in the framework of the ongoing development of the MYRRHA irradiation facility. The research leading to these results falls within the framework of the European Energy Research Alliance Joint Programme on Nuclear Materials (EERA JPNM). Approved Most recent IF: NA  
  Call Number EMAT @ emat @UA @ admin @ c:irua:157541 Serial 5164  
Permanent link to this record
 

 
Author Yampolskii, S.V.; Baelus, B.J.; Peeters, F.M.; Kolacek, J. doi  openurl
  Title Electric charges in superconducting mesoscopic samples Type A1 Journal article
  Year 2002 Publication Czechoslovak journal of physics T2 – 11th Czech and Slovak Conference on Magnetism (CSMAG 01), AUG 20-23, 2001, KOSICE, SLOVAKIA Abbreviated Journal Czech J Phys  
  Volume 52 Issue 2 Pages 303-306  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The distribution of the electric charge density in mesoscopic superconducting disks and cylinders is studied within the phenomenological Ginzburg-Landau approach. We found that, even in the Meissner state the mesoscopic sample exhibits a non-uniform charge distribution such that a region near the sample edge becomes negatively charged. When vortices are inside the sample there is a superposition of the negative charge located at the vortex core and this Meissner charge, and, as a result, the charge at the sample edge changes sign as a function of the applied magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000174955600046 Publication Date 2002-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0011-4626; ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:103374 Serial 880  
Permanent link to this record
 

 
Author Lindeboom, R.E.F.; De Paepe, J.; Vanoppen, M.; Alonso-Fariñas, B.; Coessens, W.; Alloul, A.; Christiaens, M.E.R.; Dotremont, C.; Beckers, H.; Lamaze, B.; Demey, D.; Clauwaert, P.; Verliefde, A.R.D.; Vlaeminck, S.E. url  doi
openurl 
  Title A five-stage treatment train for water recovery from urine and shower water for long-term human Space missions Type A1 Journal article
  Year 2020 Publication Desalination Abbreviated Journal Desalination  
  Volume 495 Issue Pages 114634  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Long-term human Space missions will rely on regenerative life support as resupply of water, oxygen and food comes with constraints. The International Space Station (ISS) relies on an evaporation/condensation system to recover 74–85% of the water in urine, yet suffers from repetitive scaling and biofouling while employing hazardous chemicals. In this study, an alternative non-sanitary five-stage treatment train for one “astronaut” was integrated through a sophisticated monitoring and control system. This so-called Water Treatment Unit Breadboard (WTUB) successfully treated urine (1.2-L-d−1) with crystallisation, COD-removal, ammonification, nitrification and electrodialysis, before it was mixed with shower water (3.4-L-d−1). Subsequently, ceramic nanofiltration and single-pass flat-sheet RO were used. A four-months proof-of-concept period yielded: (i) chemical water quality meeting the hygienic standards of the European Space Agency, (ii) a 87-±-5% permeate recovery with an estimated theoretical primary energy requirement of 0.2-kWhp-L−1, (iii) reduced scaling potential without anti-scalant addition and (iv) and a significant biological reduction in biofouling potential resulted in stable but biofouling-limited RO permeability of 0.5 L-m−2-h−1-bar−1. Estimated mass breakeven dates and a comparison with the ISS Water Recovery System for a hypothetical Mars transit mission show that WTUB is a promising biological membrane-based alternative to heat-based systems for manned Space missions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000582172900007 Publication Date 2020-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0011-9164 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.9 Times cited Open Access  
  Notes Approved Most recent IF: 9.9; 2020 IF: 5.527  
  Call Number UA @ admin @ c:irua:171514 Serial 6523  
Permanent link to this record
 

 
Author Kaminsky, F.V.; Ryabchikov, I.D.; McCammon, C.A.; Longo, M.; Abakumov, A.M.; Turner, S.; Heidari, H. pdf  doi
openurl 
  Title Oxidation potential in the Earth's lower mantle as recorded by ferropericlase inclusions in diamond Type A1 Journal article
  Year 2015 Publication Earth and planetary science letters Abbreviated Journal Earth Planet Sc Lett  
  Volume 417 Issue 417 Pages 49-56  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ferropericlase (fPer) inclusions from kimberlitic lower-mantle diamonds recovered in the Juina area, Mato Grosso State, Brazil were analyzed with transmission electron microscopy, electron energy-loss spectroscopy and the flank method. The presence of exsolved non-stoichiometric Fe3+-enriched clusters, varying in size from 1-2 nm to 10-15 nm and comprising similar to 3.64 vol.% of fPer was established. The oxidation conditions necessary for fPer formation within the uppermost lower mantle (P = 25 GPa, T = 1960 K) vary over a wide range: Delta log f(o2) (IW) from 1.58 to 7.76 (Delta = 6.2), reaching the fayalite-magnetite-quartz (FMQ) oxygen buffer position. This agrees with the identification of carbonates and free silica among inclusions within lower-mantle Juina diamonds. On the other hand, at the base of the lower mantle Delta log f(o2) values may lie at and below the iron-wustite (IW) oxygen buffer. Hence, the variations of Delta log f(o2) values within the entire sequence of the lower mantle may reach ten logarithmic units, varying from the IW buffer to the FMQ buffer values. The similarity between lower- and upper-mantle redox conditions supports whole mantle convection, as already suggested on the basis of nitrogen and carbon isotopic compositions in lower- and upper-mantle diamonds. The mechanisms responsible for redox differentiation in the lower mantle may include subduction of oxidized crustal material, mechanical separation of metallic phase(s) and silicate-oxide mineral assemblages enriched in ferric iron, as well as transfer of fused silicate-oxide material presumably also enriched in ferric iron through the mantle. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000351799400006 Publication Date 2015-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0012-821X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.409 Times cited 23 Open Access  
  Notes Approved Most recent IF: 4.409; 2015 IF: 4.734  
  Call Number c:irua:125451 Serial 2539  
Permanent link to this record
 

 
Author Brenker, F.E.; Vincze, L.; Vekemans, B.; Nasdala, L.; Stachel, T.; Vollmer, C.; Kersten, M.; Somogyi, A.; Adams, F.; Joswig, W.; Harris, J.W. doi  openurl
  Title Detection of a Ca-rich lithology in the Earth's deep (> 300 km) convecting mantle Type A1 Journal article
  Year 2005 Publication Earth and planetary science letters Abbreviated Journal  
  Volume 236 Issue 3/4 Pages 579-587  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000232047200003 Publication Date 2005-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0012-821x; 1385-013x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:54580 Serial 7772  
Permanent link to this record
 

 
Author Thirumalraj, alamurugan; Palanisamy, S.; Chen, S.-M.; De Wael, K. pdf  url
doi  openurl
  Title A graphene/gelatin composite material for the entrapment of hemoglobin for bioelectrochemical sensing applications Type A1 Journal article
  Year 2016 Publication Journal of the electrochemical society Abbreviated Journal J Electrochem Soc  
  Volume 163 Issue 7 Pages 265-271  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In the present work, a novel graphene (GN) and gelatin (GTN) composite was prepared and used as an immobilization matrix for hemoglobin (Hb). Compared with Hb immobilized on a bare, GN or GTN modified glassy carbon electrode (GCE), a stable and pair of well-defined quasi redox couple was observed at an Hb modified GN/GTN composite GCE at a formal potential of −0.306 V versus Ag|AgCl. The direct electrochemical behavior of Hb was greatly enhanced by the presence of both GTN and GN. A heterogeneous electron transfer rate constant (Ks) was calculated as 3.82 s−1 for Hb immobilized at GN/GTN modified GCE, which indicates the fast direct electron transfer of Hb toward the electrode surface. The biosensor shows a stable and wide linear response for H2O2 in the linear response range from 0.1 μM to 786.6 μM with an analytical sensitivity and limit of detection of 0.48 μAμM−1 cm−2 and 0.04 μM, respectively. The fabricated biosensor holds its high selectivity in the presence of potentially active interfering species and metal ions. The biosensor shows its satisfactory practical ability in the commercial contact lens solution and human serum samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000377412900047 Publication Date 2016-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0013-4651 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.259 Times cited 9 Open Access  
  Notes ; This project was supported by the Ministry of Science and Technology (project no. NSC1012113M027001MY3), Taiwan (Republic of China). The authors express their sincere thanks to Prof. Bih-Show Lou, Chemistry Division, Center for General Education, Chang Gung University, Tao-Yuan, Taiwan for providing the human serum samples. ; Approved Most recent IF: 3.259  
  Call Number UA @ admin @ c:irua:132627 Serial 5635  
Permanent link to this record
 

 
Author de Witte, H.; de Gendt, S.; Douglas, M.; Conard, T.; Kenis, K.; Mertens, P.W.; Vandervorst, W.; Gijbels, R. doi  openurl
  Title Evaluation of time-of-flight secondary ion mass spectrometry for metal contamination monitoring on wafer surfaces Type A1 Journal article
  Year 2000 Publication Journal of the electrochemical society Abbreviated Journal J Electrochem Soc  
  Volume 147 Issue 5 Pages 13-17  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000087075200052 Publication Date 2002-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0013-4651; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.259 Times cited 14 Open Access  
  Notes Approved Most recent IF: 3.259; 2000 IF: 2.293  
  Call Number UA @ lucian @ c:irua:34073 Serial 1089  
Permanent link to this record
 

 
Author Vassiliev, S.Y.; Laurinavichute, V.K.; Abakumov, A.M.; Govorov, V.A.; Bendovskii, E.B.; Turner, S.; Filatov, A.Y.; Tarasovskii, V.P.; Borzenko, A.G.; Alekseeva, A.M.; Antipov, E.V. pdf  doi
openurl 
  Title Microstructural aspects of the degradation behavior of SnO2-based anodes for aluminum electrolysis Type A1 Journal article
  Year 2010 Publication Journal of the electrochemical society Abbreviated Journal J Electrochem Soc  
  Volume 157 Issue 5 Pages C178-C186  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The performance of SnO2 ceramic anodes doped with copper and antimony oxides was examined in cryolite alumina melts under anodic polarization at different cryolite ratios, temperatures, times, and current densities. The corroded part consists of a narrow strong corrosion zone at the anode surface with damage of the intergrain contacts and a large increase in porosity, a wider moderate corrosion zone with a smaller porosity increase, and a Cu depletion zone, where the ceramic retains its initial microstructure and a slight porosity increase occurs due to the removal of the Cu-rich inclusions. Mechanical destruction of the anode was never observed in the 10100 h tests. A microstructural model of the ceramic was suggested, consisting of grains with an Sb-doped SnO2 grain core surrounded by an ~200 to 500 nm grain shell where SnO2 was simultaneously doped with Sb and Mn+ (M=Cu2+,Fe3+,Al3+). The grains were separated by a few nanometers thick Cu-enriched grain boundaries. Different secondary charge carrier (holes) concentrations and electric conductivities in the grain core and grain shell result in a higher current density at the intergrain regions that leads to their profound degradation, especially in the low temperature acidic melt.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000276555300037 Publication Date 2010-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0013-4651; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.259 Times cited 3 Open Access  
  Notes Approved Most recent IF: 3.259; 2010 IF: 2.427  
  Call Number UA @ lucian @ c:irua:82260 Serial 2040  
Permanent link to this record
 

 
Author McCalla, E.; Prakash, A.S.; Berg, E.; Saubanere, M.; Abakumov, A.M.; Foix, D.; Klobes, B.; Sougrati, M.T.; Rousse, G.; Lepoivre, F.; Mariyappan, S.; Doublet, M.L.; Gonbeau, D.; Novak, P.; Van Tendeloo, G.; Hermann, R.P.; Tarascon, J.M.; pdf  doi
openurl 
  Title Reversible Li-intercalation through oxygen reactivity in Li-rich Li-Fe-Te oxide materials Type A1 Journal article
  Year 2015 Publication Journal of the electrochemical society Abbreviated Journal J Electrochem Soc  
  Volume 162 Issue 162 Pages A1341-A1351  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Lithium-rich oxides are a promising class of positive electrode materials for next generation lithium-ion batteries, and oxygen plays a prominent role during electrochemical cycling either by forming peroxo-like species and/or by irreversibly forming oxygen gas during first charge. Here, we present Li-Fe-Te-O materials which show a tremendous amount of oxygen gas release. This oxygen release accounts for nearly all the capacity during the first charge and results in vacancies as seen by transmission electron microscopy. There is no oxidation of either metal during charge but significant changes in their environments. These changes are particularly extreme for tellurium. XRD and neutron powder diffraction both show limited Changes during cycling and no appreciable change in lattice parameters. A density functional theory study of this material is performed and demonstrates that the holes created on some of the oxygen atoms upon oxidation are partially stabilized through the formation of shorter O-O bonds, i.e. (O-2)(n-) species which on further delithiation show a spontaneous O-2 de-coordination from the cationic network and migration to the now empty lithium layer. The rate limiting step during charge is undoubtedly the diffusion of oxygen either out along the lithium layer or via columns of oxygen atoms. (C) 2015 The Electrochemical Society. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000355643700030 Publication Date 2015-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0013-4651;1945-7111; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.259 Times cited 23 Open Access  
  Notes Approved Most recent IF: 3.259; 2015 IF: 3.266  
  Call Number c:irua:126445 Serial 2903  
Permanent link to this record
 

 
Author Drozhzhin, O.A.; Sumanov, V.D.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Baranov, A.N.; Stevenson, K.J.; Antipov, E.V. pdf  url
doi  openurl
  Title Switching between solid solution and two-phase regimes in the Li1-xFe1-yMnyPO4 cathode materials during lithium (de)insertion: combined PITT, in situ XRPD and electron diffraction tomography study Type A1 Journal article
  Year 2016 Publication Electrochimica acta Abbreviated Journal Electrochim Acta  
  Volume 191 Issue 191 Pages 149-157  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The electrochemical properties and phase transformations during (de)insertion of Li+ in LiFePO4, LiFe0.9Mn0.1PO4 and LiFe0.5Mn0.5PO4 are studied by means of galvanostatic cycling, potential intermittent titration technique (PITT) and in situ X-ray powder diffraction. Different modes of switching between the solid solution and two-phase regimes are revealed which are influenced by the Mn content in Li1-xFe1-yMnyPO4. Additionally, an increase in electrochemical capacity with the Mn content is observed at high rates of galvanostatic cycling (10C, 20C), which is in good agreement with the numerically estimated contribution of the solid solution mechanism determined from PITT data. The observed asymmetric behavior of the phase transformations in Li1-xFe0.5Mn0.5PO4 during charge and discharge is discussed. For the first time, the crystal structures of electrochemically deintercalated Li1-xFe0.5Mn0.5PO4 with different Li content – LiFe0.5Mn0.5PO4, Li0.5Fe0.5Mn0.5PO4 and Li0.1Fe0.5Mn0.5PO4 – are refined, including the occupancy factors of the Li position. This refinement is done using electron diffraction tomography data. The crystallographic analyses of Li1-xFe0.5Mn0.5PO4 reveal that at x = 0.5 and 0.9 the structure retains the Pnma symmetry and the main motif of the pristine x = 0 structure without noticeable short range order effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371143200018 Publication Date 2016-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 27 Open Access  
  Notes This work was supported by the Russian Foundation of Basic Research (grants No. 14-29-04064 and 14-03-31473), Skolkovo Institute of Science and Technology, and the Lomonosov Moscow State University Program of Development. J. Hadermann, O. M. Karakulina and A. M. Abakumov acknowl- edge support from FWO under grant G040116N. Approved Most recent IF: 4.798  
  Call Number c:irua:131911 Serial 4032  
Permanent link to this record
 

 
Author Ryabova, A.S.; Napolskiy, F.S.; Poux, T.; Istomin, S.Y.; Bonnefont, A.; Antipin, D.M.; Baranchikov, A.Y.; Levin, E.E.; Abakumov, A.M.; Kéranguéven, G.; Antipov, E.V.; Tsirlina, G.A.; Savinova, E.R.; pdf  url
doi  openurl
  Title Rationalizing the influence of the Mn(IV)/Mn(III) red-Ox transition on the electrocatalytic activity of manganese oxides in the oxygen reduction reaction Type A1 Journal article
  Year 2016 Publication Electrochimica acta Abbreviated Journal Electrochim Acta  
  Volume 187 Issue 187 Pages 161-172  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Knowledge on the mechanisms of oxygen reduction reaction (ORR) and descriptors linking the catalytic activity to the structural and electronic properties of transition metal oxides enable rational design of more efficient catalysts. In this work ORR electrocatalysis was studied on a set of single and complex Mn (III) oxides with a rotating disc electrode method and cyclic voltammetry. We discovered an exponential increase of the specific electrocatalytic activity with the potential of the surface Mn(IV)/Mn(III) red-ox couple, suggesting the latter as a new descriptor for the ORR electrocatalysis. The observed dependence is rationalized using a simple mean-field kinetic model considering availability of the Mn( III) centers and adsorbate-adsorbate interactions. We demonstrate an unprecedented activity of Mn2O3, ca. 40 times exceeding that of MnOOH and correlate the catalytic activity of Mn oxides to their crystal structure. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000367235600019 Publication Date 2015-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 51 Open Access  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ lucian @ c:irua:131096 Serial 4237  
Permanent link to this record
 

 
Author Pauwels, D.; Ching, H.Y.V.; Samanipour, M.; Neukermans, S.; Hereijgers, J.; Van Doorslaer, S.; De Wael, K.; Breugelmans, T. pdf  url
doi  openurl
  Title Identifying intermediates in the reductive intramolecular cyclisation of allyl 2-bromobenzyl ether by an improved electron paramagnetic resonance spectroelectrochemical electrode design combined with density functional theory calculations Type A1 Journal article
  Year 2018 Publication Electrochimica acta Abbreviated Journal Electrochim Acta  
  Volume 271 Issue 271 Pages 10-18  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The electrochemical activation of C-X bonds requires very negative electrode potentials. Lowering the overpotentials and increasing the catalytic activity requires intensive electrocatalytic research. A profound understanding of the reaction mechanism and the influence of the electrocatalyst allows optimal tuning of the electrocatalyst. This can be achieved by combining electrochemical techniques with electron paramagnetic resonance (EPR) spectroscopy. Although this was introduced in the mid-twentieth century, the application of this combined approach in electrocatalytic research is underexploited. Several reasons can be listed, such as the limited availability of EPR instrumentation and electrochemical devices for such in situ experiments. In this work, a simple and inexpensive construction adapted for in situ EPR electrocatalytic research is proposed. The proof of concept is provided by studying a model reaction, namely the reductive cyclisation of allyl 2-bromobenzyl ether which has interesting industrial applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430369800002 Publication Date 2018-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 2 Open Access  
  Notes ; The authors would like to thank Melissa Van Landeghem for her assistance with the experimental work and analysis of the data. Jonas Hereijgers greatly acknowledges the Research Foundation Flanders (FWO) for support through a Post-Doctoral grant (12Q8817N). H.Y. Vincent Ching gratefully acknowledges the University of Antwerp for a Post-Doctoral grant. Sabine Van Doorslaer and Tom Breugelmans acknowledge the FWO for research funding (research grant G093317N). ; Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:150463 Serial 5652  
Permanent link to this record
 

 
Author Gaetani, C.; Gheno, G.; Borroni, M.; De Wael, K.; Moretto, L.M.; Ugo, P. pdf  url
doi  openurl
  Title Nanoelectrode ensemble immunosensing for the electrochemical identification of ovalbumin in works of art Type A1 Journal article
  Year 2019 Publication Electrochimica acta Abbreviated Journal Electrochim Acta  
  Volume 312 Issue 312 Pages 72-79  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This research is aimed to the study and application of an electrochemical immunosensor for the detection of ovalbumin (OVA) from egg white (or albumen) used as a binder in some works of art, such as some historical photographic prints and tempera paintings. The immunosensor takes advantage of the interesting biodetection capabilities offered by nanoelectrode ensembles (NEEs). The NEEs used to this aim are prepared by template deposition of gold nanoelectrodes within the pores of track-etched polycarbonate (PC) membranes. The affinity of polycarbonate for proteins is exploited to capture OVA from the aqueous extract obtained by incubation in phosphate buffer of a small sample fragment (<1 mg). The captured protein is reacted selectively with anti-OVA antibody, labelled with glucose oxidase (GOx). In the case of positive response, the addition of the GOx substrate (i.e. glucose) and a suitable redox mediator (a ferrocenyl derivative) reflects in the up rise of an electrocatalytic oxidation current, which depends on the OVA amount captured on the NEE, this amount correlating with OVA concentration in the extract. After optimization, the sensor is successfully applied to identify OVA in photographic prints dating back to the late 19th century, as well as in ancient tempera paintings from the 15th and 18th centuries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000468595500008 Publication Date 2019-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:159573 Serial 5743  
Permanent link to this record
 

 
Author Stefan, G.; Hosu, O.; De Wael, K.; Jesus Lobo-Castanon, M.; Cristea, C. pdf  doi
openurl 
  Title Aptamers in biomedicine : selection strategies and recent advances Type A1 Journal article
  Year 2021 Publication Electrochimica Acta Abbreviated Journal Electrochim Acta  
  Volume 376 Issue Pages 137994  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Aptamers have come in the spotlight as bio-mimetic molecular recognition elements in the field of biomedicine due to various applications in diagnostics, drug delivery, therapeutics, and pharmaceutical analysis. Aptamers are composed of nucleic acid strands (DNA or RNA) that can specifically interact in a three-dimensional tailored design with the target molecule. The basic method to generate aptamers is Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Recent technological advances in aptamer selection allow for faster and cheaper production of a new generation of high-affinity aptamers compared to the traditional SELEX, which can last up to several months. Rigorous characterization performed by multiple research groups endorsed several well-defined aptamer sequences. Binding affinity, nature of the biomolecular interactions and structural characterization are of paramount importance for aptamer screening and development of applications. However, remarkable challenges still need to be dealt with before the aptamers can make great contributions to the biomedical field. Poor specificity and sensitivity, questionable clinical use, low drug loading, in vivo stability and toxicity are only some of the identified challenges. This review accounts for the 30th celebration of the SELEX technology underlining the most important aptamers' achievements in the biomedical field within mostly the past five years. Aptamers' advantages over antibodies are discussed. Because of potential clinical translational utility, insights of remarkable developments in aptamer-based methods for diagnosis and monitoring of disease biomarkers and pharmaceuticals are discussed focusing on the recent studies (2015-2020). The current challenges and promising opportunities for aptamers for therapeutic and theragnostic purposes are also presented. (C) 2021 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634761900003 Publication Date 2021-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:177677 Serial 7491  
Permanent link to this record
 

 
Author Joosten, F.; Parrilla, M.; van Nuijs, A.L.N.; Ozoemena, K.Id; De Wael, K. pdf  url
doi  openurl
  Title Electrochemical detection of illicit drugs in oral fluid : potential for forensic drug testing Type A1 Journal article
  Year 2022 Publication Electrochimica acta Abbreviated Journal  
  Volume 2022 Issue 436 Pages 141309-141315  
  Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Illicit drugs continue to pose a serious threat to society and public health. Drug (ab)use is linked to organised crime and violence. Therefore, to fight the so-called war on drugs, police and law enforcement agencies need to be equipped with accurate and efficient sensors for the detection of illicit drugs and drug use. Even though colour tests (for powders) and lateral flow immunoassays (for biological samples) lack accuracy, they are relied upon for fast and easy on-site detection. Alternatively, in recent years, there has been an increasing interest in electrochemical sensors as a promising technique for the rapid and accurate on-site detection of illicit drugs. While a myriad of literature exists on the use of electrochemical sensors for drug powder analysis, literature on their use for the detection of drug use in biological samples is scarce. To this end, this review presents an overview of strategies for the electrochemical detection of illicit drugs in oral fluid. First, pharmacokinetics of drugs in oral fluid and the legal limit dilemma regarding the analytical cut-offs for roadside drug detection tests are elaborated to present the reader with the background knowledge required to develop such a test. Subsequently, an overview of electrochemical strategies developed for the detection of illicit drugs in oral fluid is given. Importantly, key challenges to address in the development of roadside tests are highlighted to improve the design of the next electrochemical devices and to bring them to the field. Overall, electrochemical sensors for illicit drugs detection in oral fluid show promise to disrupt current strategies for roadside testing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000882442300001 Publication Date 2022-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:191107 Serial 8855  
Permanent link to this record
 

 
Author Montiel, F.N.; Parrilla, M.; Sleegers, N.; Van Durme, F.; van Nuijs, A.L.N.; De Wael, K. pdf  url
doi  openurl
  Title Electrochemical sensing of amphetamine-type stimulants (pre)-precursors to fight against the illicit production of synthetic drugs Type A1 Journal article
  Year 2022 Publication Electrochimica acta Abbreviated Journal  
  Volume 436 Issue Pages 141446-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The illicit drug precursor market for the manufacture of amphetamine-type stimulants (ATS), mainly amphetamine, methamphetamine and methylenedioxymethamphetamine (MDMA), has emerged quickly in the last years. The evidence of a more complex and sophisticated drug market underlines the pressing need for new on-site methods to quickly detect precursors of synthetic drugs, with electrochemical analysis as a promising technique. Herein, the electrochemical fingerprints of ten common ATS precursors-3-oxo-2-phenylbutanenitrile (APAAN), 3-oxo-2-phenylbutanamide (APAA), methyl 3-oxo-2-phenylbutanoate (MAPA), benzyl methyl ketone (BMK), 1-(1,3-benzodioxol-5-yl)propan-2-one (PMK), ephedrine, pseudoephedrine, safrole, sassafras oil and piperonal- are reported for the first time. The electrochemical screening disclosed the redox inactivity of BMK, which is an essential starting material for the production of ATS. Therefore, the local derivatization of BMK at an electrode surface by reductive amination is presented as a feasible solution to enrich its electrochemical fingerprint. To prove that, the resulting mixture was analyzed using a set of chromatographic techniques to understand the reaction mechanism and to identify possible electrochemical active products. Two reaction products (i.e. methamphetamine and 1-phenylpropan-2-ol) were found and characterized using mass spectrometry and electrochemical methods. Subsequently, the optimization of the reaction parameters was carefully addressed to set the portable electrochemical sensing strategy. Ultimately, the analysis concept was validated for the qualitative identification of ATS precursors in seizures from a forensic institute. Overall, the electrochemical approach demonstrates to be a useful and affordable analytical tool for the early identification of ATS precursors to prevent trafficking and drug manufacture in clandestine laboratories.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000914833800003 Publication Date 2022-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0013-4686 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:191622 Serial 8858  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: