toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lelouche, S.N.K.; Lemir, I.; Biglione, C.; Craig, T.; Bals, S.; Horcajada, P. url  doi
openurl 
  Title AuNP/MIL-88B-NH₂ nanocomposite for the valorization of nitroarene by green catalytic hydrogenation Type A1 Journal article
  Year 2024 Publication Chemistry: a European journal Abbreviated Journal  
  Volume Issue Pages 1-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The efficiency of a catalytic process is assessed based on conversion, yield, and time effectiveness. However, these parameters are insufficient for evaluating environmentally sustainable research. As the world is urged to shift towards green catalysis, additional factors such as reaction media, raw material availability, sustainability, waste minimization and catalyst biosafety, need to be considered to accurately determine the efficacy and sustainability of the process. By combining the high porosity and versatility of metal organic frameworks (MOFs) and the activity of gold nanoparticles (AuNPs), efficient, cyclable and biosafe composite catalysts can be achieved. Thus, a composite based on AuNPs and the nanometric flexible porous iron(III) aminoterephthalate MIL-88B-NH2 was successfully synthesized and fully characterized. This nanocomposite was tested as catalyst in the reduction of nitroarenes, which were identified as anthropogenic water pollutants, reaching cyclable high conversion rates at short times for different nitroarenes. Both synthesis and catalytic reactions were performed using green conditions, and even further tested in a time-optimizing one-pot synthesis and catalysis experiment. The sustainability and environmental impact of the catalytic conditions were assessed by green metrics. Thus, this study provides an easily implementable synthesis, and efficient catalysis, while minimizing the environmental and health impact of the process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001204094600001 Publication Date 2024-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0947-6539 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:205426 Serial 9135  
Permanent link to this record
 

 
Author Craig, T.M.; Kadu, A.A.; Batenburg, K.J.; Bals, S. url  doi
openurl 
  Title Real-time tilt undersampling optimization during electron tomography of beam sensitive samples using golden ratio scanning and RECAST3D Type A1 Journal article
  Year 2023 Publication Nanoscale Abbreviated Journal  
  Volume 15 Issue 11 Pages 5391-5402  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Electron tomography is a widely used technique for 3D structural analysis of nanomaterials, but it can cause damage to samples due to high electron doses and long exposure times. To minimize such damage, researchers often reduce beam exposure by acquiring fewer projections through tilt undersampling. However, this approach can also introduce reconstruction artifacts due to insufficient sampling. Therefore, it is important to determine the optimal number of projections that minimizes both beam exposure and undersampling artifacts for accurate reconstructions of beam-sensitive samples. Current methods for determining this optimal number of projections involve acquiring and post-processing multiple reconstructions with different numbers of projections, which can be time-consuming and requires multiple samples due to sample damage. To improve this process, we propose a protocol that combines golden ratio scanning and quasi-3D reconstruction to estimate the optimal number of projections in real-time during a single acquisition. This protocol was validated using simulated and realistic nanoparticles, and was successfully applied to reconstruct two beam-sensitive metal–organic framework complexes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000937908900001 Publication Date 2023-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 1 Open Access OpenAccess  
  Notes H2020 European Research Council, 815128 ; H2020 Marie Skłodowska-Curie Actions, 860942 ; Approved Most recent IF: 6.7; 2023 IF: 7.367  
  Call Number EMAT @ emat @c:irua:195235 Serial 7260  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: