toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Abreu, Y.; Cruz, C.M.; van Espen, P.; Piñera, I.; Leyva, A.; Cabal, A.E.
  Title Multiscale modeling of radiation damage and annealing in Si samples implanted with 57-Mn radioactive ions Type P1 Proceeding
  Year 2011 Publication IEEE conference record T2 – IEEE Nuclear Science Symposium/Medical Imaging Conference (NSS/MIC)/18th, International Workshop on Room-Temperature Semiconductor X-Ray and, Gamma-Ray Detectors, OCT 23-29, 2011, Valencia, SPAIN Abbreviated Journal
  Volume Issue Pages 1754-1756
  Keywords P1 Proceeding; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract The radiation damage created in silicon materials by Mn-57 -> Fe-57 ion implantation has been studied and characterized by Mossbauer spectroscopy showing four main lines, assigned to: substitutional, interstitial and damaged configuration sites of the implanted ions. Nevertheless, the Mossbauer spectrum of Fe-57 in this materials remains with some ambiguous identification regarding the implantation configurations before and after annealing, specially the damaged configurations and its evolution. In the present work some possible implantation configurations are suggested and evaluated using a multiscale approach by Monte Carlo ion transport and electronic structure calculations within DFT. The proposed implantation environments were evaluated in terms of stability and the Fe-57 hyperfine parameters were calculated to establish the connections with the experimental observations. Good agreement was found between the experimental and the calculated hyperfine parameters for some configurations; suggesting which ones could be the implantation environments before and after sample annealing.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000304755601202 Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 978-1-4673-0120-6 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:113073 Serial 8289
Permanent link to this record
 

 
Author Piñera, I.; Abreu, Y.; van Espen, P.; Diaz, A.; Leyva, A.; Cruz, C.M.
  Title Radiation damage evaluation on LYSO and LuYAP materials through Dpa calculation assisted by Monte Carlo method Type P1 Proceeding
  Year 2011 Publication IEEE conference record T2 – IEEE Nuclear Science Symposium/Medical Imaging Conference (NSS/MIC)/18th, International Workshop on Room-Temperature Semiconductor X-Ray and, Gamma-Ray Detectors, OCT 23-29, 2011, Valencia, SPAIN Abbreviated Journal
  Volume Issue Pages 1609-1611
  Keywords P1 Proceeding; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract The aim of the present work is to study the radiation damage induced in LYSO and LuYAP crystals by the gamma radiation and the secondary electrons/positrons generated. The displacements per atom (dpa) distributions inside each material were calculated following the Monte Carlo assisted Classical Method (MCCM) introduced by the authors. As gamma sources were used Sc-44, Na-22 and V-48. Also the energy of gammas from the annihilation processes (511 keV) was included in the study. This procedure allowed studying the in-depth dpa distributions inside each crystal for all four sources. It was also possible to obtain the separate contribution from each atom to the total dpa. The LYSO crystals were found to receive more damage, mainly provoked by the displacements of silicon and oxygen atoms.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000304755601169 Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 978-1-4673-0120-6 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:113072 Serial 8447
Permanent link to this record
 

 
Author Carrillo-Nuñez, H.; Magnus, W.; Peeters, F.M.
  Title A non-linear variational principle for the self-consistent solution of Poisson's equation and a transport equation in the local density approximation Type P1 Proceeding
  Year 2010 Publication Abbreviated Journal
  Volume Issue Pages 171-174
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Ieee Place of Publication New York, N.Y. Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 978-1-4244-7699-2 ISBN Additional Links UA library record; WoS full record;
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:85824 Serial 2347
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M.
  Title Superconductivity in the quantum-size regime Type P1 Proceeding
  Year 2008 Publication Abbreviated Journal
  Volume Issue Pages 79-103
  Keywords P1 Proceeding; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
  Abstract Recent technological advances resulted in high-quality superconducting metallic nanofilms and nanowires. The physical properties of such nanostructures are governed by the size-quantization of the transverse electron spectrum. This has a substantial impact on the basic superconducting characteristics, e.g., the order parameter, the critical temperature and the critical magnetic field. In the present paper we give an overview of our theoretical results on this subject. Based on a numerical self-consistent solution of the Bogoliubov-de Gennes equations, we investigate how the superconducting properties are modified in the quantum-size regime.
  Address
  Corporate Author Thesis
  Publisher Place of Publication S.l. Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 978-1-4020-9144-5 ISBN Additional Links UA library record; WoS full record;
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:75944 Serial 3374
Permanent link to this record
 

 
Author Vishwakarma, M.; Thota, N.; Karakulina, O.; Hadermann, J.; Mehta, B.R.
  Title Role of graphene inter layer on the formation of the MoS2 – CZTS interface during growth Type P1 Proceeding
  Year 2018 Publication (icc-2017) Abbreviated Journal
  Volume Issue Pages
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
  Abstract The growth of MoS2 layer near the Mo/CZTS interface during sulphurization process can have an impact on back contact cell parameters (series resistance and fill factor) depending upon the thickness or quality of MoS2. This study reports the dependence of the thickness of interfacial MoS2 layer on the growth of graphene at the interface between molybdenum back contact and deposited CZTS layer. The graphene layer reduces the accumulation of Zn/ZnS, Sn/SnO2 and formation of pores near the MoS2-CZTS interface. The use of graphene as interface layer can be potentially useful for improving the quality of Mo/MoS2/CZTS interface.
  Address
  Corporate Author Thesis
  Publisher Amer inst physics Place of Publication Melville Editor
  Language Wos 000436313003046 Publication Date 2018-05-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume 1953 Series Issue Edition
  ISSN (down) 978-0-7354-1648-2; 0094-243x; 0094-243x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 1 Open Access OpenAccess
  Notes ; The authors acknowledge support provided by DST project. M.V. acknowledges IIT Delhi for MHRD fellowship. Prof. B. R. Mehta acknowledges the support of the Schlumberger chair professorship. ; Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:153203 Serial 5126
Permanent link to this record
 

 
Author Alfeld, M.; Janssens, K.; Sasov, A.; Liu, X.; Kostenko, A.; Rickers-Appel, K.; Falkenberg, G.
  Title The use of full-field XRF for simultaneous elemental mapping Type P1 Proceeding
  Year 2010 Publication Abbreviated Journal
  Volume Issue Pages 111-118
  Keywords P1 Proceeding; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract The characteristics of a Full-Field X-ray Fluorescence (FF-XRF) set-up for element-specific imaging, installed at the HASYLAB synchrotron radiation source, were determined. A lateral resolution of 10 μm and limits of detection in the percentage range were found. Further potential developments in CCDs available for FF-XRF are discussed and the use of polycapillary lenses as image transfer optics is illustrated in some explorative experiments.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000278534600020 Publication Date 2010-04-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 978-0-7354-0764-0 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 8 Open Access
  Notes ; This research was supported by the Interuniversity Attraction Poles Programme – Belgian Science Policy (IUAP VI/16) and by GOA XANES meets EELS (Research Fund University of Antwerp, Belgium). M. Alfeld is supported by the Research Foundation – Flanders (FWO). The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/ 2007-2013) under grant agreement no 226716. ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:82179 Serial 5891
Permanent link to this record
 

 
Author Pereira, J.M., Jr.; Mlinar, V.; Peeters, F.M.; Vasilopoulos, P.
  Title Graphene-based quantum wires Type P1 Proceeding
  Year 2007 Publication AIP conference proceedings T2 – 28th International Conference on the Physics of Semiconductors (ICPS-28), JUL 24-28, 2006, Vienna, AUSTRIA Abbreviated Journal
  Volume Issue Pages 721-722
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)
  Abstract We investigate the properties of carriers in graphene-based quantum wires created by potential barriers, by means of analytical and numerical calculations. We obtain expressions for the energy spectrum as a function of barrier height, well width and linear momentum along the wire. The results demonstrate a direction-dependent resonant transmission across the potential well.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume 893 Series Issue Edition
  ISSN (down) 978-0-7354-0397-0; 0094-243x ISBN Additional Links UA library record; WoS full record;
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:103601 Serial 1369
Permanent link to this record
 

 
Author Verreck, D.; Van de Put, M.L.; Verhulst, A.S.; Sorée, B.; Magnus, W.; Dabral, A.; Thean, A.; Groeseneken, G.
  Title 15-band spectral envelope function formalism applied to broken gap tunnel field-effect transistors Type P1 Proceeding
  Year 2015 Publication 18th International Workshop On Computational Electronics (iwce 2015) Abbreviated Journal
  Volume Issue Pages
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)
  Abstract A carefully chosen heterostructure can significantly boost the performance of tunnel field-effect transistors (TFET). Modelling of these hetero-TFETs requires a quantum mechanical (QM) approach with an accurate band structure to allow for a correct description of band-to-band-tunneling. We have therefore developed a fully QM 2D solver, combining for the first time a full zone 15-band envelope function formalism with a spectral approach, including a heterostructure basis set transformation. Simulations of GaSb/InAs broken gap TFETs illustrate the wide body capabilities and transparant transmission analysis of the formalism.
  Address
  Corporate Author Thesis
  Publisher Ieee Place of Publication New york Editor
  Language Wos 000380398200055 Publication Date 2015-10-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 978-0-692-51523-5 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:134998 Serial 4131
Permanent link to this record
 

 
Author Van de Put, M.L.; Vandenberghe, W.G.; Magnus, W.; Sorée, B.; Fischetti, M.V.
  Title Modeling of inter-ribbon tunneling in graphene Type P1 Proceeding
  Year 2015 Publication 18th International Workshop On Computational Electronics (iwce 2015) Abbreviated Journal
  Volume Issue Pages
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)
  Abstract The tunneling current between two crossed graphene ribbons is described invoking the empirical pseudopotential approximation and the Bardeen transfer Hamiltonian method. Results indicate that the density of states is the most important factor determining the tunneling current between small (similar to nm) ribbons. The quasi-one dimensional nature of graphene nanoribbons is shown to result in resonant tunneling.
  Address
  Corporate Author Thesis
  Publisher Ieee Place of Publication New york Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 978-0-692-51523-5 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:134997 Serial 4206
Permanent link to this record
 

 
Author Poma, G.; McGrath, T.J.; Christia, C.; Govindan, M.; Covaci, A.
  Title Emerging halogenated flame retardants in the indoor environment Type A1 Journal article
  Year 2020 Publication Comprehensive analytical chemistry Abbreviated Journal
  Volume 88 Issue Pages 107-140
  Keywords A1 Journal article; Pharmacology. Therapy; Electron microscopy for materials research (EMAT); Toxicological Centre
  Abstract Indoor environments are considered an important contributor to external human exposure to halogenated flame retardants (HFRs) due to the large amounts of chemicals currently incorporated in indoor equipment and the time humans spend every day in indoor environments. In this chapter, the presence and use of novel brominated flame retardants (NBFRs), dechlorane plus (DPs), chlorinated organophosphorus flame retardants (Cl-PFRs) and chlorinated paraffins (CPs) in indoor dust, air and consumer products collected from different indoor microenvironments (homes, public indoor spaces, and vehicles) are discussed. While data on the concentrations of HFRs in indoor dust and air are widely available, figures are still scarce for consumer products, such as textiles and foams, furnishings, flooring, electric and electronic products and building materials. This knowledge gaps still represents the biggest obstacle in linking eventual sources of contamination to the presence and chemical patterns in indoor dust and air.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2019-11-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 978-0-444-64339-1 ISBN Additional Links UA library record
  Impact Factor Times cited Open Access OpenAccess
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:168776 Serial 6505
Permanent link to this record
 

 
Author Mary Joy, R.; Pobedinskas, P.; Bourgeois, E.; Chakraborty, T.; Görlitz, J.; Herrmann, D.; Noël, C.; Heupel, J.; Jannis, D.; Gauquelin, N.; D'Haen, J.; Verbeeck, J.; Popov, C.; Houssiau, L.; Becher, C.; Nesládek, M.; Haenen, K.
  Title Germanium vacancy centre formation in CVD nanocrystalline diamond using a solid dopant source Type A3 Journal article
  Year 2023 Publication Science talks Abbreviated Journal Science Talks
  Volume 5 Issue Pages 100157
  Keywords A3 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2023-02-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 2772-5693 ISBN Additional Links UA library record
  Impact Factor Times cited Open Access OpenAccess
  Notes Approved Most recent IF: NA
  Call Number EMAT @ emat @c:irua:196969 Serial 8791
Permanent link to this record
 

 
Author Bhatia, H.; Keshavarz, M.; Martin, C.; Van Gaal, L.; Zhang, Y.; de Coen, B.; Schrenker, N.J.; Valli, D.; Ottesen, M.; Bremholm, M.; Van de Vondel, J.; Bals, S.; Hofkens, J.; Debroye, E.
  Title Achieving High Moisture Tolerance in Pseudohalide Perovskite Nanocrystals for Light-Emitting Diode Application Type A1 Journal Article
  Year 2023 Publication ACS Applied Optical Materials Abbreviated Journal ACS Appl. Opt. Mater.
  Volume 1 Issue 6 Pages 1184-1191
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract The addition of potassium thiocyanate (KSCN) to the FAPbBr3 structure and subsequent post-treatment of nanocrystals (NCs) lead to high quantum confinement, resulting in a photoluminescent quantum yield (PLQY) approaching unity and microsecond decay times. This synergistic approach demonstrated exceptional stability under humid conditions, retaining 70% of the PLQY for over a month, while the untreated NCs degrade within 24 h. Additionally, the devices incorporating the post-treated NCs displayed 1.5% external quantum efficiency (EQE), a 5-fold improvement over untreated devices. These results provide promising opportunities for the use of perovskites in moisture-stable optoelectronics.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2023-06-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 2771-9855 ISBN Additional Links UA library record
  Impact Factor Times cited Open Access OpenAccess
  Notes Hercules Foundation, HER/11/14 ; European Commission; Ministerio de Ciencia e Innovaci?n, PID2021-128761OA-C22 ; European Regional Development Fund; Vlaamse regering, CASAS2 Meth/15/04 ; Fonds Wetenschappelijk Onderzoek, 1238622N 1514220N 1S45223N G.0B39.15 G.0B49.15 G098319N S002019N ZW15_09-GOH6316 ; Onderzoeksraad, KU Leuven, C14/19/079 db/21/006/bm iBOF-21-085 STG/21/010 ; Junta de Comunidades de Castilla-La Mancha, SBPLY/21/180501/000127 ; H2020 European Research Council, 642196 815128 ; Approved Most recent IF: NA
  Call Number EMAT @ emat @c:irua:201011 Serial 8975
Permanent link to this record
 

 
Author Zheng, J.; Zhang, H.; Lv, J.; Zhang, M.; Wan, J.; Gerrits, N.; Wu, A.; Lan, B.; Wang, W.; Wang, S.; Tu, X.; Bogaerts, A.; Li, X.
  Title Enhanced NH3Synthesis from Air in a Plasma Tandem-Electrocatalysis System Using Plasma-Engraved N-Doped Defective MoS2 Type A1 Journal Article
  Year 2023 Publication JACS Au Abbreviated Journal JACS Au
  Volume 3 Issue 5 Pages 1328-1336
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
  Abstract We have developed a sustainable method to produce NH3 directly from air using a plasma tandem-electrocatalysis system that operates via the N2−NOx−NH3 pathway. To efficiently reduce NO2− to NH3, we propose a novel electrocatalyst consisting of defective N-doped molybdenum sulfide nanosheets on vertical graphene arrays (N-MoS2/VGs). We used a plasma engraving process to form the metallic 1T phase, N doping, and S vacancies in the electrocatalyst simultaneously. Our system exhibited a remarkable NH3 production rate of 7.3 mg h−1 cm−2 at −0.53 V vs RHE, which is almost 100 times higher than the state-of-the-art electrochemical nitrogen reduction reaction and more than double that of other hybrid systems. Moreover, a low energy consumption of only 2.4 MJ molNH3−1 was achieved in this study. Density functional theory calculations revealed that S vacancies and doped N atoms play a dominant role in the selective reduction of NO2− to NH3. This study opens up new avenues for efficient NH3 production using cascade systems.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000981779300001 Publication Date 2023-05-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 2691-3704 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access Not_Open_Access
  Notes ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (51976191, 5227060056, 52276214) and the National Key Technologies R&D Program of China (2018YFE0117300). N.G. was financially supported through an NWO Rubicon Grant (019.202EN.012). X.T. acknowl- edges the support of the Engineering and Physical Sciences Research Council (EP/X002713/1). Approved Most recent IF: NA
  Call Number PLASMANT @ plasmant @c:irua:196761 Serial 8792
Permanent link to this record
 

 
Author Brognara, A.; Kashiwar, A.; Jung, C.; Zhang, X.; Ahmadian, A.; Gauquelin, N.; Verbeeck, J.; Djemia, P.; Faurie, D.; Dehm, G.; Idrissi, H.; Best, J.P.; Ghidelli, M.
  Title Tailoring mechanical properties and shear band propagation in ZrCu metallic glass nanolaminates through chemical heterogeneities and interface density Type A1 Journal article
  Year 2024 Publication Small Structures Abbreviated Journal
  Volume Issue Pages 2400011-11
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The design of high‐performance structural thin films consistently seeks to achieve a delicate equilibrium by balancing outstanding mechanical properties like yield strength, ductility, and substrate adhesion, which are often mutually exclusive. Metallic glasses (MGs) with their amorphous structure have superior strength, but usually poor ductility with catastrophic failure induced by shear bands (SBs) formation. Herein, we introduce an innovative approach by synthesizing MGs characterized by large and tunable mechanical properties, pioneering a nanoengineering design based on the control of nanoscale chemical/structural heterogeneities. This is realized through a simplified model Zr 24 Cu 76 /Zr 61 Cu 39 , fully amorphous nanocomposite with controlled nanoscale periodicity ( Λ , from 400 down to 5 nm), local chemistry, and glass–glass interfaces, while focusing in‐depth on the SB nucleation/propagation processes. The nanolaminates enable a fine control of the mechanical properties, and an onset of crack formation/percolation (>1.9 and 3.3%, respectively) far above the monolithic counterparts. Moreover, we show that SB propagation induces large chemical intermixing, enabling a brittle‐to‐ductile transition when Λ  ≤ 50 nm, reaching remarkably large plastic deformation of 16% in compression and yield strength ≈2 GPa. Overall, the nanoengineered control of local heterogeneities leads to ultimate and tunable mechanical properties opening up a new approach for strong and ductile materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2024-05-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 2688-4062 ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:205798 Serial 9176
Permanent link to this record
 

 
Author Kamminga, M.E.; Batuk, M.; Hadermann, J.; Clarke, S.J.
  Title Misfit phase (BiSe)1.10NbSe2 as the origin of superconductivity in niobium-doped bismuth selenide Type A1 Journal article
  Year 2020 Publication Communications Materials Abbreviated Journal Commun Mater
  Volume 1 Issue 1 Pages 82
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Topological superconductivity is of great contemporary interest and has been proposed in doped Bi<sub>2</sub>Se<sub>3</sub>, in which electron-donating atoms such as Cu, Sr or Nb have been intercalated into the Bi<sub>2</sub>Se<sub>3</sub>structure. For Nb<sub><italic>x</italic></sub>Bi<sub>2</sub>Se<sub>3</sub>, with<italic>T</italic><sub>c</sub> ~ 3 K, it is assumed in the literature that Nb is inserted in the van der Waals gap. However, in this work an alternative origin for the superconductivity in Nb-doped Bi<sub>2</sub>Se<sub>3</sub>is established. In contrast to previous reports, it is deduced that Nb intercalation in Bi<sub>2</sub>Se<sub>3</sub>does not take place. Instead, the superconducting behaviour in samples of nominal composition Nb<sub><italic>x</italic></sub>Bi<sub>2</sub>Se<sub>3</sub>results from the (BiSe)<sub>1.10</sub>NbSe<sub>2</sub>misfit phase that is present in the sample as an impurity phase for small<italic>x</italic>(0.01 ≤ <italic>x</italic> ≤ 0.10) and as a main phase for large<italic>x</italic>(<italic>x</italic> = 0.50). The structure of this misfit phase is studied in detail using a combination of X-ray diffraction and transmission electron microscopy techniques.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000610580800001 Publication Date 2020-11-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 2662-4443 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access OpenAccess
  Notes M.E.K. was supported by the Netherlands Organisation for Scientific Research (NWO, grant code 019.181EN.003). We also acknowledge support from the EPSRC (EP/ R042594/1, EP/P018874/1, EP/M020517/1) and the Leverhulme Trust (RPG-2018-377). J.H. acknowledges support from the University of Antwerp through BOF Grant No. 31445. We thank DLS Ltd for beam time (EE18786), Dr Clare Murray for assistance on I11 and Dr Jon Wade from the Department of Earth Sciences, University of Oxford for performing the SEM measurements. We also thank Dr Michal Dušak and Dr Václav Petřiček for their advice concerning the use of the Jana2006 software. Approved Most recent IF: NA
  Call Number EMAT @ emat @c:irua:176116 Serial 6705
Permanent link to this record
 

 
Author Groenendijk, D.J.; Autieri, C.; van Thiel, T.C.; Brzezicki, W.; Hortensius, J.R.; Afanasiev, D.; Gauquelin, N.; Barone, P.; van den Bos, K.H.W.; van Aert, S.; Verbeeck, J.; Filippetti, A.; Picozzi, S.; Cuoco, M.; Caviglia, A.D.
  Title Berry phase engineering at oxide interfaces Type A1 Journal article
  Year 2020 Publication Abbreviated Journal Phys. Rev. Research
  Volume 2 Issue 2 Pages 023404
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Three-dimensional strontium ruthenate (SrRuO3) is an itinerant ferromagnet that features Weyl points acting as sources of emergent magnetic fields, anomalous Hall conductivity, and unconventional spin dynamics. Integrating SrRuO3 in oxide heterostructures is potentially a novel route to engineer emergent electrodynamics, but its electronic band topology in the two-dimensional limit remains unknown. Here we show that ultrathin SrRuO3 exhibits spin-polarized topologically nontrivial bands at the Fermi energy. Their band anticrossings show an enhanced Berry curvature and act as competing sources of emergent magnetic fields. We control their balance by designing heterostructures with symmetric (SrTiO3/SrRuO3/SrTiO3 and SrIrO3/SrRuO3/SrIrO3) and asymmetric interfaces (SrTiO3/SrRuO3/SrIrO3). Symmetric structures exhibit an interface-tunable single-channel anomalous Hall effect, while ultrathin SrRuO3 embedded in asymmetric structures shows humplike features consistent with multiple Hall contributions. The band topology of two-dimensional SrRuO3 proposed here naturally accounts for these observations and harmonizes a large body of experimental results.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000603642700008 Publication Date 2020-06-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 2643-1564 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 58 Open Access OpenAccess
  Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Fonds Wetenschappelijk Onderzoek; European Research Council; Horizon 2020, 677458 770887 731473 ; Fondazione Cariplo, 2013-0726 ; Narodowe Centrum Nauki, 2016/23/B/ST3/00839 ; Fundacja na rzecz Nauki Polskiej; Universiteit Antwerpen; Vlaamse regering; Approved Most recent IF: NA
  Call Number EMAT @ emat @c:irua:172462 Serial 6401
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Zhuo, X.; Albrecht, W.; Bals, S.; Liz-Marzán, L.M.
  Title Tuning Size and Seed Position in Small Silver Nanorods Type A1 Journal article
  Year 2020 Publication ACS materials letters Abbreviated Journal ACS Materials Lett.
  Volume 2 Issue 9 Pages 1246-1250
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000571390700022 Publication Date 2020-09-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 9 Open Access OpenAccess
  Notes Financial support is acknowledged from the European Commission under the Horizon 2020 Programme, by means of Grant Agreement No. 731019 (EUSMI), the ERC Consolidator Grant (No. 815128) (REALNANO), and the ERC Advanced Grant (No. 787510) (4DbioSERS). W.A. acknowledges an Individual Fellowship from the Marie Sklodowska-Curie actions (MSCA), under the EU’s Horizon 2020 program (Grant 797153, SOPMEN). This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720).; sygma Approved Most recent IF: NA
  Call Number EMAT @ emat @c:irua:171980 Serial 6439
Permanent link to this record
 

 
Author Heyvaert, W.; Pedrazo-Tardajos, A.; Kadu, A.; Claes, N.; González-Rubio, G.; Liz-Marzán, L.M.; Albrecht, W.; Bals, S.
  Title Quantification of the Helical Morphology of Chiral Gold Nanorods Type A1 Journal article
  Year 2022 Publication ACS materials letters Abbreviated Journal ACS Materials Lett.
  Volume 4 Issue Pages 642-649
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Chirality in inorganic nanoparticles and nanostructures has gained increasing scientific interest, because of the possibility to tune their ability to interact differently with left- and right-handed circularly polarized light. In some cases, the optical activity is hypothesized to originate from a chiral morphology of the nanomaterial. However, quantifying the degree of chirality in objects with sizes of tens of nanometers is far from straightforward. Electron tomography offers the possibility to faithfully retrieve the three-dimensional morphology of nanomaterials, but only a qualitative interpretation of the morphology of chiral nanoparticles has been possible so far. We introduce herein a methodology that enables us to quantify the helicity of complex chiral nanomaterials, based on the geometrical properties of a helix. We demonstrate that an analysis at the single particle level can provide significant insights into the origin of chiroptical properties.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000784490000013 Publication Date 2022-03-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 11 Open Access OpenAccess
  Notes S.B. and A.P.-T. gratefully acknowledge funding by the European Research Council (ERC Consolidator Grant #815128-REALNANO) the European Union’s Horizon 2020 research and innovation program under grant agreement #823717ESTEEM3. L.M.L.-M. acknowledges funding from MCIN/ AEI /10.13039/501100011033, grant # PID2020- 117779RB-I00 and the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720). G.G.-R. thanks the Spanish Spanish Ministerio de Ciencia e Innovación for an FPI (BES-2014- 068972) fellowship.; SygmaSB; esteem3reported; esteem3jra Approved Most recent IF: NA
  Call Number EMAT @ emat @c:irua:186959 Serial 6956
Permanent link to this record
 

 
Author Vlasov, E.; Skorikov, A.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Verbeeck, J.; Bals, S.
  Title Secondary electron induced current in scanning transmission electron microscopy: an alternative way to visualize the morphology of nanoparticles Type A1 Journal article
  Year 2023 Publication ACS materials letters Abbreviated Journal ACS Materials Lett.
  Volume Issue Pages 1916-1921
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Electron tomography (ET) is a powerful tool to determine the three-dimensional (3D) structure of nanomaterials in a transmission electron microscope. However, the acquisition of a conventional tilt series for ET is a time-consuming process and can therefore not provide 3D structural information in a time-efficient manner. Here, we propose surface-sensitive secondary electron (SE) imaging as an alternative to ET for the investigation of the morphology of nanomaterials. We use the SE electron beam induced current (SEEBIC) technique that maps the electrical current arising from holes generated by the emission of SEs from the sample. SEEBIC imaging can provide valuable information on the sample morphology with high spatial resolution and significantly shorter throughput times compared with ET. In addition, we discuss the contrast formation mechanisms that aid in the interpretation of SEEBIC data.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001006191600001 Publication Date 2023-06-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 1 Open Access OpenAccess
  Notes The funding for this project was provided by European Research Council (ERC Consolidator Grant 815128, REALNANO). J.V. acknowledges the eBEAM project, which is supported by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 101017720 (FET-Proactive EBEAM). L.M.L.-M. acknowledges funding from MCIN/AEI/10.13039/501100011033 (grant # PID2020-117779RB-I00). Approved Most recent IF: NA
  Call Number EMAT @ emat @c:irua:197004 Serial 8795
Permanent link to this record
 

 
Author Hugenschmidt, M.; Jannis, D.; Kadu, A.A.; Grünewald, L.; De Marchi, S.; Perez-Juste, J.; Verbeeck, J.; Van Aert, S.; Bals, S.
  Title Low-dose 4D-STEM tomography for beam-sensitive nanocomposites Type A1 Journal article
  Year 2023 Publication ACS materials letters Abbreviated Journal
  Volume 6 Issue 1 Pages 165-173
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Electron tomography is essential for investigating the three-dimensional (3D) structure of nanomaterials. However, many of these materials, such as metal-organic frameworks (MOFs), are extremely sensitive to electron radiation, making it difficult to acquire a series of projection images for electron tomography without inducing electron-beam damage. Another significant challenge is the high contrast in high-angle annular dark field scanning transmission electron microscopy that can be expected for nanocomposites composed of a metal nanoparticle and an MOF. This strong contrast leads to so-called metal artifacts in the 3D reconstruction. To overcome these limitations, we here present low-dose electron tomography based on four-dimensional scanning transmission electron microscopy (4D-STEM) data sets, collected using an ultrafast and highly sensitive direct electron detector. As a proof of concept, we demonstrate the applicability of the method for an Au nanostar embedded in a ZIF-8 MOF, which is of great interest for applications in various fields, including drug delivery.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001141178500001 Publication Date 2023-12-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 2639-4979 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access Not_Open_Access
  Notes This work was supported by the European Research Council (Grant 815128 REALNANO to S.B., Grant 770887 PICOMETRICS to S.V.A.). J.P.-J. and S.M. acknowledge financial support from the MCIN/AEI/10.13039/501100011033 (Grants No. PID2019-108954RB-I00) and EU Horizon 2020 research and innovation program under grant agreement no. 883390 (SERSing). J.V., S.B., S.V.A., and L.G. acknowledge funding from the Flemish government (iBOF-21-085 PERsist). Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:202771 Serial 9053
Permanent link to this record
 

 
Author Gao, Y.-J.; Jin, H.; Esteban, D.A.; Weng, B.; Saha, R.A.; Yang, M.-Q.; Bals, S.; Steele, J.A.; Huang, H.; Roeffaers, M.B.J.
  Title 3D-cavity-confined CsPbBr₃ quantum dots for visible-light-driven photocatalytic C(sp³)-H bond activation Type A1 Journal article
  Year 2024 Publication Carbon Energy Abbreviated Journal
  Volume Issue Pages e559
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Metal halide perovskite (MHP) quantum dots (QDs) offer immense potential for several areas of photonics research due to their easy and low-cost fabrication and excellent optoelectronic properties. However, practical applications of MHP QDs are limited by their poor stability and, in particular, their tendency to aggregate. Here, we develop a two-step double-solvent strategy to grow and confine CsPbBr3 QDs within the three-dimensional (3D) cavities of a mesoporous SBA-16 silica scaffold (CsPbBr3@SBA-16). Strong confinement and separation of the MHP QDs lead to a relatively uniform size distribution, narrow luminescence, and good ambient stability over 2 months. In addition, the CsPbBr3@SBA-16 presents a high activity and stability for visible-light-driven photocatalytic toluene C(sp(3))-H bond activation to produce benzaldehyde with similar to 730 mu mol g(-1) h(-1) yield rate and near-unity selectivity. Similarly, the structural stability of CsPbBr3@SBA-16 QDs is superior to that of both pure CsPbBr3 QDs and those confined in MCM-41 with 1D channels.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001223583600001 Publication Date 2024-05-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 2637-9368 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:206000 Serial 9133
Permanent link to this record
 

 
Author de Jong, M.; Sleegers, N.; Schram, J.; Daems, D.; Florea, A.; De Wael, K.
  Title A Benzocaine‐Induced Local Near‐Surface pH Effect: Influence on the Accuracy of Voltammetric Cocaine Detection Type A1 Journal article
  Year 2020 Publication Analysis & Sensing Abbreviated Journal Anal. Sens.
  Volume Issue Pages anse.202000012
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract This work reports on a local induced near-surface pH effect (pHS), due to the presence of one analyte, leading to an influence or even suppression of redox signals of a second analyte present in solution. This concept and its impact on voltammetric sensing is illustrated by focusing on the detection of cocaine in the presence of the common adulterant benzocaine. An in-depth study on the occurring interference mechanism and why it occurs for benzocaine specifically and not for other adulterants was performed through the use of multiple electrochemical strategies. It was concluded that the potential shift and loss of intensity of the squarewave voltammetric cocaine signal in the presence of benzocaine was caused by a local pHS effect. A cathodic pretreatment strategy was developed to nonetheless allow accurate cocaine detection. The gathered insights are useful to explain unidentified phenomena involving compounds with properties similar to benzocaine in voltammetric electroanalysis.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2020-10-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 2629-2742 ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes The authors acknowledge financial support from IOF-SBO/POC (UAntwerp), the Fund for Scientific Research (FWO) Flanders, Grant 1S 37658 17N and Grant 1SB 8120N, and VLAIO IM [HBC.2019.2181]. Approved Most recent IF: NA
  Call Number AXES @ axes @c:irua:173031 Serial 6427
Permanent link to this record
 

 
Author Bencs, L.; Horemans, B.; Buczyńska, A.J.; Deutsch, F.; Degraeuwe, B.; Van Poppel, M.; Van Grieken, R.
  Title Seasonality of ship emission related atmospheric pollution over coastal and open waters of the North Sea Type A1 Journal article
  Year 2020 Publication Atmospheric Environment: X Abbreviated Journal
  Volume 7 Issue Pages 100077-11
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract The seasonal changes of a large set of atmospheric pollutants (i.e., gases, water-soluble aerosols, metallic/elemental components and black carbon (BC) content) have been studied over the southern bight of the North Sea (the Belgian Continental Shelf) and the English Channel during several marine sampling campaigns, carried out in 2010-2011. A coastal research station at De Haan, Belgium was concurrently used as a background air monitoring site. Size-segregated aerosols (PM1, PM2.5-1, PM10-2.5) were analyzed for particulate mass, elemental content and water-soluble (ionic) compounds, while the equivalent BC content in PM10 was monitored with an Aethalometer. The results clearly demonstrated that the aerosols originating from ship exhaust emissions contributed mostly to fine fraction (PM1), and to a lesser extent to medium-sized fraction (PM2.5-1), whereas components of sea spray and of mineral/soil origin were dominating in the medium-size and coarse aerosol fractions. Looking at seasonal differences, more ship emission related components occurred in the fine and medium-sized PM during winter. Mineral aerosol components were more apparent in coarse PM and especially during the cold season, increased levels were noted. Similarly, higher concentrations of marine fine PM were found during winter, likely due to more extensive ship emissions and/or calm weather conditions. Gaseous pollutants (e.g., HNO2, HNO3, HCl, SO2, NH3) originating from exhaust fumes of ocean-going ships mostly reached the maximum levels in the cold season as well, thus supporting the more intense formation of secondary aerosols. The seasonal trends of total (inorganic) ionic species sampled on the open sea and at the coastal station were usually similar to those of the corresponding PM masses, peaking in the cold season. Sea salt bound fine sulfate and nitrate peaked in spring or the cold season for marine areas, whereas for the coastal site they clearly reached the maximum in the cold season. Ammonium-bound nitrates and sulfates in each PM fraction reached their peak air levels in the cold season over marine sites. Similar seasonal trends could be observed for the coastal station. The general tendency of aerosol distribution over the study areas was independent of the sampling site: the higher the aerosol mass on the open sea with ship traffic, the higher the suspended particulate mass sampled at the coast.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000571429900007 Publication Date 2020-05-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 2590-1621 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes ; The participating researchers of this study gratefully acknowledge the funding from the Belgian Science Policy Office (BELSPO) under the SHIPFLUX project (assignation No.: SD/NS/07A). The researchers thank Jan Van Loock (UA), Andr.e Cattrijsse (VLIZ) and Frank Broucke (VLIZ) for their help with the logistics, sampling and organization of the field/marine studies and Francisco (Tjess) Hernandez (VLIZ) for his help in getting access to the weather data. The participants also want to express their sincere thanks to the crew of R/V Belgica for their help and cooperation in the marine expeditions. ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:171924 Serial 6599
Permanent link to this record
 

 
Author Faust, V.; van Alen, T.A.; Op den Camp, H.J.M.; Vlaeminck, S.E.; Ganigué, R.; Boon, N.; Udert, K.M.
  Title Ammonia oxidation by novel “Candidatus Nitrosacidococcus urinae” is sensitive to process disturbances at low pH and to iron limitation at neutral pH Type A1 Journal article
  Year 2022 Publication Water Research X Abbreviated Journal
  Volume 17 Issue Pages 100157-11
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Acid-tolerant ammonia-oxidizing bacteria (AOB) can open the door to new applications, such as partial nitritation at low pH. However, they can also be problematic because chemical nitrite oxidation occurs at low pH, leading to the release of harmful nitrogen oxide gases. In this publication, the role of acid-tolerant AOB in urine treatment was explored. On the one hand, the technical feasibility of ammonia oxidation under acidic conditions for source-separated urine with total nitrogen concentrations up to 3.5 g-N L−1 was investigated. On the other hand, the abundance and growth of acid-tolerant AOB at more neutral pH was explored. Under acidic conditions (pH of 5), ammonia oxidation rates of 500 mg-N L−1 d−1 and 10 g-N g-VSS-1 d-1 were observed, despite high concentrations of 15 mg-N L−1 of the AOB-inhibiting compound nitrous acid and low concentration of 0.04 mg-N L−1 of the substrate ammonia. However, ammonia oxidation under acidic conditions was very sensitive to process disturbances. Even short periods of less than 12 h without oxygen or without influent resulted in a complete cessation of ammonia oxidation with a recovery time of up to two months, which is a problem for low maintenance applications such as decentralized treatment. Furthermore, undesirable nitrogen losses of about 10% were observed. Under acidic conditions, a novel AOB strain was enriched with a relative abundance of up to 80%, for which the name “Candidatus (Ca.) Nitrosacidococcus urinae” is proposed. While Nitrosacidococcus members were present only to a small extent (0.004%) in urine nitrification reactors operated at pH values between 5.8 and 7, acid-tolerant AOB were always enriched during long periods without influent, resulting in an uncontrolled drop in pH to as low as 2.5. Long-term experiments at different pH values showed that the activity of “Ca. Nitrosacidococcus urinae” decreased strongly at a pH of 7, where they were also outcompeted by the acid-sensitive AOB Nitrosomonas halophila. The experiment results showed that the decreased activity of “Ca. Nitrosacidococcus urinae” correlated with the limited availability of dissolved iron at neutral pH.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000877925500001 Publication Date 2022-10-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 2589-9147 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access OpenAccess
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:190944 Serial 7124
Permanent link to this record
 

 
Author Marteleur, M.; Idrissi, H.; Amin-Ahmadi, B.; Prima, F.; Schryvers, D.; Jacques, P.J.
  Title On the nucleation mechanism of {112} < 111 > mechanical twins in as-quenched beta metastable Ti-12 wt.% Mo alloy Type A1 Journal article
  Year 2019 Publication Materialia Abbreviated Journal
  Volume 7 Issue Pages Unsp 100418
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Recently developed beta-metastable Ti grades take advantage of the simultaneous activation of TRIP and TWIP effects for enhancing their work hardening rate. However, the role of each plasticity mechanism on the macroscopic mechanical response is still unclear. In this work, the nucleation mechanism of the first activated plasticity mechanism, namely {112} < 111 > twinning, was investigated. Firstly, post-mortem TEM analysis showed that twins nucleate on pre-existing microstructural defects such as thermal jogs with the zonal dislocation mechanism. The precipitation of the omega phase on twin boundaries has been observed, as well as the emission of numerous dislocations from super-jogs present in these twin boundaries. It is also shown that {112} < 111 > twins act as effective dislocation sources for the subsequent plasticity mechanisms such as beta -> alpha '' martensitic transformation and {332} < 111 > twinning. Secondly, in situ TEM tensile testing of the investigated Ti grade highlighted the primary role of the initial defect configuration present in the microstructure. It is shown that twins cannot nucleate without the presence of specific defects allowing the triggering of the dislocation decomposition needed for the twinning mechanism highlighted in investigated bulk samples.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000537131000052 Publication Date 2019-07-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 2589-1529 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:170326 Serial 6875
Permanent link to this record
 

 
Author Lezaack, M.B.; Hannard, F.; Zhao, L.; Orekhov, A.; Adrien, J.; Miettinen, A.; Idrissi, H.; Simar, A.
  Title Towards ductilization of high strength 7XXX aluminium alloys via microstructural modifications obtained by friction stir processing and heat treatments Type A1 Journal article
  Year 2021 Publication Materialia Abbreviated Journal
  Volume 20 Issue Pages 101248
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract High strength 7XXX aluminium series reach exceptional strength, higher than all other industrial aluminium alloys. However, they suffer from a lack of ductility compared to softer series. This work presents a procedure to improve the ductility of 7475 Al alloy in high strength condition, reaching a true fracture strain of 70% at full 500 MPa T6 yield strength. Using friction stir processing (FSP) and post-FSP heat treatments, 100% of industrial rolled material T6 yield stress is maintained but a 180% increase in fracture strain is measured for the processed material. This ductility improvement is studied by in-situ synchrotron X-ray tomography and is explained by the reduction of intermetallic particles size and the homogenization of their spatial distribution. Furthermore, the microstructure after FSP shows equiaxed refined grains which favour crack deviation as opposed to large cracks parallel to the elongated coarse grains in rolled plate. These results are paving the way to better formability and crashworthiness of 7XXX alloys.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000718127100006 Publication Date 2021-10-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 2589-1529 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:184145 Serial 6894
Permanent link to this record
 

 
Author Zhao, H.; Li, C.-F.; Yong, X.; Kumar, P.; Palma, B.; Hu, Z.-Y.; Van Tendeloo, G.; Siahrostami, S.; Larter, S.; Zheng, D.; Wang, S.; Chen, Z.; Kibria, M.G.; Hu, J.
  Title Coproduction of hydrogen and lactic acid from glucose photocatalysis on band-engineered Zn1-xCdxS homojunction Type A1 Journal article
  Year 2021 Publication iScience Abbreviated Journal
  Volume 24 Issue 2 Pages 102109
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Photocatalytic transformation of biomass into value-added chemicals coupled with co-production of hydrogen provides an explicit route to trap sunlight into the chemical bonds. Here, we demonstrate a rational design of Zn1-xCdxS solidsolution homojunction photocatalyst with a pseudo-periodic cubic zinc blende (ZB) and hexagonal wurtzite (WZ) structure for efficient glucose conversion to simultaneously produce hydrogen and lactic acid. The optimized Zn0.6Cd0.4S catalyst consists of a twinning superlattice, has a tuned bandgap, and displays excellent efficiency with respect to hydrogen generation (690 +/- 27.6 mu mol.h(-1).g(cat).(-1)), glucose conversion (similar to 90%), and lactic acid selectivity (similar to 87%) without any co-catalyst under visible light irradiation. The periodic WZ/ZB phase in twinning superlattice facilitates better charge separation, while superoxide radical (center dot O-2(-)) and photogenerated holes drive the glucose transformation and water oxidation reactions, respectively. This work demonstrates that rational photocatalyst design could realize an efficient and concomitant production of hydrogen and value-added chemicals from glucose photocatalysis.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000621266700080 Publication Date 2021-01-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 2589-0042 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access OpenAccess
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:176744 Serial 6720
Permanent link to this record
 

 
Author Asapu, R.; Claes, N.; Ciocarlan, R.-G.; Minjauw, M.; Detavernier, C.; Cool, P.; Bals, S.; Verbruggen, S.W.
  Title Electron Transfer and Near-Field Mechanisms in Plasmonic Gold-Nanoparticle-Modified TiO2Photocatalytic Systems Type A1 Journal article
  Year 2019 Publication ACS applied nano materials Abbreviated Journal ACS Appl. Nano Mater.
  Volume 2 Issue 2 Pages 4067-4074
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)
  Abstract The major mechanism responsible for plasmonic enhancement of titanium dioxide photocatalysis using gold nanoparticles is still under contention. This work introduces an experimental strategy to disentangle the significance of the charge transfer and near-field mechanisms in plasmonic photocatalysis. By controlling the thickness and conductive nature of a nanoparticle shell that acts as a spacer layer separating the plasmonic metal core from the TiO2 surface, field enhancement or charge transfer effects can be selectively repressed or evoked. Layer-by-layer and in situ polymerization methods are used to synthesize gold core–polymer shell nanoparticles with shell thickness control up to the sub-nanometer level. Detailed optical and electrical characterization supported by near-field simulation models corroborate the trends in photocatalytic activity of the different systems. This approach mainly points at an important contribution of the enhanced near field.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000477917700006 Publication Date 2019-05-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 32 Open Access OpenAccess
  Notes This work was supported by Research Foundation Flanders (FWO). P.C. and R-G.C. acknowledge financial support from FWO (Project No. G038215N). N.C. and S.B. acknowledge financial support from the European Research Council (ERC Starting Grant No. 335078-COLOURATOM). Approved Most recent IF: NA
  Call Number EMAT @ emat @UA @ admin @ c:irua:160579 Serial 5184
Permanent link to this record
 

 
Author Borah, R.; Smets, J.; Ninakanti, R.; Tietze, M.L.; Ameloot, R.; Chigrin, D.N.; Bals, S.; Lenaerts, S.; Verbruggen, S.W.
  Title Self-assembled ligand-capped plasmonic Au nanoparticle films in the Kretschmann configuration for sensing of volatile organic compounds Type A1 Journal article
  Year 2022 Publication ACS applied nano materials Abbreviated Journal
  Volume 5 Issue 8 Pages acsanm.2c02524-12
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Films of close-packed Au nanoparticles are coupled electrodynamically through their collective plasmon resonances. This collective optical response results in enhanced light–matter interactions, which can be exploited in various applications. Here, we demonstrate their application in sensing volatile organic compounds, using methanol as a test case. Ordered films over several cm2 were obtained by interfacial self-assembly of colloidal Au nanoparticles (∼10 nm diameter) through controlled evaporation of the solvent. Even though isolated nanoparticles of this size are inherently nonscattering, when arranged in a close-packed film the plasmonic coupling results in a strong reflectance and absorbance. The in situ tracking of vapor phase methanol concentration through UV–vis transmission measurements of the nanoparticle film is first demonstrated. Next, in situ ellipsometry of the self-assembled films in the Kretschmann (also known as ATR) configuration is shown to yield enhanced sensitivity, especially with phase difference measurements, Δ. Our study shows the excellent agreement between theoretical models of the spectral response of self-assembled films with experimental in situ sensing experiments. At the same time, the theoretical framework provides the basis for the interpretation of the various observed experimental trends. Combining periodic nanoparticle films with ellipsometry in the Kretschmann configuration is a promising strategy toward highly sensitive and selective plasmonic thin-film devices based on colloidal fabrication methods for volatile organic compound (VOC) sensing applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000834348300001 Publication Date 2022-07-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.9 Times cited 11 Open Access OpenAccess
  Notes R.B. acknowledges financial support from the University of Antwerp Special Research Fund (BOF) for a DOCPRO4 doctoral scholarship. J.S. acknowledges financial support from the Research Foundation Flanders (FWO) by a Ph.D. fellowship (11H8121N) . M.L.T. acknowledges financial support from the Research Foundation Flanders (FWO) by a senior postdoctoral fellowship (12ZK720N) . Approved Most recent IF: 5.9
  Call Number UA @ admin @ c:irua:189295 Serial 7095
Permanent link to this record
 

 
Author Joy, R.M.; Pobedinskas, P.; Bourgeois, E.; Chakraborty, T.; Goerlitz, J.; Herrmann, D.; Noel, C.; Heupel, J.; Jannis, D.; Gauquelin, N.; D'Haen, J.; Verbeeck, J.; Popov, C.; Houssiau, L.; Becher, C.; Nesladek, M.; Haenen, K.
  Title Photoluminescence of germanium-vacancy centers in nanocrystalline diamond films : implications for quantum sensing applications Type A1 Journal article
  Year 2024 Publication ACS applied nano materials Abbreviated Journal
  Volume 7 Issue 4 Pages 3873-3884
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Point defects in diamond, promising candidates for nanoscale pressure- and temperature-sensing applications, are potentially scalable in polycrystalline diamond fabricated using the microwave plasma-enhanced chemical vapor deposition (MW PE CVD) technique. However, this approach introduces residual stress in the diamond films, leading to variations in the characteristic zero phonon line (ZPL) of the point defect in diamond. Here, we report the effect of residual stress on germanium-vacancy (GeV) centers in MW PE CVD nanocrystalline diamond (NCD) films fabricated using single crystal Ge as the substrate and solid dopant source. GeV ensemble formation indicated by the zero phonon line (ZPL) at similar to 602 nm is confirmed by room temperature (RT) photoluminescence (PL) measurements. PL mapping results show spatial nonuniformity in GeV formation along with other defects, including silicon-vacancy centers in the diamond films. The residual stress in NCD results in shifts in the PL peak positions. By estimating a stress shift coefficient of (2.9 +/- 0.9) nm/GPa, the GeV PL peak position in the NCD film is determined to be between 598.7 and 603.2 nm. A larger ground state splitting due to the strain on a GeV-incorporated NCD pillar at a low temperature (10 K) is also reported. We also report the observation of intense ZPLs at RT that in some cases could be related to low Ge concentration and the surrounding crystalline environment. In addition, we also observe thicker microcrystalline diamond (MCD) films delaminate from the Ge substrate due to film residual stress and graphitic phase at the diamond/Ge substrate interface (confirmed by electron energy loss spectroscopy). Using this approach, a free-standing color center incorporated MCD film with dimensions up to 1 x 1 cm(2) is fabricated. Qualitative analysis using time-of-flight secondary ion mass spectroscopy reveals the presence of impurities, including Ge and silicon, in the MCD film. Our experimental results will provide insights into the scalability of GeV fabrication using the MW PE CVD technique and effectively implement NCD-based nanoscale-sensing applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001164609600001 Publication Date 2024-02-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 2574-0970 ISBN Additional Links UA library record; WoS full record
  Impact Factor 5.9 Times cited Open Access
  Notes Approved Most recent IF: 5.9; 2024 IF: NA
  Call Number UA @ admin @ c:irua:204826 Serial 9164
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: