|   | 
Details
   web
Records
Author Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M.
Title Stabilized vortex-antivortex molecules in a superconducting microdisk with a magnetic nanodot on top Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 75 Issue 5 Pages 052502,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000244532600020 Publication Date 2007-03-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 15 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:63790 Serial 3141
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.
Title Superconducting films with weak pinning centers: incommenssurate vortex lattices Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 76 Issue 13 Pages 134508,1-134508,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000250619800087 Publication Date 2007-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 19 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:67348 Serial 3353
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Baelus, B.J.; Peeters, F.M.
Title Superconducting vortex state in a mesoscopic disk containing a blind hole Type A1 Journal article
Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 70 Issue Pages 024508,1-15
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000222996600068 Publication Date 2004-07-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 39 Open Access
Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
Call Number UA @ lucian @ c:irua:57250 Serial 3369
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Savel'ev, S.E.; Milošević, M.V.; Kusmartsev, F.V.; Peeters, F.M.
Title Synchronized dynamics of Josephson vortices in artificial stacks of SNS Josephson junctions under both dc and ac bias currents Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 18 Pages 184510-184519
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Nonlinear dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting Josephson junctions under simultaneously applied time-periodic ac and constant biasing dc currents is studied using the time dependent Ginzburg-Landau formalism with a Lawrence-Doniach extension. At zero external magnetic field and dc biasing current the resistive state of the system is characterized by periodic nucleation and annihilation of fluxon-antifluxon pairs, relative positions of which are determined by the state of neighboring junctions. Due to the mutual repulsive interaction, fluxons in different junctions move out of phase. Their collective motion can be synchronized by adding a small ac component to the biasing dc current. Coherent motion of fluxons is observed for a broad frequency range of the applied drive. In the coherent state the maximal output voltage, which is proportional to the number of junctions in the stack, is observed near the characteristic frequency of the system determined by the crossing of the fluxons across the sample. However, in this frequency range the dynamically synchronized state has an alternative-a less ordered state with smaller amplitude of the output voltage. Collective behavior of the junctions is strongly affected by the sloped sidewalls of the stack. Synchronization is observed only for weakly trapezoidal cross sections, whereas irregular motion of fluxons is observed for larger slopes of the sample edge.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000319653400007 Publication Date 2013-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and by EU Marie Curie (Project No. 253057). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109643 Serial 3406
Permanent link to this record
 

 
Author Karapetrov, G.; Milošević, M.V.; Iavarone, M.; Fedor, J.; Belkin, A.; Novosad, V.; Peeters, F.M.
Title Transverse instabilities of multiple vortex chains in magnetically coupled NbSe2/permalloy superconductor/ferromagnet bilayers Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue 18 Pages 180506,1-180506,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using scanning tunneling microscopy and Ginzburg-Landau simulations, we explore vortex configurations in magnetically coupled NbSe2/permalloy superconductor/ferromagnet bilayer. The permalloy film with stripe domain structure induces periodic local magnetic induction in the superconductor, creating a series of pinning-antipinning channels for externally added magnetic flux quanta. Such laterally confined Abrikosov vortices form quasi-one-dimensional arrays (chains). The transitions between multichain states occur through propagation of kinks at the intermediate fields. At high fields we show that the system becomes nonlinear due to a change in both the number of vortices and the confining potential. The longitudinal instabilities of the resulting vortex structures lead to vortices levitating in the antipinning channels.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000272310900031 Publication Date 2009-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 38 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:80314 Serial 3729
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.
Title Tunable kinematics of phase-slip lines in a superconducting stripe with magnetic dots Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue 21 Pages 214509,1-214509,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using numerical simulations, we study the dynamic properties of a superconducting stripe with a perpendicular magnetized ferromagnet on top in the presence of an applied dc current. In the resistive state conventional phase-slip lines are transformed into kinematic vortex-antivortex pairs with special dynamic behavior. In addition, the location of phase slippage in the sample is predetermined by the position of the magnetic dot. Both these effects directly influence the dynamics of the superconducting condensate and lead to periodic oscillations of the voltage across the sample with a frequency tunable both by the applied current and by the magnetization of the magnet. We found that the frequency of the voltage oscillations increases with increasing number of magnetic dots.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000273228200084 Publication Date 2009-12-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 33 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:80575 Serial 3743
Permanent link to this record
 

 
Author Vagov, A.; Shanenko, A.A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M.
Title Two-band superconductors : extended Ginzburg-Landau formalism by a systematic expansion in small deviation from the critical temperature Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 14 Pages 144514
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We derive the extended Ginzburg-Landau (GL) formalism for a clean s-wave two-band superconductor by employing a systematic expansion of the free-energy functional and the corresponding matrix gap equation in powers of the small deviation from the critical temperature tau = 1 – T/T-c. The two lowest orders of this expansion produce the equation for T-c and the standard GL theory. It is shown that in agreement with previous studies, this two-band GL theory maps onto the single-band GL model and thus fails to describe the difference in the spatial profiles of the two-band condensates. We prove that this difference appears already in the leading correction to the standard GL theory, which constitutes the extended GL formalism. We derive linear differential equations that determine the leading corrections to the band order parameters and magnetic field, discuss the validity of these equations, and consider examples of an important interplay between the band condensates. Finally, we present numerical results for the thermodynamic critical magnetic field and temperature-dependent band gaps for recent materials of interest, which are in very good agreement with those obtained from the full BCS approach in a wide temperature range. To this end, we emphasize the advantages of our extended GL theory in comparison with the often used two-component GL-like model based on an unreconstructed two-band generalization of the Gor'kov derivation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000309776800001 Publication Date 2012-10-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 44 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Authors are indebted to Y. Singh and R. Prozorov for discussions and for providing recent experimental data. A. V. is grateful to W. Pesch for stimulating discussions and critical comments on this work. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:101798 Serial 3769
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.
Title Vortex configurations and critical parameters in superconducting thin films containing antidot arrays: nonlinear Ginzburg-Landau theory Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 74 Issue 17 Pages Artn 174512
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000242409000118 Publication Date 2006-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 97 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:61927 Serial 3862
Permanent link to this record
 

 
Author Geurts, R.; Milošević, M.V.; Peeters, F.M.
Title Vortex matter in mesoscopic two-gap superconducting disks: influence of Josephson and magnetic coupling Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue 21 Pages 15
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000278846600001 Publication Date 2010-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 89 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen), the Belgian Science Policy (IAP), the ESF “Nanoscience and Engineering in Superconductivity” (NES) program, and the ESF “Arrays of Quantum Dots and Josephson Junctions” network. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:83933 Serial 3872
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M.
Title Vortex pinning in a superconducting film due to in-plane magnetized ferromagnets of different shapes: th London approximation Type A1 Journal article
Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 69 Issue Pages 104522,1-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000220813500094 Publication Date 2004-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 36 Open Access
Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
Call Number UA @ lucian @ c:irua:44986 Serial 3880
Permanent link to this record
 

 
Author Liu, C.-Y.; Berdiyorov, G.R.; Milošević, M.V.
Title Vortex states in layered mesoscopic superconductors Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 10 Pages 104524-104524,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Within the Ginzburg-Landau theory, we study the vortex structures in three-dimensional anisotropic mesoscopic superconductors in the presence of a uniform magnetic field. Anisotropy is included through varied Tc in different layers of the sample and leads to distinct differences in the vortex states and their free energy. Several unconventional states are found, some comprising vortex clusters or exhibiting asymmetry. In a tilted magnetic field, we found second-order transitions between different vortex states, although vortex entry is generally a first-order transition in mesoscopic samples. In multilayered samples the kinked vortex strings are formed owing to the competing interactions of vortices with Meissner currents and the weak-link boundaries. The length and deformation of vortex fragments are determined solely by the inclination and strength of applied magnetic field, and this lock-in does not depend on the degree of anisotropy between the superconducting layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000288998200003 Publication Date 2011-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 22 Open Access
Notes ; ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:89375 Serial 3888
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M.
Title Vortex states in nanoscale superconducting squares : the influence of quantum confinement Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 14 Pages 144501
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Bogoliubov-de Gennes theory is used to investigate the effect of the size of a superconducting square on the vortex states in the quantum confinement regime. When the superconducting coherence length is comparable to the Fermi wavelength, the shape resonances of the superconducting order parameter have strong influence on the vortex configuration. Several unconventional vortex states, including asymmetric ones, giant-multivortex combinations, and states comprising giant antivortices, were found as ground states and their stability was found to be very sensitive on the value of k(F)xi(0), the size of the sample W, and the magnetic flux Phi. By increasing the temperature and/or enlarging the size of the sample, quantum confinement is suppressed and the conventional mesoscopic vortex states as predicted by the Ginzburg-Laudau (GL) theory are recovered. However, contrary to the GL results we found that the states containing symmetry-induced vortex-antivortex pairs are stable over the whole temperature range. It turns out that the inhomogeneous order parameter induced by quantum confinement favors vortex-antivortex molecules, as well as giant vortices with a rich structure in the vortex core-unattainable in the GL domain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000325498300004 Publication Date 2013-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 19 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and Methusalem Funding of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:111145 Serial 3891
Permanent link to this record
 

 
Author Chaves, A.; Peeters, F.M.; Farias, G.A.; Milošević, M.V.
Title Vortex-vortex interaction in bulk superconductors : Ginzburg-Landau theory Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 5 Pages 054516-054516,14
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The vortex-vortex interaction potential in bulk superconductors is calculated within the Ginzburg-Landau (GL) theory and is obtained from a numerical solution of a set of two coupled nonlinear GL differential equations for the vector potential and the superconducting order parameter, where the merger of vortices into a giant vortex is allowed. Further, the interaction potentials between a vortex and a giant vortex and between a vortex and an antivortex are obtained for both type-I and type-II superconductors. Our numerical results agree asymptotically with the analytical expressions for large intervortex separations that are available in the literature. We propose empirical expressions valid over the full interaction range, which are fitted to our numerical data for different values of the GL parameter.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000287712100009 Publication Date 2011-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 31 Open Access
Notes ; Discussions with J. S. Andrade Jr. and A. A. Moreira are gratefully acknowledged. This work was financially supported by CNPq, under Contract No. NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES, the Bilateral programme between Flanders and Brazil, the collaborative project CNPq-FWO-Vl, the Belgian Science Policy (IAP), and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:88805 Serial 3899
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.
Title Vortices induced in a superconducting loop by asymmetric kinetic inductance and their detection in transport measurements Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue 14 Pages 144511,1-144511,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using time-dependent Ginzburg-Landau theory, we study the dynamic properties of a rectangular superconducting loop, which are found to depend on the position of the current leads. For asymmetric positioning of the leads, different kinetic inductance of the two paths for injected electric current leads to different critical conditions in the two branches. System self-regulates by allowing vortex entry, as vortex currents bring equilibration between the two current flows and the conventional resistive state can be realized. We also demonstrate that individual vortex entry in the loop can be detected by measuring the voltage between normal-metal leads, for applied currents comparable in magnitude to the screening currents.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000277210200107 Publication Date 2010-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the ESF-NES program, and the ESF-AQDJJ network. G.R.B. acknowledges support from FWO-Vlaanderen. The authors thank S. Michotte for useful discussions. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:82804 Serial 3901
Permanent link to this record
 

 
Author Cabral, L.R.E.; de Aquino, B.R.C.H.T.; de Souza Silva, C.C.; Milošević, M.V.; Peeters, F.M.
Title Two-shell vortex and antivortex dynamics in a Corbino superconducting disk Type A1 Journal article
Year 2016 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 93 Issue 93 Pages 014515
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We examine theoretically the dynamics of two vortex shells in pinning-free superconducting thin disks in the Corbino geometry. In the first considered case, the inner shell is composed of vortices and the outer one of antivortices, corresponding to a state induced by the stray field of an off-plane magnetic dipole placed on top of the superconductor. In the second considered case, both shells comprise vortices induced by a homogeneous external field. We derive the equation of motion for each shell within the Bardeen-Stephen model and study the dynamics analytically by assuming both shells are rigid and commensurate. In both cases, two distinct regimes for vortex shell motion are identified: For low applied currents the entire configuration rotates rigidly, while above a threshold current the shells decouple from each other and rotate at different angular velocities. Analytical expressions for the decoupling current, the recombination time in the decoupled phases, as well as the voltage-current characteristics are presented. Our analytical results are in excellent agreement with numerical molecular dynamics simulations of the full many-vortex problem.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000368481600003 Publication Date 2016-01-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; This work was supported by the Brazilian Science Agencies CAPES, CNPq, and FACEPE under Grants No. APQ-1381-1.05/12, No. APQ 2017-1.05/12, and No. APQ-0598/1.05-08 and by EU-COST Action No. MP1201 and the Research Foundation-Flanders (FWO). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:131541 Serial 4270
Permanent link to this record
 

 
Author Gillis, S.; Jaykka, J.; Milošević, M.V.
Title Vortex states in mesoscopic three-band superconductors Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 89 Issue 2 Pages 024512
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using multicomponent Ginzburg-Landau simulations, we show a plethora of vortex states possible in mesoscopic three-band superconductors. We find that mesoscopic confinement stabilizes chiral states, with nontrivial phase differences between the band condensates, as the ground state of the system. As a consequence, we report the broken-symmetry vortex states, the chiral states where vortex cores in different band condensates do not coincide (split-core vortices), as well as fractional-flux vortex states with broken time-reversal symmetry.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000333653800001 Publication Date 2014-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 26 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO). Critical remarks of Lucia Komendova are gratefully acknowledged. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:128885 Serial 4611
Permanent link to this record
 

 
Author Adami, O.-A.; Jelić, Ž.L.; Xue, C.; Abdel-Hafiez, M.; Hackens, B.; Moshchalkov, V.V.; Milošević, M.V.; Van de Vondel, J.; Silhanek, A.V.
Title Onset, evolution, and magnetic braking of vortex lattice instabilities in nanostructured superconducting films Type A1 Journal article
Year 2015 Publication Physical review: B: condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages 134506
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In 1976, Larkin and Ovchinnikov [Zh. Eksp. Teor. Fiz. 68, 1915 (1975) [Sov. Phys.–JETP 41, 960 (1976)]] predicted that vortex matter in superconductors driven by an electrical current can undergo an abrupt dynamic transition from a flux-flow regime to a more dissipative state at sufficiently high vortex velocities. Typically, this transition manifests itself as a large voltage jump at a particular current density, so-called instability current density J∗, which is smaller than the depairing current. By tuning the effective pinning strength in Al films, using an artificial periodic pinning array of triangular holes, we show that a unique and well-defined instability current density exists if the pinning is strong, whereas a series of multiple voltage transitions appear in the relatively weaker pinning regime. This behavior is consistent with time-dependent Ginzburg-Landau simulations, where the multiple-step transition can be unambiguously attributed to the progressive development of vortex chains and subsequently phase-slip lines. In addition, we explore experimentally the magnetic braking effects, caused by a thick Cu layer deposited on top of the superconductor, on the instabilities and the vortex ratchet effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000362433200003 Publication Date 2015-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 21 Open Access
Notes ACKNOWLEDGMENTS: This work was partially supported by the Fonds de la Recherche Scientifique-FNRS, the Methusalem Funding of the Flemish Government, the Research Foundation-Flanders (FWO), and COST Action MP1201. The work of A.V.S. and Z.L.J. is partially supported by “Mandat d’Impulsion Scientifique” MIS F.4527.13 of the F.R.S.-FNRS. B.H. is an associate researcher of the Fonds de la Recherche Scientifique- FNRS. The authors thank J. Cuppens for the data analysis at the early stage of this work, R. Delamare for his valuable help during the fabrication of the samples, and G. Grimaldi for helpful discussions. Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:128747 Serial 3981
Permanent link to this record
 

 
Author Lavor, I.R.; da Costa, D.R.; Covaci, L.; Milošević, M.V.; Peeters, F.M.; Chaves, A.
Title Zitterbewegung of moiré excitons in twisted MoS₂/WSe₂ heterobilayers Type A1 Journal article
Year 2021 Publication Physical review letters Abbreviated Journal
Volume 127 Issue 10 Pages 106801
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract The moire pattern observed in stacked noncommensurate crystal lattices, such as heterobilayers of transition metal dichalcogenides, produces a periodic modulation of their band gap. Excitons subjected to this potential landscape exhibit a band structure that gives rise to a quasiparticle dubbed the moire exciton. In the case of MoS2/WSe2 heterobilayers, the moire trapping potential has honeycomb symmetry and, consequently, the moire exciton band structure is the same as that of a Dirac-Weyl fermion, whose mass can be further tuned down to zero with a perpendicularly applied field. Here we show that, analogously to other Dirac-like particles, the moire exciton exhibits a trembling motion, also known as Zitterbewegung, whose long timescales are compatible with current experimental techniques for exciton dynamics. This promotes the study of the dynamics of moire excitons in van der Waals heterostructures as an advantageous solid-state platform to probe Zitterbewegung, broadly tunable by gating and interlayer twist angle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000692200800020 Publication Date 2021-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1079-7114 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 5 Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:181599 Serial 6896
Permanent link to this record
 

 
Author Harrabi, K.; Gasmi, K.; Mekki, A.; Bahlouli, H.; Kunwar, S.; Milošević, M.V.
Title Detection and measurement of picoseconds-pulsed laser energy using a NbTiN superconducting filament Type A1 Journal article
Year 2023 Publication IEEE transactions on applied superconductivity Abbreviated Journal
Volume 33 Issue 5 Pages 2400205-5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract investigate non-equilibrium states created by a laser beam incident on a superconducting NbTiN filament subject to an electrical pulse at 4 K. In absence of the laser excitation, when the amplitude of the current pulse applied to the filament exceeds the critical current value, we monitored the delay time td that marks the collapse of the superconducting phase which is then followed by a voltage rise. We linked the delay time to the applied current using the time-dependent Ginzburg-Landau (TDGL) theory, which enabled us to deduce the cooling (or heat-removal) time from the fit to the experimental data. Subsequently, we exposed the filament biased with a current pulse close to its critical value to a focused laser beam, inducing a normal state in the impact region of the laser beam. We showed that the energy of the incident beam and the incurred delay time are related to each other by a simple expression, that enables direct measurement of incident beam energy by temporal monitoring of the transport response. This method can be extended for usage in single-photon detection regime, and be used for accurate calibration of an arbitrary light source.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000946265900016 Publication Date 2023-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1051-8223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.8 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 1.8; 2023 IF: NA
Call Number UA @ admin @ c:irua:195110 Serial 7295
Permanent link to this record
 

 
Author Dantas, D.S.; Lima, A.R.P.; Chaves, A.; Almeida, C.A.S.; Farias, G.A.; Milošević, M.V.
Title Bound vortex states and exotic lattices in multicomponent Bose-Einstein condensates : the role of vortex-vortex interaction Type A1 Journal article
Year 2015 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 91 Issue 91 Pages 023630
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We numerically study the vortex-vortex interaction in multicomponent homogeneous Bose-Einstein condensates within the realm of the Gross-Pitaevskii theory. We provide strong evidence that pairwise vortex interaction captures the underlying mechanisms which determine the geometric configuration of the vortices, such as different lattices in many-vortex states, as well as the bound vortex states with two (dimer) or three (trimer) vortices. Specifically, we discuss and apply our theoretical approach to investigate intra- and intercomponent vortex-vortex interactions in two- and three-component Bose-Einstein condensates, thereby shedding light on the formation of the exotic vortex configurations. These results correlate with current experimental efforts in multicomponent Bose-Einstein condensates and the understanding of the role of vortex interactions in multiband superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000350255200014 Publication Date 2015-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 12 Open Access
Notes ; This work was supported by the National Council for Scientific and Technological Development (CNPq-Brazil), the Coordination for the Improvement of Higher Education Personnel (CAPES-Brazil), Research Foundation Flanders (FWO), and the bilateral FWO-CNPq program between Flanders and Brazil. M.V.M. acknowledges support from the CAPES-PVE program (Grant No. BEX1392/11-5). ; Approved Most recent IF: 2.925; 2015 IF: 2.808
Call Number c:irua:124907 Serial 252
Permanent link to this record
 

 
Author Kuopanportti, P.; Orlova, N.V.; Milošević, M.V.
Title Ground-state multiquantum vortices in rotating two-species superfluids Type A1 Journal article
Year 2015 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 91 Issue 91 Pages 043605
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We show numerically that a rotating, harmonically trapped mixture of two Bose-Einstein-condensed superfluids cancontrary to its single-species counterpartcontain a multiply quantized vortex in the ground state of the system. This giant vortex can occur without any accompanying single-quantum vortices, may either be coreless or have an empty core, and can be realized in a Rb87−K41 Bose-Einstein condensate. Our results not only provide a rare example of a stable, solitary multiquantum vortex but also reveal exotic physics stemming from the coexistence of multiple, compositionally distinct condensates in one system.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000352255200005 Publication Date 2015-04-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 25 Open Access
Notes ; This work was supported by the Finnish Cultural Foundation, the Research Foundation – Flanders (FWO), and the Magnus Ehrnrooth Foundation. We thank E. Ruokokoski and T. P. Simula for valuable comments and discussions. ; Approved Most recent IF: 2.925; 2015 IF: 2.808
Call Number c:irua:124906 Serial 1388
Permanent link to this record
 

 
Author Geurts, R.; Milošević, M.V.; Peeters, F.M.
Title Topologically trapped vortex molecules in Bose-Einstein condensates Type A1 Journal article
Year 2008 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 78 Issue 5 Pages 053610,1-053610,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In a numerical experiment based on Gross-Pitaevskii formalism, we demonstrate unique topological quantum coherence in optically trapped Bose-Einstein condensates (BECs). Exploring the fact that vortices in a rotating BEC can be pinned by a geometric arrangement of laser beams, we show the parameter range in which vortex-antivortex molecules or multiquantum vortices are formed as a consequence of the optically imposed symmetry. Being low-energy states, we discuss the conditions for spontaneous nucleation of these unique molecules and their direct experimental observation, and provoke the potential use of the phase print of an antivortex or a multiquantum vortex when realized in unconventional circumstances.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000261215600127 Publication Date 2008-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 12 Open Access
Notes Approved Most recent IF: 2.925; 2008 IF: 2.908
Call Number UA @ lucian @ c:irua:73184 Serial 3679
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Lopez-Perez, W.; Gonzalez-Hernandez, R.; Rodriguez, J.A.; Milošević, M.V.; Peeters, F.M.
Title Tunable 2D-gallium arsenide and graphene bandgaps in a graphene/GaAs heterostructure : an ab initio study Type A1 Journal article
Year 2019 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 31 Issue 26 Pages 265502
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The bandgap behavior of 2D-GaAs and graphene have been investigated with van der Waals heterostructured into a yet unexplored graphene/GaAs bilayer, under both uniaxial stress along c axis and different planar strain distributions. The 2D-GaAs bandgap nature changes from Gamma-K indirect in isolated monolayer to Gamma-Gamma direct in graphene/GaAs bilayer. In the latter, graphene exhibits a bandgap of 5 meV. The uniaxial stress strongly affects the graphene electronic bandgap, while symmetric in-plane strain does not open the bandgap in graphene. Nevertheless, it induces remarkable changes on the GaAs bandgap-width around the Fermi level. However, when applying asymmetric in-plane strain to graphene/GaAs, the graphene sublattice symmetry is broken, and the graphene bandgap is open at the Fermi level to a maximum width of 814 meV. This value is much higher than that reported for just graphene under asymmetric strain. The Gamma-Gamma direct bandgap of GaAs remains unchanged in graphene/ GaAs under different types of applied strain. The analyses of phonon dispersion and the elastic constants yield the dynamical and mechanical stability of the graphene/GaAs system, respectively. The calculated mechanical properties for bilayer heterostructure are better than those of their constituent monolayers. This finding, together with the tunable graphene bandgap not only by the strength but also by the direction of the strain, enhance the potential for strain engineering of ultrathin group-III-V electronic devices hybridized by graphene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000465887100001 Publication Date 2019-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 10 Open Access
Notes ; This work has been carried out with the financial support of Universidad del Norte and Colciencias (Administrative Department of Science, Technology and Research of Colombia) under Convocatoria 712-Convocatoria para proyectos de investigacion en Ciencias Basicas, ano 2015, Cod: 121571250192, Contrato 110-216; and the partial support of DGAPA-UNAM project IN114817-3. The authors gratefully acknowledge the support from the High Performance Computing core facility CalcUA and the TOPBOF project at the University of Antwerp, Belgium; DGTIC-UNAM under project LANCAD-UNAM-DGTIC-150, and the computing time granted on the supercomputer Mogon at Johannes Gutenberg University Mainz (hpc.uni-mainz.de). ; Approved Most recent IF: 2.649
Call Number UA @ admin @ c:irua:160216 Serial 5236
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Lopez-Perez, W.; Gonzalez-Hernandez, R.; Rivera-Julio, J.; Espejo, C.; Milošević, M.V.; Peeters, F.M.
Title Two-dimensional hydrogenated buckled gallium arsenide: an ab initio study Type A1 Journal article
Year 2020 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat
Volume 32 Issue 14 Pages 145502
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract First-principles calculations have been carried out to investigate the stability, structural and electronic properties of two-dimensional (2D) hydrogenated GaAs with three possible geometries: chair, zigzag-line and boat configurations. The effect of van der Waals interactions on 2D H-GaAs systems has also been studied. These configurations were found to be energetic and dynamic stable, as well as having a semiconducting character. Although 2D GaAs adsorbed with H tends to form a zigzag-line configuration, the energy differences between chair, zigzag-line and boat are very small which implies the metastability of the system. Chair and boat configurations display a – direct bandgap nature, while pristine 2D-GaAs and zigzag-line are indirect semiconductors. The bandgap sizes of all configurations are also hydrogen dependent, and wider than that of pristine 2D-GaAs with both PBE and HSE functionals. Even though DFT-vdW interactions increase the adsorption energies and reduce the equilibrium distances of H-GaAs systems, it presents, qualitatively, the same physical results on the stability and electronic properties of our studied systems with PBE functional. According to our results, 2D buckled gallium arsenide is a good candidate to be synthesized by hydrogen surface passivation as its group III-V partners 2D buckled gallium nitride and boron nitride. The hydrogenation of 2D-GaAs tunes the bandgap of pristine 2D-GaAs, which makes it a potential candidate for optoelectronic applications in the blue and violet ranges of the visible electromagnetic spectrum.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000507894400001 Publication Date 2019-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0953-8984 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.7 Times cited 2 Open Access
Notes ; This work has been carried out by the financial support of Universidad del Norte and Colciencias (Administrative Department of Science, Technology and Research of Colombia) under Convocatoria 712-Convocatoria para proyectos de investigacion en Ciencias Basicas, ano 2015, Cod: 121571250192, Contrato 110-216. The authors gratefully acknowledge the support from the High Performance Computing core facility CalcUA and the TOPBOF project at the University of Antwerp, Belgium; and the computing time granted on the supercomputer Mogon at Johannes Gutenberg University Mainz (hpc.uni-mainz.de). ; Approved Most recent IF: 2.7; 2020 IF: 2.649
Call Number UA @ admin @ c:irua:165644 Serial 6330
Permanent link to this record
 

 
Author González-García, A.; López-Pérez, W.; González-Hernández, R.; Bacaksiz, C.; Šabani, D.; Milošević, M.V.; Peeters, F.M.
Title Transition-metal adatoms on 2D-GaAs: a route to chiral magnetic 2D materials by design Type A1 Journal article
Year 2021 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat
Volume 33 Issue 14 Pages 145803
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using relativistic density-functional calculations, we examine the magneto-crystalline anisotropy and exchange properties of transition-metal atoms adsorbed on 2D-GaAs. We show that single Mn and Mo atom (Co and Os) strongly bind on 2D-GaAs, and induce local out-of-plane (in-plane) magnetic anisotropy. When a pair of TM atoms is adsorbed on 2D-GaAs in a close range from each other, magnetisation properties change (become tunable) with respect to concentrations and ordering of the adatoms. In all cases, we reveal presence of strong Dzyaloshinskii–Moriya interaction. These results indicate novel pathways towards two-dimensional chiral magnetic materials by design, tailored for desired applications in magneto-electronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000626453600001 Publication Date 2021-04-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0953-8984 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.649 Times cited 1 Open Access OpenAccess
Notes Approved Most recent IF: 2.649
Call Number CMT @ cmt @c:irua:177483 Serial 6755
Permanent link to this record
 

 
Author Bekaert, J.; Bringmans, L.; Milošević, M.V.
Title Ginzburg-Landau surface energy of multiband superconductors : derivation and application to selected systems Type A1 Journal article
Year 2023 Publication Journal of physics : condensed matter Abbreviated Journal
Volume 35 Issue 32 Pages 325602-325610
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We determine the energy of an interface between a multiband superconducting and a normal half-space, in presence of an applied magnetic field, based on a multiband Ginzburg-Landau (GL) approach. We obtain that the multiband surface energy is fully determined by the critical temperature, electronic densities of states, and superconducting gap functions associated with the different band condensates. This furthermore yields an expression for the thermodynamic critical magnetic field, in presence of an arbitrary number of contributing bands. Subsequently, we investigate the sign of the surface energy as a function of material parameters, through numerical solution of the GL equations. Here, we consider two distinct cases: (i) standard multiband superconductors with attractive interactions, and (ii) a three-band superconductor with a chiral ground state with phase frustration, arising from repulsive interband interactions. Furthermore, we apply this approach to several prime examples of multiband superconductors, such as metallic hydrogen and MgB2, based on microscopic parameters obtained from first-principles calculations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000986281900001 Publication Date 2023-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0953-8984 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.7; 2023 IF: 2.649
Call Number UA @ admin @ c:irua:196664 Serial 8875
Permanent link to this record
 

 
Author Gomez, A.; Gonzalez, E.M.; Gilbert, D.A.; Milošević, M.V.; Liu, K.; Vicent, J.L.
Title Probing the dynamic response of antivortex, interstitial and trapped vortex lattices on magnetic periodic pinning potentials Type A1 Journal article
Year 2013 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 26 Issue 8 Pages 085018-8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The dynamics of the pinned vortex, antivortex and interstitial vortex have been studied in superconducting/magnetic hybrids consisting of arrays of Co/Pd multilayer nanodots embedded in Nb films. The magnetic nanodots show out-of-plane magnetization at the remanent state. This magnetic state allows for superconducting vortex lattices of different types in an applied homogeneous magnetic field. We experimentally and theoretically show three such lattices: (i) a lattice containing only antivortices; (ii) a vortex lattice entirely pinned on the dots; and (iii) a vortex lattice with pinned and interstitial vortices. Between the flux creep (low vortex velocity) and the free flux flow (high vortex velocity) regimes the interaction between the magnetic array and the vortex lattice governs the vortex dynamics, which in turn enables distinguishing experimentally the type of vortex lattice which governs the dissipation. We show that the vortex lattice with interstitial vortices has the highest onset velocity where the lattice becomes ordered, whereas the pinned vortex lattice has the smallest onset velocity. Further, for this system, we directly estimate that the external force needed to depin vortices is 60% larger than the one needed to depin antivortices; therefore we are able to decouple the antivortex-vortex motion.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000321709400024 Publication Date 2013-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 7 Open Access
Notes ; This work was supported by Spanish MINECO, grants FIS2008-06249 (Grupo Consolidado), Consolider CSD2007-00010 and CAM grant S2009/MAT-1726. MVM acknowledges support from FWO-Vlaanderen. Work at UCD was supported by the US NSF (DMR-1008791 and ECCS-0925626). ; Approved Most recent IF: 2.878; 2013 IF: 2.796
Call Number UA @ lucian @ c:irua:109785 Serial 2716
Permanent link to this record
 

 
Author Milošević, M.V.; Perali, A.
Title Emergent phenomena in multicomponent superconductivity: an introduction to the focus issue Type A1 Journal article
Year 2015 Publication Superconductor Science & Technology Abbreviated Journal Supercond Sci Tech
Volume 28 Issue 28 Pages 060201
Keywords A1 Journal article; CMT
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000354110200001 Publication Date 2015-04-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0953-2048;1361-6668; ISBN Additional Links
Impact Factor 2.878 Times cited 41 Open Access
Notes ; ; Approved Most recent IF: 2.878; 2015 IF: 2.325
Call Number UA @ lucian @ Serial 3945
Permanent link to this record
 

 
Author Shanenko, A.A.; Aguiar, J.A.; Vagov, A.; Croitoru, M.D.; Milošević, M.V.
Title Atomically flat superconducting nanofilms: multiband properties and mean-field theory Type A1 Journal article
Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 28 Issue 28 Pages 054001
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recent progress in materials synthesis enabled fabrication of superconducting atomically flat single-crystalline metallic nanofilms with thicknesses down to a few monolayers. Interest in such nano-thin systems is attracted by the dimensional 3D-2D crossover in their coherent properties which occurs with decreasing the film thickness. The first fundamental aspect of this crossover is dictated by the Mermin-Wagner-Hohenberg theorem and concerns frustration of the long-range order due to superconductive fluctuations and the possibility to track its impact with an unprecedented level of control. The second important aspect is related to the Fabri-Perot modes of the electronic motion strongly bound in the direction perpendicular to the nanofilm. The formation of such modes results in a pronounced multiband structure that changes with the nanofilm thickness and affects both the mean-field behavior and superconductive fluctuations. Though the subject is very rich in physics, it is scarcely investigated to date. The main obstacle is that there are no manageable models to study a complex magnetic response in this case. Full microscopic consideration is rather time consuming, if practicable at all, while the standard Ginzburg-Landau theory is not applicable. In the present work we review the main achievements in the subject to date, and construct and justify an efficient multiband mean-field formalism which allows for numerical and even analytical treatment of nano-thin superconductors in applied magnetic fields.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000353015700005 Publication Date 2015-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 23 Open Access
Notes This work was supported by the Brazilian agencies CNPq (grants 307552/2012-8 and 141911/2012-3) and FACEPE (APQ-0589-1.05/08). AAS acknowledges fruitful discussions with A Perali and D Neilson during his stay in the University of Camerino and is thankful for partial support of his visit by the University of Camerino under the project FAR 'Control and enhancement of superconductivity by engineering materials at the nanoscale'. MDC acknowledges the support from the Back to Belgium Grant of the federal Science Policy (BELSPO). Approved Most recent IF: 2.878; 2015 IF: 2.325
Call Number c:irua:132501 Serial 3944
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M.; Jankó, B.
Title Vortex manipulation in superconducting films with tunable magnetic topology Type A1 Journal article
Year 2011 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 24 Issue 2 Pages 024001-024001,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using a combination of the phenomenological GinzburgLandau theory and micromagnetic simulations, we study properties of a superconducting film with an array of soft magnetic dots on top. An external in-plane magnetic field gradually drives the magnets from an out-of-plane or magnetic vortex state to an in-plane single-domain state, which changes spatially the distribution of the superconducting condensate. If induced by the magnets, the vortexantivortex molecules exhibit rich transitions as a function of the applied in-plane field. At the same time, we show how the magnetic dots act as very effective dynamic pinning centers for vortices in an applied perpendicular magnetic field.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000286379900002 Publication Date 2011-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 8 Open Access
Notes ; This research was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the JSPS/ESF-NES program, the bilateral project between Flanders and the USA, NSF NIRT, ECS-0609249, and the Institute for Theoretical Sciences. ; Approved Most recent IF: 2.878; 2011 IF: 2.662
Call Number UA @ lucian @ c:irua:88731 Serial 3870
Permanent link to this record