toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Leenaerts, O.; Partoens, B.; Peeters, F.M. pdf  url
doi  openurl
  Title Paramagnetic adsorbates on graphene: a charge transfer analysis Type A1 Journal article
  Year 2008 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 92 Issue 24 Pages 243125,1-3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We introduce a modified version of the Hirshfeld charge analysis method and demonstrate its accurateness by calculating the charge transfer between the paramagnetic molecule NO2 and graphene. The charge transfer between paramagnetic molecules and a graphene layer as calculated with ab initio methods can crucially depend on the size of the supercell used in the calculation. This has important consequences for adsorption studies involving paramagnetic molecules such as NO2 physisorbed on graphene or on carbon nanotubes. © 2008 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000256934900099 Publication Date 2008-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 79 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the NOI-BOF of the University of Antwerp, and the Belgian Science Policy (IAP). Discussions with C. Van Alsenoy are gratefully acknowledged. Approved Most recent IF: 3.411; 2008 IF: 3.726  
  Call Number UA @ lucian @ c:irua:69619 Serial 2552  
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Tunable double Dirac cone spectrum in bilayer \alpha-graphyne Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 103 Issue 1 Pages 013105-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Monolayer alpha-graphyne was recently proposed as a new all-carbon material having an electronic spectrum consisting of Dirac cones. Based on a first-principles investigation of bilayer alpha-graphyne, we show that the electronic band structure is qualitatively different from its monolayer form and depends crucially on the stacking mode of the two layers. Two stable stacking modes are found: a configuration with a gapless parabolic band structure, similar to AB stacked bilayer graphene, and another one which exhibits a doubled Dirac-cone spectrum. The latter can be tuned by an electric field with a gap opening rate of 0.3 eA. (C) 2013 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000321497200032 Publication Date 2013-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 58 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the NOI-BOF of the University of Antwerp, and the ESF EuroGRAPHENE project CONGRAN. ; Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:109821 Serial 3740  
Permanent link to this record
 

 
Author Peelaers, H.; Hernández-Nieves, A.D.; Leenaerts, O.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Vibrational properties of graphene fluoride and graphane Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue 5 Pages 051914  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The vibrational properties of graphene fluoride and graphane are studied using ab initio calculations. We find that both sp(3) bonded derivatives of graphene have different phonon dispersion relations and phonon densities of states as expected from the different masses associated with the attached atoms of fluorine and hydrogen, respectively. These differences manifest themselves in the predicted temperature behavior of the constant-volume specific heat of both compounds. (C) 2011 American Institute of Physics. [doi:10.1063/1.3551712]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000286988400027 Publication Date 2011-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 66 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-V1), the Belgian Science Policy (IAP), and the collaborative project FWO-MINCyT (Contract No. FW /08/01). A.D.H.-N. is also supported by ANPCyT (under Grant No. PICT2008-2236) ; Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:105604 Serial 3844  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: