|   | 
Details
   web
Records
Author Reyntjens, P.D.; Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G.
Title Ab-initio study of magnetically intercalated Tungsten diselenide Type P1 Proceeding
Year 2020 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 23-OCT 06, 2020 Abbreviated Journal
Volume Issue Pages 97-100
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract We theoretically investigate the effect of intercalation of third row transition metals (Co, Cr, Fe, Mn, Ti and V) in the layers of WSe2. Using density functional theory (DFT), we investigate the structural stability. We also compute the DFT energies of various magnetic spin configurations. Using these energies, we construct a Heisenberg Hamiltonian and perform a Monte Carlo study on each WSe2 + intercalant system to estimate the Curie or Neel temperature. We find ferromagnetic ground states for Ti and Cr intercalation, with Curie temperatures of 31K and 225K, respectively. In Fe-intercalated WSe2, we predict that antiferromagnetic ordering is present up to 564K. For V intercalation, we find that the system exhibits a double phase transition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000636981000025 Publication Date 2020-11-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 978-4-86348-763-5 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:178345 Serial 7402
Permanent link to this record
 

 
Author Deylgat, E.; Chen, E.; Sorée, B.; Vandenberghe, W.G.
Title Quantum transport study of contact resistance of edge- and top-contacted two-dimensional materials Type P1 Proceeding
Year 2023 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 27-29, 2023, Kobe, Japan Abbreviated Journal
Volume Issue Pages 45-48
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract We calculate the contact resistance for an edge- and top-contacted 2D semiconductor. The contact region consists of a metal contacting a monolayer of MoS2 which is otherwise surrounded by SiO2. We use the quantum transmitting boundary method to compute the contact resistance as a function of the 2D semiconductor doping concentration. An effective mass Hamiltonian is used to describe the properties of the various materials. The electrostatic potentials are obtained by solving the Poisson equation numerically. We incorporate the effects of the image-force barrier lowering on the Schottky barrier and examine the impact on the contact resistance. At low doping concentrations, the contact resistance of the top contact is lower compared to edge contact, while at high doping concentrations, the edge contact exhibits lower resistance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001117703800012 Publication Date 2023-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 978-4-86348-803-8 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:202839 Serial 9079
Permanent link to this record
 

 
Author Reyntjens, P.; Van de Put, M.; Vandenberghe, W.G.; Sorée, B.
Title Ultrascaled graphene-capped interconnects : a quantum mechanical study Type P1 Proceeding
Year 2023 Publication Proceedings of the IEEE ... International Interconnect Technology Conference T2 – IEEE International Interconnect Technology Conference (IITC) / IEEE, Materials for Advanced Metallization Conference (MAM), MAY 22-25, 2023, Dresden, Germany Abbreviated Journal
Volume Issue Pages 1-3
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract In this theoretical study, we assess the impact of a graphene capping layer on the resistivity of defective, extremely scaled interconnects. We investigate the effect of graphene capping on the electronic transport in ultrascaled interconnects, in the presence of grain boundary defects in the metal layer. We compare the results obtained using our quantum mechanical model to a simple parallel-conductor model and find that the parallel-conductor model does not capture the effect of the graphene cap correctly. At 0.5 nm metal thickness, the parallel-conductor model underestimates the conductivity by 3.0% to 4.0% for single-sided and double sided graphene capping, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001027381700006 Publication Date 2023-06-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 979-83-503-1097-9 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198343 Serial 8949
Permanent link to this record