|   | 
Details
   web
Records
Author Lauriks, T.; Longo, R.; Baetens, D.; Derudi, M.; Parente, A.; Bellemans, A.; van Beeck, J.; Denys, S.
Title Application of improved CFD modeling for prediction and mitigation of traffic-related air pollution hotspots in a realistic urban street Type A1 Journal article
Year 2021 Publication Atmospheric Environment Abbreviated Journal Atmos Environ
Volume 246 Issue Pages 118127
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The correct prediction of air pollutants dispersed in urban areas is of paramount importance to safety, public health and a sustainable environment. Vehicular traffic is one of the main sources of nitrogen oxides (NO ) and particulate matter (PM), strongly related to human morbidity and mortality. In this study, the pollutant level and distribution in a section of one of the main road arteries of Antwerp (Belgium, Europe) are analyzed. The assessment is performed through computational fluid dynamics (CFD), acknowledged as a powerful tool to predict and study dispersion phenomena in complex atmospheric environments. The two main traffic lanes are modeled as emitting sources and the surrounding area is explicitly depicted. A Reynolds-averaged Navier–Stokes (RANS) approach specific for Atmospheric Boundary Layer (ABL) simulations is employed. After a validation on a wind tunnel urban canyon test case, the dispersion within the canopy of two relevant urban pollutants, nitrogen dioxide (NO) and particulate matter with an aerodynamic diameter smaller than 10 m (PM10), is studied. An experimental field campaign led to the availability of wind velocity and direction data, as well as PM10 concentrations in some key locations within the urban canyon. To accurately predict the concentration field, a relevant dispersion parameter, the turbulent Schmidt number, , is prescribed as a locally variable quantity. The pollutant distributions in the area of interest – exhibiting strong heterogeneity – are finally demonstrated, considering one of the most frequent and concerning wind directions. Possible local remedial measures are conceptualized, investigated and implemented and their outcomes are directly compared. A major goal is, by realistically reproducing the district of interest, to identify the locations inside this intricate urban canyon where the pollutants are stagnating and to analyze which solution acts as best mitigation measure. It is demonstrated that removal by electrostatic precipitation (ESP), an active measure, and by enhancing the dilution process through wind catchers, a passive measure, are effective for local pollutant removal in a realistic urban canyon. It is also demonstrated that the applied ABL methodology resolves some well known problems in ABL dispersion modeling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000613550100003 Publication Date 2020-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.629 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.629
Call Number UA @ admin @ c:irua:173917 Serial 7477
Permanent link to this record
 

 
Author Vos, P.E.J.; Nikolova, I.; Janssen, S.
Title A high-order model for accurately simulating the size distribution of ultrafine particles in a traffic tunnel Type A1 Journal article
Year 2012 Publication Atmospheric environment : an international journal Abbreviated Journal
Volume 59 Issue Pages 415-425
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract We present a computational model for simulating the dispersion of traffic emitted particulate matter inside a road tunnel, with an emphasis on the number concentration of ultrafine particles (UFP). The model primarily calculates the size distribution of the particle number concentration at each location inside the tunnel. The proposed model differs from existing models in the sense that it uses a continuous representation of the size distribution based upon the high-order finite element method and that it solves the governing equations using the state-of-the-art discontinuous Galerkin method. Next to the traditional transport processes, the model also implements the most important aerosol transformation processes such as coagulation, condensation and dry deposition. It is shown that based upon parametrisations found in literature, the process of condensation in a traffic tunnel cannot properly be modelled. Therefore, we present a correction factor that allows for a better parametrisation. The adequate performance of the model is demonstrated by both a verification study and a validation study. For the verification we show that the discretisation error converges consistently while for the validation we compare the modelled results with a suitable set of data from a UFP measurement campaign in a Taiwanese traffic tunnel. The model is shown to correctly simulate the observed behaviour and by applying a statistical model evaluation we demonstrate that the proposed model meets widely accepted air quality model acceptance criteria. (C) 2012 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000309081100047 Publication Date 2012-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:101793 Serial 8033
Permanent link to this record
 

 
Author Smets, W.; Wuyts, K.; Oerlemans, E.; Wuyts, S.; Denys, S.; Samson, R.; Lebeer, S.
Title Impact of urban land use on the bacterial phyllosphere of ivy (Hedera sp.) Type A1 Journal article
Year 2016 Publication Atmospheric environment : an international journal Abbreviated Journal
Volume 147 Issue Pages 376-383
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The surface of the aerial parts of the plant, also termed the phyllosphere, is a selective habitat for microbes. The bacterial composition of the phyllosphere depends on host plant species, leaf characteristics, season, climate, and geographic location of the host plant. In this study, we investigated the effect of an urban environment on the bacterial composition of phyllosphere communities. We performed a passive biomonitoring experiment in which leaves were sampled from ivy (Hedera sp.), a common evergreen climber species, in urban and non-urban locations. Exposure to traffic-generated particulate matter was estimated using leaf biomagnetic analyses. The bacterial community composition was determined using 16S rRNA gene sequencing on the Illumina MiSeq. The phyllosphere microbial communities of ivy differed greatly between urban and non-urban locations, as we observed a shift in several of the dominant taxa: Beijerinckia and Methylocystaceae were most abundant in the non-urban phyllosphere, whereas Hymenobacter and Sphingomonadaceae were dominating the urban ivy phyllosphere. The richness, diversity and composition of the communities showed greater variability in the urban than in the non-urban locations, where traffic-generated PM was lower. Interestingly, the relative abundances of eight of the ten most dominant taxa correlated well with leaf magnetism, be it positive or negative. The results of this study indicate that an urban environment can greatly affect the local phyllosphere community composition. Although other urban-related factors cannot be ruled out, the relative abundance of most of the dominant taxa was significantly correlated with exposure to traffic-generated PM.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000388543600033 Publication Date 2016-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:136110 Serial 8066
Permanent link to this record
 

 
Author Broos, W.; Wittner, N.; Dries, J.; Vlaeminck, S.E.; Gunde-Cimerman, N.; Cornet, I.
Title Rhodotorula kratochvilovae outperforms Cutaneotrichosporon oleaginosum in the valorisation of lignocellulosic wastewater to microbial oil Type A1 Journal article
Year 2024 Publication Process biochemistry (1991) Abbreviated Journal
Volume 137 Issue Pages 229-238
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract Rhodotorula kratochvilovae has shown to be a promising species for microbial oil production from lignin-derived compounds. Yet, information on R. kratochvilovae’s detoxification and microbial oil production is scarce. This study investigated the growth and microbial oil production on the phenolic-containing effluent from poplar steam explosion and its detoxification with five R. kratochvilovae strains (EXF11626, EXF9590, EXF7516, EXF3697, EXF3471) and compared them with Cutaneotrichosporon oleaginosum. The R. kratochvilovae strains reached a maximum growth rate up to four times higher than C. oleaginosum. Furthermore, all R. kratochvilovae strains generally degraded phenolics more rapidly and to a larger extent than C. oleaginosum. However, the diluted substrate limited the lipid production by all strains as the maximum lipid content and titre were 10.5% CDW and 0.40 g/L, respectively. Therefore, future work should focus on increasing lipid production by using advanced fermentation strategies and stimulating the enzyme excretion by the yeasts for complex substrate breakdown.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-01-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1359-5113 ISBN Additional Links UA library record
Impact Factor 4.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 4.4; 2024 IF: 2.497
Call Number UA @ admin @ c:irua:202365 Serial 9087
Permanent link to this record
 

 
Author Dingenen, F.; Verbruggen, S.W.
Title Tapping hydrogen fuel from the ocean : a review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater Type A1 Journal article
Year 2021 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 142 Issue Pages 110866
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Direct splitting of earth-abundant seawater provides an eco-friendly route for the production of clean H2, but is hampered by selectivity and stability issues. Direct seawater electrolysis is the most established technology, attaining high current densities in the order of 1–2 A cm−2. Alternatively, light-driven processes such as photocatalytic and photoelectrochemical seawater splitting are particularly promising as well, as they rely on renewable solar power. Solar-to-Hydrogen efficiencies have increased over the past decade from negligible values to about 2%. Especially the absence of large local pH changes (in the order of several tenths of a pH unit compared to up to 9 pH units for electrolysis) is a strong asset for pure photocatalysis. This may lead to less adverse side-reactions such as Cl2 and ClO− formation, (acid or base induced) corrosion and scaling. Besides, additional requirements for electrolytic cells, e.g. membranes and electricity input, are not needed in pure photocatalysis systems. In this review, the state-of-the-art technologies in light-driven seawater splitting are compared to electrochemical approaches with a focus on sustainability and stability. Promising advances are identified at the level of the catalyst as well as the process, and insight is provided in solutions crossing different fields.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000632316600003 Publication Date 2021-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.05 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 8.05
Call Number UA @ admin @ c:irua:175701 Serial 8642
Permanent link to this record
 

 
Author Buytaert, V.; Muys, B.; Devriendt, N.; Pelkmans, L.; Kretzschmar, J.G.; Samson, R.
Title Towards integrated sustainability assessment for energetic use of biomass : a state of the art evaluation of assessment tools Type A1 Journal article
Year 2011 Publication Renewable and sustainable energy reviews Abbreviated Journal
Volume 15 Issue 8 Pages 3918-3933
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Biomass is expected to play an increasingly significant role in the greening of energy supply. Nevertheless, concerns are rising about the sustainability of large-scale energy crop production. Impacts must be assessed carefully before deciding whether and how this industry should be developed, and what technologies, policies and investment strategies should be pursued. There is need for a comprehensive and reliable sustainability assessment tool to evaluate the environmental, social and economic performance of biomass energy production. This paper paves the way for such a tool by analysing and comparing the performance and applicability of a selection of existing tools that are potentially useful for sustainability assessment of bioenergy systems. The selected tools are: Criteria And Indicators (C&I), Life Cycle Assessment (LCA), Environmental Impact Assessment (EIA), Cost Benefit Analysis (CBA), Exergy Analysis (EA) and System Perturbation Analysis (SPA). To evaluate the tools, a framework was constructed that consists of four evaluation levels: sustainability issues, tool attributes, model structure, area of application. The tools were then evaluated using literature data and with the help of a Delphi panel of experts. Finally, a statistical analysis was performed on the resulting data matrix to detect significant differences between tools. It becomes clear that none of the selected tools is able to perform a comprehensive sustainability assessment of bioenergy systems. Every tool has its particular advantages and disadvantages, which means that trade-offs are inevitable and a balance must be found between scientific accuracy and pragmatic decision making. A good definition of the assessment objective is therefore crucial. It seems an interesting option to create a toolbox that combines procedural parts of C&I and EIA, supplemented with calculation algorithms of LCA and CBA for respectively environmental and economic sustainability indicators. Nevertheless, this would require a more comprehensive interdisciplinary approach to align the different tool characteristics and focuses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000298764100043 Publication Date 2011-08-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:96444 Serial 8682
Permanent link to this record
 

 
Author Cools, J.; Broekx, S.; Vandenberghe, V.; Seuntjens, P.; e.a.
Title Coupling a hydrological water quality model and an economic optimization model to set up a cost-effective emission reduction scenario for nitrogen Type A1 Journal article
Year 2011 Publication Environmental modelling and software Abbreviated Journal
Volume 26 Issue 1 Pages 44-51
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract A modelling approach is presented that determines the most cost-effective set of reduction measures to reach an in-stream concentration target. The framework is based on the coupling of two models: the hydrological water quality model SWAT and an economic optimization model (Environmental Costing Model, ECM). SWAT is used to determine the relationship between the modelled in-stream concentration at the river basin outlet and the associated emission reduction. The ECM is used to set up marginal abatement cost curves for nutrients and oxygen demanding substances. Results for nitrogen are presented for the Grote Nete river basin in Belgium for the year 2006. Results show that the good status for total nitrogen can be reached in the study area. The most cost-effective measures are more productive dairy cattle, implementing basic measures as defined in the WFD, winter cover crops, improved efficiency of WWTP, enhanced fodder efficiency for pigs, further treatment of industrial waste water and tuned fertilization. (C) 2010 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000283891600007 Publication Date 2010-05-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1364-8152 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:95529 Serial 7740
Permanent link to this record
 

 
Author Rezaei, M.; De Pue, J.; Seuntjens, P.; Joris, I.; Cornelis, W.
Title Quasi 3D modelling of vadose zone soil-water flow for optimizing irrigation strategies : challenges, uncertainties and efficiencies Type A1 Journal article
Year 2017 Publication Environmental modelling and software Abbreviated Journal
Volume 93 Issue Pages 59-77
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract A quasi 3D modelling approach was developed by integrating a crop growth (LINGRA-N) and a hydrological model (Hydrus-1D) to simulate and visualize water flow, soil-water storage, water stress and crop yield over a heterogeneous sandy field. We assessed computational efficiency and uncertainty with low to high-spatial resolution input factors (soil-hydraulic properties, soil-layer thickness and groundwater level) and evaluated four irrigation scenarios (no, current, optimized and triggered) to find the optimal and cost-effective irrigation scheduling. Numerical results showed that the simulation uncertainty was reduced when using the high-resolution information while a fast performance was maintained. The approach accurately determined the field scale irrigation requirements, taking into account spatial variations of input information. Optimal irrigation scheduling is obtained by triggered-irrigation resulting in saving up to similar to 300% water as compared to the current-irrigation, while yield increased similar to 1%. Overall, the approach can be useful to help decision makers and applicants in precision farming. (C) 2017 Published by Elsevier Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403512500005 Publication Date 2017-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1364-8152 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:144167 Serial 8445
Permanent link to this record
 

 
Author Segura, P.C.; De Meur, Q.; Alloul, A.; Tanghe, A.; Onderwater, R.; Vlaeminck, S.E.; Vande Wouwer, A.; Wattiez, R.; Dewasme, L.; Leroy, B.
Title Preferential photoassimilation of volatile fatty acids by purple non-sulfur bacteria : experimental kinetics and dynamic modelling Type A1 Journal article
Year 2022 Publication Biochemical engineering journal Abbreviated Journal Biochem Eng J
Volume 186 Issue Pages 108547-10
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Purple non-sulfur bacteria (PNSB) are known for their metabolic versatility and thrive as anoxygenic photoheterotrophs. In environmental engineering and resource recovery, cells would grow on mixtures of volatile fatty acids (VFA) generated by anaerobic fermentation of waste streams. In this study, we aim to better understand the behavior of Rhodospirillum rubrum, a model PNSB species, grown using multiple VFA as carbon sources. We highlighted that assimilation of individual VFA follows a sequential pattern. Based on observations in other PNSB, this seems to be specific to isocitrate lyase-lacking organisms. We hypothesized that the inhibition phenomenon could be due to the regulation of the metabolic fluxes in the substrate cycle between acetoacetyl-CoA and crotonyl-CoA. Developed macroscopic dynamic models showed a good predictive capability for substrate competition for every VFA mixture containing acetate, propionate, and/or butyrate. These novel insights provide valuable input for better design and operation of PNSB-based waste treatment solutions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000891992900005 Publication Date 2022-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1369-703x; 1873-295x ISBN Additional Links UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.9
Call Number UA @ admin @ c:irua:192741 Serial 7332
Permanent link to this record
 

 
Author Jochems, P.; Mueller, T.; Satyawali, Y.; Diels, L.; Dejonghe, W.; Hanefeld, U.
Title Active site titration of immobilized beta-galactosidase for the determination of active enzymes Type A1 Journal article
Year 2015 Publication Biochemical engineering journal Abbreviated Journal
Volume 93 Issue Pages 137-141
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In the present study, an active site titration method is demonstrated, to determine the amount of active enzyme (beta-galactosidase), immobilized on a support. Two types of supports were investigated, viz, amino acrylic resin and a mixed matrix membrane. Furthermore, 2',4'-dinitrophenyl 2-deoxy-2-fluoro-beta-D-galactopyranoside was used as an inhibitor for the active site titration of immobilized beta-galactosidase obtained from Kluyveromyces lactis. Using the active site titration, approximately 8.3 mg of active enzyme was found on 1 g of dried commercially available SPRIN imibond, which is an amino acrylic resin with covalently bound beta-galactosidase obtained from K. lactis. However, this method, in its present form, was not effective on the mixed matrix membranes due to the irreversible partial adsorption of the leaving group (2',4'-dinitrophenolate) by the membrane. This observation implied that it is important to investigate interactions between the support and the used inhibitor and leaving group. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000347362100018 Publication Date 2014-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1369-703x; 1873-295x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:123763 Serial 7417
Permanent link to this record
 

 
Author Phuttaro, C.; Krishnan, S.; Saritpongteeraka, K.; Charnnok, B.; Diels, L.; Chaiprapat, S.
Title Integrated poultry waste management by co-digestion with perennial grass : effects of mixing ratio, pretreatments, reaction temperature, and effluent recycle on biomethanation yield Type A1 Journal article
Year 2023 Publication Biochemical engineering journal Abbreviated Journal
Volume 196 Issue Pages 108937-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract This work aims to enhance the efficiency of integrated poultry waste management in bio-circular-green economy by maximizing the co-digestion of chicken manure and its digestate-grown biomass. In a series of batch assays, Napier grass (NG) was mixed with chicken manure (CM) at various proportions (100:0, 80:20, 60:40, 50:50, 40:60, 20:80 and 0:100) to identify co-substrate synergism, followed by physiochemical conditioning (size reduction and ultrasonication) of NG before co-digestion. Results indicated that NG mix of at least 80% was required to gain a full methanation potential of the individual substrates; no synergistic ratio above unity was found. However, the combined effect of size reduction and sonication was found to markedly improve the cosubstrate's biodegradability by 88.7%. The findings were then used to run continuous co-digestion at various operating regimes. In optimal continuous co-digestion condition, NG particle size of 0.6-2.4 mm combined with sonication intensity at 1111 kJ/kgTS improved biomethanation yield as high as 106.3%. Sub-thermophilic digestion at 45 degrees C was shown to give a higher and more stable CH4 yield than at 55 degrees C. Finally, it was also found that recycling liquid effluent at 40% to replace freshwater in feed, although showed no significant difference in CH4 yield (& alpha; = 0.05), noticeably increased system buffer capacity. This optimized biodegradation regime could give co-digestion waste management a higher overall plant efficiency and economic return.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001054826200001 Publication Date 2023-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1369-703x; 1873-295x ISBN Additional Links UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 3.9; 2023 IF: 2.892
Call Number UA @ admin @ c:irua:199209 Serial 8887
Permanent link to this record
 

 
Author Geerts, R.; Vandermoere, F.; Halet, D.; Van Winckel, T.; Joos, P.; Van Den Steen, K.; Van Meenen, E.; Blust, R.; Vlaeminck, S.E.
Title Ik drink (geen) afval! Een exploratieve studie naar socio-demografische verschillen in publieke steun voor het hergebruik van afvalwater in Vlaanderen Type A1 Journal article
Year 2020 Publication Vlaams tijdschrift voor overheidsmanagement Abbreviated Journal
Volume Issue 3 Pages 51-69
Keywords A1 Journal article; Sociology; Sustainable Energy, Air and Water Technology (DuEL); Centre for Research on Environmental and Social Change
Abstract In een context van stijgende waterschaarste verkennen wij, naar ons weten voor het eerst in Vlaanderen, publieke steun voor de behandeling en het hergebruik van afvalwater als drinkwater. Vlaanderen is vandaag een van de weinige regio’s waar afvalwater reeds gerecycleerd wordt voor drinkwaterdoeleinden. Dit gebeurt op kleinschalig niveau en de uitbreiding hiervan is vandaag een van de Vlaamse beleidsdoelstellingen. Internationale voorbeelden toonden echter dat een gebrek aan publieke steun een aanzienlijk obstakel kan zijn. Vaak worden gezondheids- en veiligheidsbezorgdheden aangehaald als oorzaak voor het beperkte draagvlak. Minder is geweten over de socio-demografische distributie van dit draagvlak. Daarbovenop blijft er onduidelijkheid over de samenhang tussen socio-demografische kenmerken en gezondheids- en veiligheidsbezorgdheden. Met behulp van een enquête uitgevoerd in Vlaanderen (N=2309), bestudeerden wij ten eerste deze socio-demografische verschillen op basis van bivariate associaties (gender, opleidingsniveau, leeftijd en woonplaats). Ten tweede construeerden we een padmodel om te onderzoeken of deze verschillen verklaard kunnen worden aan de hand van gezondheids- en veiligheidsbezorgdheden. Onze resultaten toonden dat publieke steun voor afvalwaterhergebruik voor drinkwaterdoeleinden in Vlaanderen beperkt is. Het draagvlak was het laagst bij oudere mensen, vrouwen, lager geschoolde groepen en mensen die niet in de Provincie Antwerpen wonen. Voor een groot deel konden socio-demografische verschillen verklaard worden door hogere gezondheids- en veiligheidsbezorgdheden bij vrouwen, lager geschoolden en mensen uit West- en Oost-Vlaanderen. Dit suggereert een gebrek aan vertrouwen in waterexperts en -technologie bij bepaalde socio-demografische groepen, wat zich vertaalt in een verminderde publieke steun voor afvalwaterhergebruik. Op basis van deze bevindingen bespreken we een aantal potentiële actiestrategieën om publieke oppositie te anticiperen en proactief publieke steun te verwerven via doelgerichte (risico)communicatie.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1373-0509 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:171478 Serial 6541
Permanent link to this record
 

 
Author Vermander, C.; De Wael, J.; Gielis, J.
Title De kleine boerderij : twee bijzondere tuinkamers Type A2 Journal article
Year 2019 Publication Groencontact Abbreviated Journal
Volume 45 Issue 5 Pages 14-19
Keywords A2 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1374-4631 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:164895 Serial 8142
Permanent link to this record
 

 
Author Van Eynde, E.; Tytgat, T.; Smits, M.; Verbruggen, S.; Hauchecorne, B.; Blust, R.; Lenaerts, S.
Title Diatom silica-titania materials for photocatalytic air purification Type A2 Journal article
Year 2013 Publication Communications in agricultural and applied biological sciences Abbreviated Journal
Volume 1 Issue 1 Pages 141-147
Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1379-1176 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:105334 Serial 5943
Permanent link to this record
 

 
Author Smits, M.; Vanpachtenbeke, F.; Hauchecorne, B.; van Langenhove, H.; Demeestere, K.; Lenaerts, S.
Title Exhaust composition of a small diesel engine Type A2 Journal article
Year 2012 Publication Communications in agricultural and applied biological sciences Abbreviated Journal
Volume 77 Issue 1 Pages 85-88
Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1379-1176 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:94166 Serial 5949
Permanent link to this record
 

 
Author Van Wesenbeeck, K.; Hauchecorne, B.; Lenaerts, S.
Title Study of a TiO2 photocatalytic coating for use in plasma catalysis Type A2 Journal article
Year 2013 Publication Communications in agricultural and applied biological sciences Abbreviated Journal
Volume 78 Issue 1 Pages 227-233
Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1379-1176 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:105388 Serial 5991
Permanent link to this record
 

 
Author Ilgrande, C.; Christiaens, M.; Clauwaert, P.; Vlaeminck, S.E.; Boon, N.
Title Can nitrification bring us to Mars? The role of microbial interactions on nitrogen recovery in Life Support Systems Type A2 Journal article
Year 2016 Publication Communications in agricultural and applied biological sciences Abbreviated Journal
Volume 81 Issue 1 Pages 74-79
Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The development cost-effective life support technologies is a highly relevant topic for space biology. Currently, food and water supply during space flights is currently restricted by technical and economic constraints: daily water consumption of an average crew of 6 members is about 72 L, with an estimated cost of 2,160,000 d-1. To reduce these costs and sustain long term space missions, the European Space Agency designed MELiSSA, an artificial ecosystem based on 5 compartments for the recycling gas, liquid and solid waste (Lasseur et al., 2011). In the CI stage, crew and inedible solid waste is fermented by thermophilic anaerobic bacteria, producing volatile fatty acids (VFAs), CO2 and ammonium (NH4+). In the CII compartment the VFAs are converted into edible biomass, using the photoheterotroph Rodospirillum rubrum. Afterwards, the nitrifying CIII unit converts toxic levels of ammonia/ammonium into nitrate, which enables the effluent to be fed to the photoautotrohopic CIV stage, that provides food and oxygen for the crew (Godia et al., 2002). The highest nitrogen flux in a Life Support System is human urine. As nitrate is the preferred form of nitrogen fertilizer for hydroponic plant cultivation, urine nitrification is an essential process in the MELiSSA loop. The development of the Additional Unit for Water Treatment or Urine NItrification ConsortiUM (UNICUM) requires the selection and characterization of the microorganisms that will be used. The key microorganisms in the biological treatment of urine are heterotrophs, for the hydrolysis of urea into ammonia and carbon dioxide, Ammonia Oxidizing Bacteria (AOB), for the ammonia oxidation into nitrite and Nitrite Oxidizing Bacteria (NOB), for the conversion of nitrite into nitrate. The strains were selected according to predefined safety (non sporogenic and BSL 1) and metabolic (Ks, μmax) criteria. To evaluate functional consortia for space applications, ureolysis, nitritation and nitratation of the selected microorganisms and synthetic communities were elucidated. Additionally, urine is a matrix with a high salt content. Unhydrolised urine's EC ranges from 1.1 to 33.9 mS/cm, the mean value being 21.5 mS/cm (Marickar, 2010), while hydrolysed urine can reach higher levels, up to 75 mS/cm. This conditions could inhibit microbial metabolism, therefore the effect of salinity on urine nitrification was also elucidated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1379-1176 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151151 Serial 7573
Permanent link to this record
 

 
Author Sui, Y.; Vlaeminck, S.E.
Title Exploring Dunaliella salina as single cell protein (SCP) : the influence of light/dark regime on the growth and protein synthesis Type A2 Journal article
Year 2017 Publication Communications in agricultural and applied biological sciences Abbreviated Journal
Volume 82 Issue 1 Pages 6-11
Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Single cell protein (SCP), or originally named microbial protein, is the edible microbial biomass derived from e.g. microalgae, bacteria and fungi, which can be used as protein sources replacing conventional protein sources for animal feed or human food such as fishmeal and soybean (Anupama & Ravindra 2000). SCP presents great potential as protein supplement to alleviate the problem of food scarcity in the future (Nasseri et al. 2011). In general, microalgae as SCP contains above 50% protein over dry weight and specifically for the marine microalgae Dunaliella salina the amount stays around 57% (Becker 2007). Commercially the most common system for Dunaliella sp. production is the outdoor open pond, thus the microalgal cells are subjected to a natural light/dark cycle (Hosseini Tafreshi & Shariati 2009). Being photo-autotrophic microorganisms, the lack of light energy sources is a risk leading to night biomass loss (Ogbonna & Tanaka 1996). On the other hand, for some microalgae species cell division occurs primarily during the night suggesting its night protein synthesis (Cuhel et al. 1984). As a consequence, day and night metabolisms of microalgae introduced by light/dark cycles potentially will have big impacts on the biomass development, both in growth and biochemical composition. In this study, the effect of the light/dark cycle on the growth and protein synthesis of Dunaliella salina was explored in comparison with continuous light cultivation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1379-1176 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151148 Serial 7950
Permanent link to this record
 

 
Author Grunert, O.; Robles Aguilar, A.A.; Hernandez-Sanabria, E.; Reheul, D.; Vlaeminck, S.E.; Boon, N.; Jablonowski, N.D.
Title Fertilizer type influences dynamics of the microbial community structure in the rhizosphere of tomato and impact the nutrient turnover and plant performance Type A2 Journal article
Year 2016 Publication Communications in agricultural and applied biological sciences Abbreviated Journal
Volume 81 Issue 1 Pages 67-73
Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Ammonia-oxidizing microorganisms (AOB and AOA) and nitrite oxidizing bacteria (NOB) are the most important organisms responsible for ammonia and nitrite oxidation in agricultural ecosystems and growing media. Ammonia and nitrite oxidation are critical steps in the soil nitrogen cycle and can be affected by the application of mineral fertilizers or organic fertilizers. The functionality of the microbial community has a major impact on the nutrient turnover and will finally influence plant performance. The microbial community associated with the growing medium and its functionality will also be influenced by the rhizosphere and the bulk soil. In our study, we used a tomato plant with a high root exudation capacity in order to stimulate microbial activity. We studied plant performance in rhizotrons (a phentotyping system for imaging roots), including an optical method (planar optodes) for non-invasive, quantitative and high-resolution imaging of pH dynamics in the rhizosphere and adjacent medium. The horticultural growing medium was supplemented with organic-derived nitrogen or ammonium derived from struvite. The possible differences in the root structure between treatments is compared with the total root length. Destructive growing medium sampling and high throughput sequencing analysis of the bacterial abundance of the communities present in the rhizosphere and the bulk soil is used to study the growing medium-associated microbial community structure and functionality, and this will be related to pH changes in the rhizosphere and the bulk soil. Our hypothesis is that the growing medium-associated microbial community structure changes depending on the nitrogen form provided and we expect a higher abundance of bacteria in the treatment with organic fertilizer and a higher abundance of AOB and NOB in the rhizosphere in comparison to the bulk soil.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1379-1176 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151149 Serial 7964
Permanent link to this record
 

 
Author Muys, M.; Derese, S.; Verliefde, A.; Vlaeminck, S.E.
Title Solubilization of struvite as a sustainable nutrient source for single cell protein production Type A2 Journal article
Year 2016 Publication Communications in agricultural and applied biological sciences Abbreviated Journal
Volume 81 Issue 1 Pages 179-184
Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract By 2050, the world population will have considerably expanded and the life standard of many will increase, yielding a 50% higher demand in protein (FAO, 2011), and even increases of 82 and 102% for diary and meat products, respectively (Boland et al., 2013). To provide in this increasing demand we are highly dependent on our classical fertilizer to food chain which has a high environmental impact and lacks efficiency. Nutrient losses cause eutrophication and biodiversity loss and the input of resources is already beyond the boundaries of environmental sustainability (Steffen et al., 2015). Phosphate fertilizers are made from phosphate rock (apatite), of which the reserves are predicted to be depleted within 50 100 years if we continue business as usual (Cordell et al., 2009). Next to problems related to the unbalanced geopolitical distribution with dominance in China and Morocco, the decreasing quality of the remaining apatite will result in an increasing environmental impact of fertilizer production. Finally, our traditional food production model requires 30% of all ice-free land, 70% of all available freshwater and produces up to one third of the global greenhouse gas emission, of which 80 to 86% is linked to agricultural production (Vermeulen et al., 2012). To ensure food security, nutrient recovery from waste streams can provide an important strategy. In this context, struvite ( ) crystallisation may be applied to recover phosphorus, along with some nitrogen. Reusing these nutrients as agricultural fertilizer on the field will lead to considerable losses to the environment. In contrast, their use to cultivate micro-organisms, e.g. for single cell protein (SCP), offers to potential of a near perfect conversion efficiency (Moed et al., 2015). At this moment, microalgae represent the most developed type of SCP, and are a promising protein source due to their growth rate, high nutritional quality and extremely high nutrient usage efficiency (Becker, 2007). Reliable solubilisation data are essential to design a technological strategy for struvite dosage in bioreactors for SCP production. The effect on solubility and solubilisation rate of relevant physicochemical parameters was studied experimentally in aqueous solutions. Because pH and temperature greatly affect solubilisation kinetics they were set at a constant value of 7 and 20°C respectively. The effect of some parameters on struvite solubility was already studied (Bhuiyan et al., 2007; Ariyanto et al., 2014; Roncal-Herrero and Oelkers, 2011), but solubilisation rates were not yet considered and pH was not controlled at a constant value. The chemical parameters considered in this study include the concentration of different common ions ( and ), foreign ions ( and the chelating agent ethylenediaminetetraacetic acid, EDTA) present in micro-algal cultivation media as well as ionic strength (as set by NaCl). The main physical parameter included was contact surface, through variation in initial particle size and as well as in struvite dosage concentration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1379-1176 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151150 Serial 8550
Permanent link to this record
 

 
Author Huyskens, C.; De Wever, H.; Fovet, Y.; Wegmann, U.; Diels, L.; Lenaerts, S.
Title Screening of novel MBR fouling reducers : benchmarking with known fouling reducers and evaluation of their mechanism of action Type A1 Journal article
Year 2012 Publication Separation and purification technology Abbreviated Journal Sep Purif Technol
Volume 95 Issue Pages 49-57
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract A novel fouling characterization method was applied for a first screening of two novel synthetic flocculants developed by BASF (BASF-1 and BASF-2) and benchmarking with six well-known products. Results showed that this MBR-VITO Fouling Measurement (VFM) was able to identify beneficial and adverse effects of different additives on the mixed liquor's reversible and irreversible fouling and, in combination with supporting mixed liquor analyses, allowed to identify the additive's main working mechanism. The first screening tests indicated that BASF-1 and BASF-2 reduced reversible and irreversible fouling to a similar extent as the known synthetic flocculants due to a charge neutralization mechanism, resulting in enhanced flocculation and SMP removal. Further testing at different additive concentrations provided a first indication of the optimal dosage and revealed a considerable risk of overdosing for BASF-2, rendering it less suited for fouling control. In contrast, such adverse effects were not observed for BASF-1. BASF-1 induced similar beneficial effects as the known MPE50 polymer at lower dosage and was therefore considered promising for application in MBRs. (C) 2012 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000307032100008 Publication Date 2012-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1383-5866 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.359 Times cited 24 Open Access
Notes ; The authors would like to thank K. Luyckx, J. Fret, L. Heylen, R. Muyshondt, H. Sterckx, J. Verheyden and J. Vande-Velden for technical assistance and V. Iversen for kindly supplying some of the commercial additives. Celine Huyskens is indebted to the Research Foundation-Flanders (FWO). The European Commission is acknowledged for financial support to Aquafit4use (FP7, Grant 211534). ; Approved Most recent IF: 3.359; 2012 IF: 2.894
Call Number UA @ admin @ c:irua:101903 Serial 5990
Permanent link to this record
 

 
Author Huyskens, C.; Lenaerts, S.; Brauns, E.; Diels, L.; de Wever, H.
Title Study of (ir)reversible fouling in MBRs under various operating conditions using new on-line fouling sensor Type A1 Journal article
Year 2011 Publication Separation and purification technology Abbreviated Journal Sep Purif Technol
Volume 81 Issue 2 Pages 208-215
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In this study, a new fouling sensor was validated under different conditions of hydraulic (HRT) and sludge retention time (SRT). The MBR-VFM (membrane bioreactor-VITO Fouling Measurement) allows the simultaneous determination of the physically reversible and irreversible fouling potential of a mixed liquor during a single crossflow filtration test. In accordance with the on-line filtration behavior, the measured reversible and irreversible fouling propensities differed significantly between MBRs operated at different combinations of HRT-SRT. Moreover, a significant negative correlation was found between the on-line permeability and the reversible and irreversible fouling propensity measured by the MBR-VFM. This corresponded to observations made on membrane recovery after physical or chemical cleaning actions. Higher reversible and irreversible fouling were observed at lower HRT, presumably as a consequence of increased concentrations of foulants present. The effect of SRT was much smaller and restricted to the reversible fouling component. Possible explanations for the increased fouling at prolonged SRT are the higher sludge and colloid concentration and the smaller floc size. It can be concluded that the MBR-VFM is a useful tool to monitor fluctuations in a mixed liquors (ir)reversible fouling potential and can contribute to a deeper understanding of the occurring fouling phenomena.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000296108500012 Publication Date 2011-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1383-5866 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.359 Times cited 15 Open Access
Notes ; ; Approved Most recent IF: 3.359; 2011 IF: 2.921
Call Number UA @ admin @ c:irua:93410 Serial 5992
Permanent link to this record
 

 
Author Blommaerts, N.; Dingenen, F.; Middelkoop, V.; Savelkouls, J.; Goemans, M.; Tytgat, T.; Verbruggen, S.W.; Lenaerts, S.
Title Ultrafast screening of commercial sorbent materials for VOC adsorption using real-time FTIR spectroscopy Type A1 Journal article
Year 2018 Publication Separation and purification technology Abbreviated Journal Sep Purif Technol
Volume 207 Issue 207 Pages 284-290
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Recovery of valuable volatile organic compounds (VOCs) from waste streams is of great industrial importance. Adsorption on zeolites offers an economically and environmentally friendly alternative to conventional activated carbon. When evaluating the suitability of a given zeolite for a particular adsorption application, its adsorption capacity has to be determined. This is traditionally achieved using gas chromatography as an analysis tool, yielding only a few discrete sampling points that constitute the adsorption profile. Meanwhile, only low flow rates and low concentrations of volatile organics can be used, rendering the procedure troublesome and time consuming. Herein, we propose a tool for the fast screening of a large amount of zeolites using on-line and quasi real-time Fourier Transform Infrared Spectroscopy (FTIR). The technique was used to determine the adsorption capacity of three different commercial zeolites and two silica gels, for five industrially relevant VOCs: acetone; methanol; isohexane; isopentane; and toluene. A series of rapid measurements of the individual adsorption capacities were carried out to obtain a detailed overview of the versatility of the proposed method for the characterization of multi-component and multi-sorption bed systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000445987500032 Publication Date 2018-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1383-5866 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.359 Times cited 5 Open Access
Notes ; We would like to thank Vlaams Agenschap Innoveren & Ondernemen (VLAIO) for financial support. The authors would also like to thank Kureha GmbH, Germany for kindly supplying us with their BAC (R) (bead-shaped activated carbon) samples. ; Approved Most recent IF: 3.359
Call Number UA @ admin @ c:irua:154694 Serial 6000
Permanent link to this record
 

 
Author Blommaerts, N.; Asapu, R.; Claes, N.; Bals, S.; Lenaerts, S.; Verbruggen, S.W.
Title Gas phase photocatalytic spiral reactor for fast and efficient pollutant degradation Type A1 Journal article
Year 2017 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 316 Issue 316 Pages 850-856
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Photocatalytic reactors for the degradation of gaseous organic pollutants often suffer from major limitations such as small reaction area, sub-optimal irradiation conditions and thus limited reaction rate. In this work, an alternative solution is presented that involves a glass tube coated on the inside with (silvermodified) TiO2 and spiraled around a UVA lamp. First, the spiral reactor is coated from the inside with TiO2 using an experimentally verified procedure that is optimized toward UV light transmission. This procedure is kept as simple as possible and involves a single casting step of a 1 wt% suspension of TiO2 in ethanol through the spiral. This results in a coated tube that absorbs nearly all incident UV light under the experimental conditions used. The optimized coated spiral reactor is then benchmarked to a conventional annular photoreactor of the same outer dimensions and total catalyst loading over a broad range of experimental conditions. Although residence time distribution experiments indicate slightly longer dwelling of molecules in the spiral reactor, no significant difference in by-passing of gas between the spiral reactor and the annular reactor can be claimed. Acetaldehyde degradation efficiency of 100% is obtained with the spiral reactor for a residence time as low as 60 s, whereas the annular reactor could not achieve full degradation even at 1000 s residence time. In a final case study, addition of long-term stable silver nanoparticles, protected by an ultra-thin polymer shell applied via the layer-by-layer (LbL) method, to the spiral reactor coating is shown to double the degradation efficiency and provides an interesting strategy to cope with higher pollutant concentrations without changing the overall dimensions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000398985200089 Publication Date 2017-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 30 Open Access OpenAccess
Notes N.B. wishes to thank the University of Antwerp – Belgium for financial support. N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078- COLOURATOM). S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); ecas_sara Approved Most recent IF: 6.216
Call Number EMAT @ emat @ c:irua:140925UA @ admin @ c:irua:140925 Serial 4481
Permanent link to this record
 

 
Author Blommaerts, N.; Hoeven, N.; Arenas Esteban, D.; Campos, R.; Mertens, M.; Borah, R.; Glisenti, A.; De Wael, K.; Bals, S.; Lenaerts, S.; Verbruggen, S.W.; Cool, P.
Title Tuning the turnover frequency and selectivity of photocatalytic CO2 reduction to CO and methane using platinum and palladium nanoparticles on Ti-Beta zeolites Type A1 Journal article
Year 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J
Volume 410 Issue Pages 128234
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A Ti-Beta zeolite was used in gas phase photocatalytic CO2 reduction to reduce the charge recombination rate and increase the surface area compared to P25 as commercial benchmark, reaching 607 m2 g-1. By adding Pt nanoparticles, the selectivity can be tuned toward CO, reaching a value of 92% and a turnover frequency (TOF) of 96 µmol.gcat-1.h-1, nearly an order of magnitude higher in comparison with P25. By adding Pd nanoparticles the selectivity can be shifted from CO (70% for a bare Ti-Beta zeolite), toward CH4 as the prevalent species (60%). In this way, the selectivity toward CO or CH4 can be tuned by either using Pt or Pd. The TOF values obtained in this work outperform reported state-of-the-art values in similar research. The improved activity by adding the nanoparticles was attributed to an improved charge separation efficiency, together with a plasmonic contribution of the metal nanoparticles under the applied experimental conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000623394200004 Publication Date 2021-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 15 Open Access OpenAccess
Notes N.B., S.L., S.W.V. and P.C. wish to thank the Flemish government and Catalisti for financial support and coordination in terms of a sprint SBO in the context of the moonshot project D2M. N.H. thanks the Flanders Innovation and Entrepreneurship (VLAIO) for the financial support. The Systemic Physiological and Ecotoxicological Research (SPHERE) group, R. Blust, University of Antwerp is acknowledged for the ICP-MS measurements. Approved Most recent IF: 6.216
Call Number EMAT @ emat @c:irua:174591 Serial 6662
Permanent link to this record
 

 
Author Tytgat, T.; Hauchecorne, B.; Abakumov, A.M.; Smits, M.; Verbruggen, S.W.; Lenaerts, S.
Title Photocatalytic process optimisation for ethylene oxidation Type A1 Journal article
Year 2012 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 209 Issue Pages 494-500
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract When studying photocatalysis it is important to consider, beside the chemical approach, the engineering part related to process optimisation. To achieve this a fixed bed photocatalytic set-up consisting of different catalyst placings, in order to vary catalyst distribution, is studied. The use of a fixed quantity of catalyst placed packed or randomly distributed in the reactor, results in an almost double degradation for the distributed catalyst. Applying this knowledge leads to an improved performance with limited use of catalyst. A reactor only half filled with catalyst leads to higher degradation performance compared to a completely filled reactor. Taking into account this simple process optimisation by better distributing the catalyst a more sustainable photocatalytic air purification process is achieved. (C) 2012 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000311190500058 Publication Date 2012-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1385-8947; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 12 Open Access
Notes ; We are grateful for the delivered photocatalyst by Evonik as well as for the PhD grant (T. Tytgat) given by the Institute of Innovation by Science and Technology in Flanders (IWT). ; Approved Most recent IF: 6.216; 2012 IF: 3.473
Call Number UA @ lucian @ c:irua:105185 Serial 2609
Permanent link to this record
 

 
Author Verbruggen, S.W.; Lenaerts, S.; Denys, S.
Title Analytic versus CFD approach for kinetic modeling of gas phase photocatalysis Type A1 Journal article
Year 2015 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 262 Issue Pages 1-8
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In this work two methods for determining the LangmuirHinshelwood kinetic parameters for a slit-shaped flat bed photocatalytic reactor are compared: an analytic mass transfer based model adapted from literature and a computational fluid dynamics (CFD) approach that was used in conjunction with a simplex optimization routine. Despite the differences between both approaches, similar values for the kinetic parameters and similar trends in terms of their UV intensity dependence were found. Using an effectiveness-NTU (number of transfer units) approach, the analytic mass transfer based method could quantify the relative contributions of the rate limiting steps through a reaction effectiveness parameter. The numeric CFD approach on the other hand could yield the two kinetic parameters that determine the photocatalytic reaction rate simultaneously. Furthermore, it proved to be more accurate as it accounts for the spatial variation of flow rate, reaction rate and concentrations at the surface of the photocatalyst. We elaborate this dual kinetic analysis with regard to the photocatalytic degradation of acetaldehyde in air over a silicon wafer coated with a layer of TiO2 P25 (Evonik) and study the usefulness and limitations of both strategies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000347577700001 Publication Date 2014-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 30 Open Access
Notes ; S.W.V. acknowledges the Research Foundation of Flanders (FWO) for financial support. ; Approved Most recent IF: 6.216; 2015 IF: 4.321
Call Number UA @ admin @ c:irua:119724 Serial 5927
Permanent link to this record
 

 
Author Verbruggen, S.W.; Ribbens, S.; Tytgat, T.; Hauchecorne, B.; Smits, M.; Meynen, V.; Cool, P.; Martens, J.A.; Lenaerts, S.
Title The benefit of glass bead supports for efficient gas phase photocatalysis : case study of a commercial and a synthesised photocatalyst Type A1 Journal article
Year 2011 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 174 Issue 1 Pages 318-325
Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)
Abstract In the field of photocatalytic air purification, the immobilisation of catalyst particles on support surfaces without loss of photon efficiency is an important challenge. Therefore, an immobilisation method involving a one-step suspension coating of pre-synthesised photocatalysts on glass beads was applied. The various benefits are exemplified in the gas phase photodegradation of ethylene. Coating of glass beads is easy, fast, cheap and offers a more efficient alternative to bulk catalyst pellets. Furthermore, this coating procedure allows to use porous, pre-synthesised catalysts to their full potential, as the surface area and morphology of the initial powder is barely altered after coating, in strong contrast to pelletising. With this technique it became possible to study the gas phase photocatalytic activity of commercial titanium dioxide, trititanate nanotubes and mixed phase anatase/trititanate nanotubes in a packed bed reactor towards the degradation of ethylene without changing the catalyst properties. Coating of glass beads with the photocatalyst revealed the superior activity of the as-prepared nanotubes, compared to TiO2 Aerolyst® 7710 in gaseous phase.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000296950300041 Publication Date 2011-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 39 Open Access
Notes ; The author wishes to acknowledge the Research Foundation of Flanders (FWO) for the financial support. Evonik is greatly thanked for supplying the TiO<INF>2</ INF> Aerolyst (R) 7710 pellets. ; Approved Most recent IF: 6.216; 2011 IF: 3.461
Call Number UA @ admin @ c:irua:93364 Serial 5929
Permanent link to this record
 

 
Author van Walsem, J.; Verbruggen, S.W.; Modde, B.; Lenaerts, S.; Denys, S.
Title CFD investigation of a multi-tube photocatalytic reactor in non-steady-state conditions Type A1 Journal article
Year 2016 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 304 Issue Pages 808-816
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract A novel multi-tube photoreactor is presented with a high efficiency (over 90% conversion) toward the degradation of acetaldehyde in air under UV conditions with an incident intensity of 2.1 mW cm−2. A CFD model was developed to simulate the transient adsorption and photocatalytic degradation processes of acetaldehyde in this reactor design and to estimate the corresponding kinetic parameters through an optimization routine using the experimentally determined outlet concentration profiles. The CFD model takes into account the entire reactor geometry and all relevant flow parameters, in contrast to analytical methods that often oversimplify the physical and chemical process characteristics. Using CFD, we show that both adsorption and desorption rate constants increase by respectively one and two orders of magnitude when the UV light is switched on, which clearly affects the transient behavior. The agreement of the experimental and modelled concentration profiles is excellent as evidenced by a coefficient of determination of at least 0.965. To demonstrate the reliability and accuracy of all parameters obtained from the modelling approach, an ultimate validation test was performed using other conditions than the ones used for estimating the kinetic parameters. The model was able to accurately simulate simultaneous adsorption, desorption and photocatalytic degradation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384777200089 Publication Date 2016-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 10 Open Access
Notes ; J.V.W. acknowledges the Agentschap Innoveren & Ondernemen for a PhD fellowship. S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. ; Approved Most recent IF: 6.216
Call Number UA @ admin @ c:irua:139620 Serial 5933
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; van Walsem, J.; Tytgat, T.; Lenaerts, S.; Denys, S.
Title CFD modeling of transient adsorption/desorption behavior in a gas phase photocatalytic fiber reactor Type A1 Journal article
Year 2016 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 292 Issue Pages 42-50
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract We present the use of computational fluid dynamics (CFD) for accurately determining the adsorption parameters of acetaldehyde on photocatalytic fiber filter material, integrated in a continuous flow system. Unlike the traditional analytical analysis based on Langmuir adsorption, not only steady-state situations but also transient phenomena can be accounted for. Air displacement effects in the reactor and gas detection cell are investigated and inherently made part of the model. Incorporation of a surface aldol condensation reaction in the CFD analysis further improves the accuracy of the model which enables to extract precise, intrinsic adsorption parameters for situations in which analytical analysis would otherwise fail.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000373648000005 Publication Date 2016-02-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 12 Open Access
Notes ; S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. M.K. acknowledges the IWT for a Ph.D. fellowship. Konstantina Kalafata and Ioanna Fasaki are greatly thanked for providing the NanoPhos suspension. Bioscience Engineering bachelor students M. Gerritsma, J. Helsen and Y. Riahi Drif are thanked for their assistance in performing the adsorption experiments. ; Approved Most recent IF: 6.216
Call Number UA @ admin @ c:irua:130876 Serial 5934
Permanent link to this record