|   | 
Details
   web
Records
Author Van der Paal, J.; Aernouts, S.; van Duin, A.C.T.; Neyts, E.C.; Bogaerts, A.
Title Interaction of O and OH radicals with a simple model system for lipids in the skin barrier : a reactive molecular dynamics investigation for plasma medicine Type A1 Journal article
Year 2013 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 46 Issue 39 Pages 395201
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma medicine has been claimed to provide a novel route to heal wounds and regenerate skin, although very little is currently known about the elementary processes taking place. We carried out a series of ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of O and OH radicals with lipids, more specifically with α-linolenic acid as a model for the free fatty acids present in the upper skin layer. Our calculations predict that the O and OH radicals most typically abstract a H atom from the fatty acids, which can lead to the formation of a conjugated double bond, but also to the incorporation of alcohol or aldehyde groups, thereby increasing the hydrophilic character of the fatty acids and changing the general lipid composition of the skin. Within the limitations of the investigated model, no formation of possibly toxic products was observed.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000324810400007 Publication Date 2013-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 36 Open Access
Notes Approved Most recent IF: 2.588; 2013 IF: 2.521
Call Number UA @ lucian @ c:irua:109904 Serial 1684
Permanent link to this record
 

 
Author Mao, M.; Bogaerts, A.
Title Investigating the plasma chemistry for the synthesis of carbon nanotubes/nanofibres in an inductively coupled plasma enhanced CVD system : the effect of different gas mixtures Type A1 Journal article
Year 2010 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 43 Issue 20 Pages 205201,1-205201,20
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A hybrid model, called the hybrid plasma equipment model (HPEM), was used to study an inductively coupled plasma in gas mixtures of H2 or NH3 with CH4 or C2H2 used for the synthesis of carbon nanotubes or carbon nanofibres (CNTs/CNFs). The plasma properties are discussed for different gas mixtures at low and moderate pressures, and the growth precursors for CNTs/CNFs are analysed. It is found that C2H2, C2H4 and C2H6 are the predominant molecules in CH4 containing plasmas besides the feedstock gas, and serve as carbon sources for CNT/CNF formation. On the other hand, long-chain hydrocarbons are observed in C2H2-containing plasmas. Furthermore, the background gases CH4 and C2H2 show a different decomposition rate with H2 or NH3 addition at moderate pressures.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000277373400009 Publication Date 2010-05-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 52 Open Access
Notes Approved Most recent IF: 2.588; 2010 IF: 2.109
Call Number UA @ lucian @ c:irua:82067 Serial 1723
Permanent link to this record
 

 
Author Mao, M.; Bogaerts, A.
Title Investigating the plasma chemistry for the synthesis of carbon nanotubes/nanofibres in an inductively coupled plasma-enhanced CVD system : the effect of processing parameters Type A1 Journal article
Year 2010 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 43 Issue 31 Pages 315203-315203,15
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A parameter study is carried out for an inductively coupled plasma used for the synthesis of carbon nanotubes or carbon nanofibres (CNTs/CNFs), by means of the Hybrid Plasma Equipment Model. The influence of processing parameters including gas ratio for four different gas mixtures typically used for CNT/CNF growth (i.e. CH4/H2, CH4/NH3, C2H2/H2 and C2H2/NH3), inductively coupled plasma (ICP) power (501000 W), operating pressure (10 mTorr1 Torr), bias power (01000 W) and temperature of the substrate (01000 °C) on the plasma chemistry is investigated and the optimized conditions for CNT/CNF growth are analysed. Summarized, our calculations suggest that a lower fraction of hydrocarbon gases (CH4 or C2H2, i.e. below 20%) and hence a higher fraction of etchant gases (H2 or NH3) in the gas mixture result in more 'clean' conditions for controlled CNT/CNF growth. The same applies to a higher ICP power, a moderate ICP gas pressure above 100 mTorr (at least for single-walled carbon nanotubes), a high bias power (for aligned CNTs) and an intermediate substrate temperature.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000280275200007 Publication Date 2010-07-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 17 Open Access
Notes Approved Most recent IF: 2.588; 2010 IF: 2.109
Call Number UA @ lucian @ c:irua:88365 Serial 1724
Permanent link to this record
 

 
Author Tinck, S.; Boullart, W.; Bogaerts, A.
Title Investigation of etching and deposition processes of Cl2/O2/Ar inductively coupled plasmas on silicon by means of plasmasurface simulations and experiments Type A1 Journal article
Year 2009 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 42 Issue Pages 095204,1-095204,13
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, a simulation method is described to predict the etching behaviour of Cl2/O2/Ar inductively coupled plasmas on a Si substrate, as used in shallow trench isolation for the production of electronic devices. The hybrid plasma equipment model (HPEM) developed by Kushner et al is applied to calculate the plasma characteristics in the reactor chamber and two additional Monte Carlo simulations are performed to predict the fluxes, angles and energy of the plasma species bombarding the Si substrate, as well as the resulting surface processes such as etching and deposition. The simulations are performed for a wide variety of operating conditions such as gas composition, chamber pressure, power deposition and substrate bias. It is predicted by the simulations that when the fraction of oxygen in the gas mixture is too high, the oxidation of the Si substrate is superior to the etching of Si by chlorine species, resulting in an etch rate close to zero as is also observed in the experiments.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000265531000030 Publication Date 2009-04-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 23 Open Access
Notes Approved Most recent IF: 2.588; 2009 IF: 2.083
Call Number UA @ lucian @ c:irua:75601 Serial 1731
Permanent link to this record
 

 
Author Van Gaens, W.; Bogaerts, A.
Title Kinetic modelling for an atmospheric pressure argon plasma jet in humid air Type A1 Journal article
Year 2013 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 46 Issue 27 Pages 275201-275253
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A zero-dimensional, semi-empirical model is used to describe the plasma chemistry in an argon plasma jet flowing into humid air, mimicking the experimental conditions of a setup from the Eindhoven University of Technology. The model provides species density profiles as a function of the position in the plasma jet device and effluent. A reaction chemistry set for an argon/humid air mixture is developed, which considers 84 different species and 1880 reactions. Additionally, we present a reduced chemistry set, useful for higher level computational models. Calculated species density profiles along the plasma jet are shown and the chemical pathways are explained in detail. It is demonstrated that chemically reactive H, N, O and OH radicals are formed in large quantities after the nozzle exit and H2, O2(1Δg), O3, H2O2, NO2, N2O, HNO2 and HNO3 are predominantly formed as 'long living' species. The simulations show that water clustering of positive ions is very important under these conditions. The influence of vibrational excitation on the calculated electron temperature is studied. Finally, the effect of varying gas temperature, flow speed, power density and air humidity on the chemistry is investigated.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000320854700009 Publication Date 2013-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 115 Open Access
Notes Approved Most recent IF: 2.588; 2013 IF: 2.521
Call Number UA @ lucian @ c:irua:108725 Serial 1758
Permanent link to this record
 

 
Author Zhang, Y.; Jiang, W.; Bogaerts, A.
Title Kinetic simulation of direct-current driven microdischarges in argon at atmospheric pressure Type A1 Journal article
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 43 Pages 435201
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A one-dimensional, implicit particle-in-cell Monte Carlo collision model is used to simulate the plasma kinetic properties at a steady state in a parallel-plate direct current argon glow microdischarge under various operating conditions, such as driving voltage (301000 V) and gap size (101000 µm) at atmospheric pressure. First, a comparison between rf and dc modes is shown for the same pressure, driving voltage and gap spacing. Furthermore, the effect of gap size scaling (in the range of 101000 µm) on the breakdown voltage, peak electron density and peak electron current density at the breakdown voltage is examined. The breakdown voltage is lower than 150 V in all gaps considered. The microdischarge is found to have a neutral bulk plasma region and a cathode sheath region with size varying with the applied voltage and the discharge gap. In our calculations, the electron and ion densities are of the order of 10181023 m−3, which is in the glow discharge limit, as the ionization degree is lower than 1% . The electron energy distribution function shows a two-energy group distribution at a gap of 10 µm and a three-energy group distribution at larger gaps such as 200 µm and 1000 µm, emphasizing the importance of the gap spacing in dc microdischarges.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000343150500011 Publication Date 2014-10-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 10 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:119152 Serial 1759
Permanent link to this record
 

 
Author Mao, M.; Benedikt, J.; Consoli, A.; Bogaerts, A.
Title New pathways for nanoparticle formation in acetylene dusty plasmas: a modelling investigation and comparison with experiments Type A1 Journal article
Year 2008 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 41 Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, the initial mechanisms of nanoparticle formation and growth in radiofrequency acetylene (C2H2) plasmas are investigated by means of a comprehensive self-consistent one-dimensional (1D) fluid model. This model is an extension of the 1D fluid model, developed earlier by De Bleecker et al. Based on the comparison of our previous results with available experimental data for acetylene plasmas in the literature, some new mechanisms for negative ion formation and growth are proposed. Possible routes are considered for the formation of larger (linear and branched) hydrocarbons C2nH2 (n = 3, 4, 5), which contribute to the generation of C2nH− anions (n = 3, 4, 5) due to dissociative electron attachment. Moreover, the vinylidene anion (H2CC−) and higher anions (n = 24) are found to be important plasma species.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000260738100024 Publication Date 2008-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 47 Open Access
Notes Approved Most recent IF: 2.588; 2008 IF: 2.104
Call Number UA @ lucian @ c:irua:71018 Serial 2330
Permanent link to this record
 

 
Author Gul, B.; Tinck, S.; De Schepper, P.; Aman-ur-Rehman; Bogaerts, A.
Title Numerical investigation of HBr/He transformer coupled plasmas used for silicon etching Type A1 Journal article
Year 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 48 Issue 48 Pages 025202
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A two-dimensional hybrid Monte Carlofluid model is applied to study HBr/He inductively coupled plasmas used for etching of Si. Complete sets of gas-phase and surface reactions are presented and the effects of the gas mixing ratio on the plasma characteristics and on the etch rates are discussed. A comparison with experimentally measured etch rates is made to validate the modelling results. The etch rate in the HBr plasma is found to be quite low under the investigated conditions compared to typical etch rates of Si with F- or Cl-containing gases. This allows for a higher control and fine-tuning of the etch rate when creating ultra-small features. Our calculations predict a higher electron temperature at higher He fraction, because the electrons do not lose their energy so efficiently in vibrational and rotational excitations. As a consequence, electron impact ionization and dissociation become more important, yielding higher densities of ions, electrons and H atoms. This results in more pronounced sputtering of the surface. Nevertheless, the overall etch rate decreases upon increasing He fraction, suggesting that chemical etching is still the determining factor for the overall etch rate.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000347980100011 Publication Date 2014-12-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 7 Open Access
Notes Approved Most recent IF: 2.588; 2015 IF: 2.721
Call Number c:irua:121335 Serial 2394
Permanent link to this record
 

 
Author Mao, M.; Wang, Y.N.; Bogaerts, A.
Title Numerical study of the plasma chemistry in inductively coupled SF6 and SF6/AR plasmas used for deep silicon etching applications Type A1 Journal article
Year 2011 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 44 Issue 43 Pages 435202,1-435202,15
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A hybrid model, called the hybrid plasma equipment model, was used to study inductively coupled SF6 plasmas used for Si etching applications. The plasma properties such as number densities of electrons, positive and negative ions, and neutrals are calculated under typical etching conditions. The electron kinetics is analysed by means of the electron energy probability function. The plasma chemistry taking place in pure SF6 and in an Ar/SF6 mixture is also discussed, and finally the effect of the argon fraction on the plasma properties is investigated.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000296591100004 Publication Date 2011-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 20 Open Access
Notes Approved Most recent IF: 2.588; 2011 IF: 2.544
Call Number UA @ lucian @ c:irua:91754 Serial 2409
Permanent link to this record
 

 
Author Eckert, M.; Neyts, E.; Bogaerts, A.
Title On the reaction behaviour of hydrocarbon species at diamond (1 0 0) and (1 1 1) surfaces: a molecular dynamics investigation Type A1 Journal article
Year 2008 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 41 Issue Pages 032006,1-3
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000253177800006 Publication Date 2008-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 17 Open Access
Notes Approved Most recent IF: 2.588; 2008 IF: 2.104
Call Number UA @ lucian @ c:irua:66107 Serial 2449
Permanent link to this record
 

 
Author Martens, T.; Brok, W.J.M.; van Dijk, J.; Bogaerts, A.
Title On the regime transitions during the formation of an atmospheric pressure dielectric barrier glow discharge Type A1 Journal article
Year 2009 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 42 Issue 12 Pages 122002,1-122002,5
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The atmospheric pressure dielectric barrier discharge in helium is a pulsed discharge in nature. If during the electrical current pulse a glow discharge is reached, then this pulse will last only a few microseconds in operating periods of sinusoidal voltage with lengths of about 10 to 100 µs. In this paper we demonstrate that right before a glow discharge is reached, the discharge very closely resembles the commonly assumed Townsend discharge structure, but actually contains some significant differing features and hence should not be considered as a Townsend discharge. In order to clarify this, we present calculation results of high time and space resolution of the pulse formation. The results indicate that indeed a maximum of ionization is formed at the anode, but that the level of ionization remains high and that the electric field at that time is significantly disturbed. Our results also show where this intermediate structure comes from.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000266639300002 Publication Date 2009-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 21 Open Access
Notes Approved Most recent IF: 2.588; 2009 IF: 2.083
Call Number UA @ lucian @ c:irua:76458 Serial 2450
Permanent link to this record
 

 
Author Bultinck, E.; Mahieu, S.; Depla, D.; Bogaerts, A.
Title The origin of Bohm diffusion, investigated by a comparison of different modelling methods Type A1 Journal article
Year 2010 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 43 Issue 29 Pages 292001,1-292001,5
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract 'Bohm diffusion' causes the electrons to diffuse perpendicularly to the magnetic field lines. However, its origin is not yet completely understood: low and high frequency electric field fluctuations are both named to cause Bohm diffusion. The importance of including this process in a Monte Carlo (MC) model is demonstrated by comparing calculated ionization rates with particle-in-cell/Monte Carlo collisions (PIC/MCC) simulations. A good agreement is found with a Bohm diffusion parameter of 0.05, which corresponds well to experiments. Since the PIC/MCC method accounts for fast electric field fluctuations, we conclude that Bohm diffusion is caused by fast electric field phenomena.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000279638700001 Publication Date 2010-07-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 16 Open Access
Notes Approved Most recent IF: 2.588; 2010 IF: 2.109
Call Number UA @ lucian @ c:irua:83109 Serial 2521
Permanent link to this record
 

 
Author van Dijk, J.; Kroesen, G.M.W.; Bogaerts, A.
Title Plasma modelling and numerical simulation Type Editorial
Year 2009 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 42 Issue 19 Pages 190301,1-190301,14
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma modelling is an exciting subject in which virtually all physical disciplines are represented. Plasma models combine the electromagnetic, statistical and fluid dynamical theories that have their roots in the 19th century with the modern insights concerning the structure of matter that were developed throughout the 20th century. The present cluster issue consists of 20 invited contributions, which are representative of the state of the art in plasma modelling and numerical simulation. These contributions provide an in-depth discussion of the major theories and modelling and simulation strategies, and their applications to contemporary plasma-based technologies. In this editorial review, we introduce and complement those papers by providing a bird's eye perspective on plasma modelling and discussing the historical context in which it has surfaced.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000269993100001 Publication Date 2009-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 64 Open Access
Notes Approved Most recent IF: 2.588; 2009 IF: 2.083
Call Number UA @ lucian @ c:irua:78166 Serial 2637
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Simon, P.; Berdiyorov, G.; Snoeckx, R.; van Duin, A.C.T.; Bogaerts, A.
Title Reactive molecular dynamics simulations of oxygen species in a liquid water layer of interest for plasma medicine Type A1 Journal article
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 2 Pages 025205-25209
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The application of atmospheric pressure plasmas in medicine is increasingly gaining attention in recent years, although very little is currently known about the plasma-induced processes occurring on the surface of living organisms. It is known that most bio-organisms, including bacteria, are coated by a liquid film surrounding them, and there might be many interactions between plasma species and the liquid layer before the plasma species reach the surface of the bio-organisms. Therefore, it is essential to study the behaviour of the reactive species in a liquid film, in order to determine whether these species can travel through this layer and reach the biomolecules, or whether new species are formed along the way. In this work, we investigate the interaction of reactive oxygen species (i.e. O, OH, HO2 and H2O2) with water, which is assumed as a simple model system for the liquid layer surrounding biomolecules. Our computational investigations show that OH, HO2 and H2O2 can travel deep into the liquid layer and are hence in principle able to reach the bio-organism. Furthermore, O, OH and HO2 radicals react with water molecules through hydrogen-abstraction reactions, whereas no H-abstraction reaction takes place in the case of H2O2. This study is important to gain insight into the fundamental operating mechanisms in plasma medicine, in general, and the interaction mechanisms of plasma species with a liquid film, in particular.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000329108000013 Publication Date 2013-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 51 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:112286 Serial 2823
Permanent link to this record
 

 
Author Tinck, S.; Boullart, W.; Bogaerts, A.
Title Simulation of an Ar/Cl2 inductively coupled plasma: study of the effect of bias, power and pressure and comparison with experiments Type A1 Journal article
Year 2008 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 41 Issue 6 Pages 065207,1-14
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A hybrid model, called the hybrid plasma equipment model, was used to study Ar/Cl(2) inductively coupled plasmas used for the etching of Si. The effects of substrate bias, source power and gas pressure on the plasma characteristics and on the fluxes and energies of plasma species bombarding the substrate were observed. A comparison with experimentally measured etch rates was made to investigate how the etch process is influenced and which plasma species mainly account for the etch process. First, the general plasma characteristics are investigated at the following operating conditions: 10% Ar 90% Cl(2) gas mixture, 5mTorr total gas pressure, 100 sccm gas flow rate, 250W source power, -200V dc bias at the substrate electrode and an operating frequency of 13.56MHz applied to the coil and to the substrate electrode. Subsequently, the pressure is varied from 5 to 80mTorr, the substrate bias from -100 to -300V and the source power from 250 to 1000W. Increasing the total gas pressure results in a decrease of the etch rate and a less anisotropic flux to the substrate due to more collisions of the ions in the sheath. Increasing the substrate bias has an effect on the energy of the ions bombarding the substrate and to a lesser extent on the magnitude of the ion flux. When source power is increased, it was found that, not the energy, but the magnitude of the ion flux is increased. The etch rate was more influenced by a variation of the substrate bias than by a variation of the source power, at these operating conditions. These results suggest that the etch process is mainly affected by the energy of the ions bombarding the substrate and the magnitude of the ion flux, and to a lesser extent by the magnitude of the radical flux.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000254153900022 Publication Date 2008-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 31 Open Access
Notes Approved Most recent IF: 2.588; 2008 IF: 2.104
Call Number UA @ lucian @ c:irua:67019 Serial 3010
Permanent link to this record
 

 
Author Zhang, S.; Van Gaens, W.; van Gessel, B.; Hofmann, S.; van Veldhuizen, E.; Bogaerts, A.; Bruggeman, P.
Title Spatially resolved ozone densities and gas temperatures in a time modulated RF driven atmospheric pressure plasma jet : an analysis of the production and destruction mechanisms Type A1 Journal article
Year 2013 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 46 Issue 20 Pages 205202-205212
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work, a time modulated RF driven DBD-like atmospheric pressure plasma jet in Ar + 2%O2, operating at a time averaged power of 6.5 W is investigated. Spatially resolved ozone densities and gas temperatures are obtained by UV absorption and Rayleigh scattering, respectively. Significant gas heating in the core of the plasma up to 700 K is found and at the position of this increased gas temperature a depletion of the ozone density is found. The production and destruction reactions of O3 in the jet effluent as a function of the distance from the nozzle are obtained from a zero-dimensional chemical kinetics model in plug flow mode which considers relevant air chemistry due to air entrainment in the jet fluent. A comparison of the measurements and the models show that the depletion of O3 in the core of the plasma is mainly caused by an enhanced destruction of O3 due to a large atomic oxygen density.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000318546100008 Publication Date 2013-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 74 Open Access
Notes Approved Most recent IF: 2.588; 2013 IF: 2.521
Call Number UA @ lucian @ c:irua:107840 Serial 3067
Permanent link to this record
 

 
Author Bogaerts, A.; Neyts, E.C.; Rousseau, A.
Title Special issue on fundamentals of plasmasurface interactions Type Editorial
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 22 Pages 220301
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Iop publishing ltd Place of Publication Bristol Editor
Language Wos 000336207900001 Publication Date 2014-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 2 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:116917 Serial 3068
Permanent link to this record
 

 
Author Georgieva, V.; Saraiva, M.; Jehanathan, N.; Lebelev, O.I.; Depla, D.; Bogaerts, A.
Title Sputter-deposited Mg-Al-O thin films: linking molecular dynamics simulations to experiments Type A1 Journal article
Year 2009 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 42 Issue 6 Pages 065107,1-065107,8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Using a molecular dynamics model the crystallinity of MgxAlyOz thin films with a variation in the stoichiometry of the thin film is studied at operating conditions similar to the experimental operating conditions of a dual magnetron sputter deposition system. The films are deposited on a crystalline or amorphous substrate. The Mg metal content in the film ranged from 100% (i.e. MgO film) to 0% (i.e. Al2O3 film). The radial distribution function and density of the films are calculated. The results are compared with x-ray diffraction and transmission electron microscopy analyses of experimentally deposited thin films by the dual magnetron reactive sputtering process. Both simulation and experimental results show that the structure of the MgAlO film varies from crystalline to amorphous when the Mg concentration decreases. It seems that the crystalline MgAlO films have a MgO structure with Al atoms in between.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000263824200024 Publication Date 2009-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 37 Open Access
Notes Iwt Approved Most recent IF: 2.588; 2009 IF: 2.083
Call Number UA @ lucian @ c:irua:73246 Serial 3110
Permanent link to this record
 

 
Author Van der Paal, J.; Verlackt, C.C.; Yusupov, M.; Neyts, E.C.; Bogaerts, A.
Title Structural modification of the skin barrier by OH radicals : a reactive molecular dynamics study for plasma medicine Type A1 Journal article
Year 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 48 Issue 48 Pages 155202
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract While plasma treatment of skin diseases and wound healing has been proven highly effective, the underlying mechanisms, and more generally the effect of plasma radicals on skin tissue, are not yet completely understood. In this paper, we perform ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of plasma generated OH radicals with a model system composed of free fatty acids, ceramides, and cholesterol molecules. This model system is an approximation of the upper layer of the skin (stratum corneum). All interaction mechanisms observed in our simulations are initiated by H-abstraction from one of the ceramides. This reaction, in turn, often starts a cascade of other reactions, which eventually lead to the formation of aldehydes, the dissociation of ceramides or the elimination of formaldehyde, and thus eventually to the degradation of the skin barrier function.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000351856600007 Publication Date 2015-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 20 Open Access
Notes Approved Most recent IF: 2.588; 2015 IF: 2.721
Call Number c:irua:124230 Serial 3242
Permanent link to this record
 

 
Author Setareh, M.; Farnia, M.; Maghari, A.; Bogaerts, A.
Title CF4 decomposition in a low-pressure ICP : influence of applied power and O2 content Type A1 Journal article
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 35 Pages 355205
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper focuses on the investigation of CF4 decomposition in a low-pressure inductively coupled plasma by means of a global model. The influence of O2 on the CF4 decomposition process is studied for conditions used in semiconductor manufacturing processes. The model is applied for different powers and O2 contents ranging between 2% and 98% in the CF4/O2 gas mixture. The model includes the reaction mechanisms in the gas phase coupled with the surface reactions and sticking probabilities of the species at the walls. The calculation results are first compared with experimental results from the literature (for the electron density, temperature and F atom density) at a specific power, in the entire range of CF4/O2 gas mixture ratios, and the obtained agreements indicate the validity of the model. The main products of the gas mixture, obtained from this model, include CO, CO2 and COF2 together with a low fraction of F2. The most effective reactions for the formation and loss of the various species in this process are also determined in detail. Decomposition of CF4 produces mostly CF3 and F radicals. These radicals also contribute to the backward reactions, forming again CF4. This study reveals that the maximum decomposition efficiency of CF4 is achieved at a CF4/O2 ratio equal to 1, at the applied power of 300 W.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000341353800017 Publication Date 2014-08-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 8 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:118327 Serial 3521
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A.
Title Understanding plasma catalysis through modelling and simulation : a review Type A1 Journal article
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 22 Pages 224010
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis holds great promise for environmental applications, provided that the process viability can be maximized in terms of energy efficiency and product selectivity. This requires a fundamental understanding of the various processes taking place and especially the mutual interactions between plasma and catalyst. In this review, we therefore first examine the various effects of the plasma on the catalyst and of the catalyst on the plasma that have been described in the literature. Most of these studies are purely experimental. The urgently needed fundamental understanding of the mechanisms underpinning plasma catalysis, however, may also be obtained through modelling and simulation. Therefore, we also provide here an overview of the modelling efforts that have been developed already, on both the atomistic and the macroscale, and we identify the data that can be obtained with these models to illustrate how modelling and simulation may contribute to this field. Last but not least, we also identify future modelling opportunities to obtain a more complete understanding of the various underlying plasma catalytic effects, which is needed to provide a comprehensive picture of plasma catalysis.
Address
Corporate Author Thesis
Publisher Iop publishing ltd Place of Publication Bristol Editor
Language Wos 000336207900011 Publication Date 2014-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 130 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:116920 Serial 3803
Permanent link to this record
 

 
Author Dufour, T.; Minnebo, J.; Abou Rich, S.; Neyts, E.C.; Bogaerts, A.; Reniers, F.
Title Understanding polyethylene surface functionalization by an atmospheric He/O2 plasma through combined experiments and simulations Type A1 Journal article
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 22 Pages 224007
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract High density polyethylene surfaces were exposed to the atmospheric post-discharge of a radiofrequency plasma torch supplied in helium and oxygen. Dynamic water contact angle measurements were performed to evaluate changes in surface hydrophilicity and angle resolved x-ray photoelectron spectroscopy was carried out to identify the functional groups responsible for wettability changes and to study their subsurface depth profiles, up to 9 nm in depth. The reactions leading to the formation of CO, C = O and OC = O groups were simulated by molecular dynamics. These simulations demonstrate that impinging oxygen atoms do not react immediately upon impact but rather remain at or close to the surface before eventually reacting. The simulations also explain the release of gaseous species in the ambient environment as well as the ejection of low molecular weight oxidized materials from the surface.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000336207900008 Publication Date 2014-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 13 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:116919 Serial 3804
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.; Grozeva, M.; Sabotinov, N.
Title Investigation of laser output power saturation in the He-Cu+ IR hollow cathode discharge laser by experiments and numerical modeling Type A1 Journal article
Year 2003 Publication Physica scripta Abbreviated Journal Phys Scripta
Volume T105 Issue Pages 90-97
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Stockholm Editor
Language Wos 000184344900014 Publication Date 2003-07-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0031-8949; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.28 Times cited Open Access
Notes Approved Most recent IF: 1.28; 2003 IF: 0.688
Call Number UA @ lucian @ c:irua:44019 Serial 1733
Permanent link to this record
 

 
Author Neyts, E.C.; Ostrikov, K.; Han, Z.J.; Kumar, S.; van Duin, A.C.T.; Bogaerts, A.
Title Defect healing and enhanced nucleation of carbon nanotubes by low-energy ion bombardment Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 110 Issue 6 Pages 065501-65505
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Structural defects inevitably appear during the nucleation event that determines the structure and properties of single-walled carbon nanotubes. By combining ion bombardment experiments with atomistic simulations we reveal that ion bombardment in a suitable energy range allows these defects to be healed resulting in an enhanced nucleation of the carbon nanotube cap. The enhanced growth of the nanotube cap is explained by a nonthermal ion-induced graphene network restructuring mechanism.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000314687300022 Publication Date 2013-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 50 Open Access
Notes Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:105306 Serial 616
Permanent link to this record
 

 
Author de Keyser, A.; Bogaerts, R.; Karavolas, V.C.; van Bockstal, L.; Herlach, F.; Peeters, F.M.; van de Graaf, W.; Borghs, G.
Title Interplay of 2D and 3D charge carriers in Si-δ-doped InSb layers grown epitaxially on GaAs Type A1 Journal article
Year 1996 Publication Solid state electronics Abbreviated Journal Solid State Electron
Volume 40 Issue Pages 395-398
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos A1996UN20700083 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0038-1101; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.504 Times cited 2 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:15817 Serial 1705
Permanent link to this record
 

 
Author Bogaerts, R.; de Keyser, A.; Herlach, F.; Peeters, F.M.; DeRosa, F.; Palmstrøm, C.J.; Brehmer, D.; Allen, S.J.
Title Size effects in the transport properties of thin Sc1-xErxAs epitaxial layers buried in GaAs Type A1 Journal article
Year 1994 Publication Solid state electronics Abbreviated Journal Solid State Electron
Volume 37 Issue Pages 789-792
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos A1994NE79600063 Publication Date 2002-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0038-1101; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.504 Times cited 4 Open Access
Notes Approved CHEMISTRY, PHYSICAL 77/144 Q3 # MATHEMATICS, INTERDISCIPLINARY 19/101 Q1 # PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 17/35 Q2 #
Call Number UA @ lucian @ c:irua:9375 Serial 3037
Permanent link to this record
 

 
Author Janssens, K.; Bogaerts, A.; van Grieken, R.
Title Colloquium Spectroscopicum Internationale 34, Antwerp, Belgium, 4-9 September 2005: preface Type Editorial
Year 2006 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal Talanta
Volume 70 Issue 5 Pages 907-908
Keywords Editorial; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Pergamon Place of Publication Oxford Editor
Language Wos 000242871900001 Publication Date 2006-11-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0039-9140; ISBN Additional Links UA library record; WoS full record
Impact Factor 4.162 Times cited Open Access
Notes Approved Most recent IF: 4.162; 2006 IF: 2.810
Call Number UA @ lucian @ c:irua:61094 Serial 392
Permanent link to this record
 

 
Author Jehanathan, N.; Georgieva, V.; Saraiva, M.; Depla, D.; Bogaerts, A.; Van Tendeloo, G.
Title The influence of Cr and Y on the micro structural evolution of Mg―Cr―O and Mg―Y―O thin films Type A1 Journal article
Year 2011 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
Volume 519 Issue 16 Pages 5388-5396
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Electron microscopy for materials research (EMAT)
Abstract The compositional influence of Cr and Y on the microstructure of Mg―Cr―O, and Mg―Y―O films synthesized by reactive magnetron sputtering has been investigated by transmission electron microscopy, X-ray diffraction and molecular dynamics simulations. A decrease in crystallinity is observed in these films as the M (Cr or Y) content is increased. It is found that M forms a solid solution with MgO for metal ratios up to ~ 70% and ~ 50% for Cr and Y respectively. Above ~ 70% Cr metal ratio the Mg―Cr―O films are found to be completely amorphous. The Mg―Y―O films are composed of Mg(Y)O and Y2O3 nano crystallites, up to ~ 50% Y metal ratio. Above this ratio, only Y2O3 nano crystallites are found. The preferential < 111> MgO grain alignment is strongly affected by the increase in M content. For M metal ratios up to ~ 50%, there is a selective promotion of the < 100> MgO grain alignments and a decline in the < 111> grain alignments.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000292573500013 Publication Date 2011-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.879 Times cited 4 Open Access
Notes Iwt Approved Most recent IF: 1.879; 2011 IF: 1.890
Call Number UA @ lucian @ c:irua:89516 Serial 1618
Permanent link to this record
 

 
Author Samani, M.K.; Ding, X.Z.; Khosravian, N.; Amin-Ahmadi, B.; Yi, Y.; Chen, G.; Neyts, E.C.; Bogaerts, A.; Tay, B.K.
Title Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc Type A1 Journal article
Year 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
Volume 578 Issue 578 Pages 133-138
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A seriesof [TiN/TiAlN]nmultilayer coatingswith different bilayer numbers n=5, 10, 25, 50, and 100 were deposited on stainless steel substrate AISI 304 by a lateral rotating cathode arc technique in a flowing nitrogen atmosphere. The composition and microstructure of the coatings have been analyzed by using energy dispersive X-ray spectroscopy, X-ray diffraction (XRD), and conventional and high-resolution transmission electron microscopy (HRTEM). XRD analysis shows that the preferential orientation growth along the (111) direction is reduced in the multilayer coatings. TEM analysis reveals that the grain size of the coatings decreases with increasing bilayer number. HRTEMimaging of the multilayer coatings shows a high density misfit dislocation between the TiN and TiAlN layers. The cross-plane thermal conductivity of the coatings was measured by a pulsed photothermal reflectance technique. With increasing bilayer number, the multilayer coatings' thermal conductivity decreases gradually. This reduction of thermal conductivity can be ascribed to increased phonon scattering due to the disruption of columnar structure, reduced preferential orientation, decreased grain size of the coatings and present misfit dislocations at the interfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000351686500019 Publication Date 2015-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.879 Times cited 41 Open Access
Notes Approved Most recent IF: 1.879; 2015 IF: 1.759
Call Number c:irua:125517 Serial 3626
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Numerical modelling of gas discharge plasmas for various applications Type A1 Journal article
Year 2003 Publication Vacuum: surface engineering, surface instrumentation & vacuum technology Abbreviated Journal Vacuum
Volume 69 Issue Pages 37-52
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Gas discharge plasmas are used for a wide range of applications. To improve our understanding about gas discharges, which is necessary to obtain good results in the various application fields, we perform numerical modelling of gas discharge plasmas. Various kinds of modelling approaches, for various types of gas discharges, are being used in our group. In this paper, some examples of this modelling work are outlined. (C) 2002 Elsevier Science Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000180739000006 Publication Date 2002-12-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0042-207X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.53 Times cited 16 Open Access
Notes Approved Most recent IF: 1.53; 2003 IF: 0.612
Call Number UA @ lucian @ c:irua:40194 Serial 2401
Permanent link to this record