toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author de Bock, L.A.; Jambers, W.; Van Grieken, R.E. openurl 
  Title Micro-analysis of individual aerosol particles using electron, proton and laser beams Type A1 Journal article
  Year 1996 Publication South African journal of chemistry = Suid-Afrikaanse tydskrif vir chemie Abbreviated Journal  
  Volume 49 Issue Pages 65-72  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1996WK16600004 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:14659 Serial 8226  
Permanent link to this record
 

 
Author Smits, J.; Van Grieken, R. openurl 
  Title Synthesis of a chelating cellulose filter with 2,2-diaminodiethylamine functional groups Type A3 Journal article
  Year 1978 Publication Zeitschrift für angewandte Makromolekare Chemie Abbreviated Journal  
  Volume 72 Issue Pages 105-113  
  Keywords A3 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116644 Serial 8637  
Permanent link to this record
 

 
Author Liu, J.; Wang, C.; Yu, W.; Zhao, H.; Hu, Z.-Y.; Liu, F.; Hasan, T.; Li, Y.; Van Tendeloo, G.; Li, C.; Su, B.-L. url  doi
openurl 
  Title Bioinspired noncyclic transfer pathway electron donors for unprecedented hydrogen production Type A1 Journal article
  Year 2023 Publication CCS chemistry Abbreviated Journal  
  Volume 5 Issue 6 Pages 1470-1482  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron donors are widely exploited in visible-light photocatalytic hydrogen production. As a typical electron donor pair and often the first choice for hydrogen production, the sodium sulfide-sodium sulfite pair has been extensively used. However, the resultant thiosulfate ions consume the photogenerated electrons to form an undesirable pseudocyclic electron transfer pathway during the photocatalytic process, strongly limiting the solar energy conversion efficiency. Here, we report novel and bioinspired electron donor pairs offering a noncyclic electron transfer pathway that provides more electrons without the consumption of the photogenerated electrons. Compared to the state-of-the-art electron donor pair Na2S-Na2SO3, these novel Na2S-NaH2PO2 and Na2S-NaNO2 electron donor pairs enable an unprecedented enhancement of up to 370% and 140% for average photocatalytic H-2 production over commercial CdS nanoparticles, and they are versatile for a large series of photocatalysts for visible-light water splitting. The discovery of these novel electron donor pairs can lead to a revolution in photocatalysis and is of great significance for industrial visible-light-driven H-2 production. [GRAPHICS] .  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001037091900008 Publication Date 2022-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198409 Serial 8837  
Permanent link to this record
 

 
Author Nakazato, R.; Matsumoto, K.; Yamaguchi, N.; Cavallo, M.; Crocella, V.; Bonino, F.; Quintelier, M.; Hadermann, J.; Rosero-navarro, N.C.; Miura, A.; Tadanaga, K. doi  openurl
  Title CO₂ electrochemical reduction with Zn-Al layered double hydroxide-loaded gas-diffusion electrode Type A1 Journal article
  Year 2023 Publication Electrochemistry Abbreviated Journal  
  Volume 91 Issue 9 Pages 097003-97007  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Carbon dioxide electrochemical reduction (CO2ER) has attracted considerable attention as a technology to recycle CO2 into raw materials for chemicals using renewable energies. We recently found that Zn-Al layered double hydroxides (Zn-Al LDH) have the CO-forming CO2ER activity. However, the activity was only evaluated by using the liquid-phase CO2ER. In this study, Ni-Al and Ni-Fe LDHs as well as Zn-Al LDH were synthesized using a facile coprecipitation process and the gas-phase CO2ER with the LDH-loaded gas-diffusion electrode (GDE) was examined. The products were characterized by XRD, STEM-EDX, BF-TEM and ATR-IR spectroscopy. In the ATR-IR results, the interaction of CO2 with Zn-Al LDH showed a different carbonates evolution with respect to other LDHs, suggesting a different electrocatalytic activity. The LDH-loaded GDE was prepared by simple drop-casting of a catalyst ink onto carbon paper. For gas-phase CO2ER, only Zn-Al LDH exhibited the CO2ER activity for carbon monoxide (CO) formation. By using different potassium salt electrolytes affording neutral to strongly basic conditions, such as KCl, KHCO3 and KOH, the gas-phase CO2ER with Zn-Al LDH-loaded GDE showed 1.3 to 2.1 times higher partial current density for CO formation than the liquid-phase CO2ER.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001082818000001 Publication Date 2023-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:200340 Serial 9009  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: