Number of records found: 1296
 | 
Citations
 | 
   web
Unraveling the Transport Properties of RONS across Nitro-Oxidized Membranes”. Abduvokhidov D, Yusupov M, Shahzad A, Attri P, Shiratani M, Oliveira MC, Razzokov J, Biomolecules 13, 1043 (2023). http://doi.org/10.3390/biom13071043
toggle visibility
Is a catalyst always beneficial in plasma catalysis? Insights from the many physical and chemical interactions”. Loenders B, Michiels R, Bogaerts A, Journal of Energy Chemistry 85, 501 (2023). http://doi.org/10.1016/j.jechem.2023.06.016
toggle visibility
Microwave plasma-based dry reforming of methane: Reaction performance and carbon formation”. Kelly S, Mercer E, De Meyer R, Ciocarlan R-G, Bals S, Bogaerts A, Journal of CO2 utilization 75, 102564 (2023). http://doi.org/10.1016/j.jcou.2023.102564
toggle visibility
Assessing neutral transport mechanisms in aspect ratio dependent etching by means of experiments and multiscale plasma modeling”. Vanraes P, Parayil Venugopalan S, Besemer M, Bogaerts A, Plasma Sources Science and Technology 32, 064004 (2023). http://doi.org/10.1088/1361-6595/acdc4f
toggle visibility
Atomic level mechanisms of graphene healing by methane-based plasma radicals”. Khalilov U, Yusupov M, Eshonqulov Gb, Neyts Ec, Berdiyorov Gr, FlatChem 39, 100506 (2023). http://doi.org/10.1016/j.flatc.2023.100506
toggle visibility
Plasma‐treated liquids in medicine: Let's get chemical”. Tampieri F, Gorbanev Y, Sardella E, Plasma Processes and Polymers 20, e2300077 (2023). http://doi.org/10.1002/ppap.202300077
toggle visibility
Plasma-based CO2 conversion: How to correctly analyze the performance?”.Wanten B, Vertongen R, De Meyer R, Bogaerts A, Journal of Energy Chemistry 86, 180 (2023). http://doi.org/10.1016/j.jechem.2023.07.005
toggle visibility
Modelling the dynamics of hydrogen synthesis from methane in nanosecond‐pulsed plasmas”. Morais E, Bogaerts A, Plasma processes and polymers 21 (2024). http://doi.org/10.1002/ppap.202300149
toggle visibility
Effects of Nitro-Oxidative Stress on Biomolecules: Part 1—Non-Reactive Molecular Dynamics Simulations”. Ghasemitarei M, Ghorbi T, Yusupov M, Zhang Y, Zhao T, Shali P, Bogaerts A, Biomolecules 13, 1371 (2023). http://doi.org/10.3390/biom13091371
toggle visibility
Plasma‐driven<scp>CO2</scp>hydrogenation to<scp>CH3OH</scp>over<scp>Fe2O3</scp>/<scp>γ‐Al2O3</scp>catalyst”. Meng S, Wu L, Liu M, Cui Z, Chen Q, Li S, Yan J, Wang L, Wang X, Qian J, Guo H, Niu J, Bogaerts A, Yi Y, AIChE Journal 69, e18154 (2023). http://doi.org/10.1002/aic.18154
toggle visibility
Plasma-Assisted Dry Reforming of CH4: How Small Amounts of O2Addition Can Drastically Enhance the Oxygenate Production─Experiments and Insights from Plasma Chemical Kinetics Modeling”. Li S, Sun J, Gorbanev Y, van’t Veer K, Loenders B, Yi Y, Kenis T, Chen Q, Bogaerts A, ACS Sustainable Chemistry &, Engineering 11, 15373 (2023). http://doi.org/10.1021/acssuschemeng.3c04352
toggle visibility
NH3 decomposition for H2 production by thermal and plasma catalysis using bimetallic catalysts”. Meng S, Li S, Sun S, Bogaerts A, Liu Y, Yi Y, Chemical engineering science 283, 119449 (2024). http://doi.org/10.1016/j.ces.2023.119449
toggle visibility
Special Issue on “Dielectric Barrier Discharges and their Applications&rdquo, in Commemoration of the 20th Anniversary of Dr. Ulrich Kogelschatz’s Work”. Bogaerts A, Plasma Chemistry and Plasma Processing 43, 1281 (2023). http://doi.org/10.1007/s11090-023-10431-x
toggle visibility
Characterization of Non-Thermal Dielectric Barrier Discharges for Plasma Medicine: From Plastic Well Plates to Skin Surfaces”. Lin A, Gromov M, Nikiforov A, Smits E, Bogaerts A, Plasma Chemistry and Plasma Processing 43, 1587 (2023). http://doi.org/10.1007/s11090-023-10389-w
toggle visibility
Plasma-based dry reforming of CH4: Plasma effects vs. thermal conversion”. Slaets J, Loenders B, Bogaerts A, Fuel 360, 130650 (2024). http://doi.org/10.1016/j.fuel.2023.130650
toggle visibility
Accurate Reaction Probabilities for Translational Energies on Both Sides of the Barrier of Dissociative Chemisorption on Metal Surfaces”. Gerrits N, Jackson B, Bogaerts A, The Journal of Physical Chemistry Letters 15, 2566 (2024). http://doi.org/10.1021/acs.jpclett.3c03408
toggle visibility
Importance of plasma discharge characteristics in plasma catalysis: Dry reforming of methane vs. ammonia synthesis”. De Meyer R, Gorbanev Y, Ciocarlan R-G, Cool P, Bals S, Bogaerts A, Chemical Engineering Journal 488, 150838 (2024). http://doi.org/10.1016/j.cej.2024.150838
toggle visibility
Plasma catalysis in ammonia production and decomposition: Use it, or lose it?”.Gorbanev Y, Fedirchyk I, Bogaerts A, Current Opinion in Green and Sustainable Chemistry 47, 100916 (2024). http://doi.org/10.1016/j.cogsc.2024.100916
toggle visibility
Machine learning-driven optimization of plasma-catalytic dry reforming of methane”. Cai Y, Mei D, Chen Y, Bogaerts A, Tu X, Journal of Energy Chemistry 96, 153 (2024). http://doi.org/10.1016/j.jechem.2024.04.022
toggle visibility
Investigation of O atom kinetics in O2plasma and its afterglow”. Albrechts M, Tsonev I, Bogaerts A, Plasma Sources Science and Technology 33, 045017 (2024). http://doi.org/10.1088/1361-6595/ad3f4a
toggle visibility
Effect of Gas Composition on Temperature and CO2Conversion in a Gliding Arc Plasmatron reactor: Insights for Post‐Plasma Catalysis from Experiments and Computation”. Xu W, Van Alphen S, Galvita VV, Meynen V, Bogaerts A, ChemSusChem (2024). http://doi.org/10.1002/cssc.202400169
toggle visibility
Improving the performance of gliding arc plasma-catalytic dry reforming via a new post-plasma tubular catalyst bed”. Xu W, Buelens LC, Galvita VV, Bogaerts A, Meynen V, Journal of CO2 Utilization 83, 102820 (2024). http://doi.org/10.1016/j.jcou.2024.102820
toggle visibility
Coupled multi-dimensional modelling of warm plasmas: Application and validation for an atmospheric pressure glow discharge in CO2/CH4/O2”. Maerivoet S, Tsonev I, Slaets J, Reniers F, Bogaerts A, Chemical Engineering Journal 492, 152006 (2024). http://doi.org/10.1016/j.cej.2024.152006
toggle visibility
Vertes A, Gijbels R, Adams F (1993) Laser ionization mass analysis. Wiley, New York
toggle visibility
Determination of the silver sulphide cluster size distribution via computer simulations”. Charlier E, Gijbels R, Van Doorselaer M, De Keyzer R page 85 (2000).
toggle visibility
Glow discharge optical spectroscopy and mass spectrometry”. Steiner RE, Barshick CM, Bogaerts A Wiley, Chichester, page 1 (2009).
toggle visibility
Inorganic mass spectrometry”. Adams F, Gijbels R, van Grieken R, Kim Y-sang Freedom Academy Press, Seoul (1999).
toggle visibility
Glow discharge optical spectroscopy and mass spectrometry”. Bogaerts A John Wiley & Sons, Chichester, page 1 (2016).
toggle visibility
Modeling aspects of plasma-enhanced chemical vapor deposition of carbon-based materials”. Neyts E, Mao M, Eckert M, Bogaerts A CRC Press, Boca Raton, Fla, page 245 (2012).
toggle visibility
Computer simulations of laser ablation, plume expansion and plasma formation”. Bogaerts A, Aghaei M, Autrique D, Lindner H, Chen Z, Wendelen W Trans Tech, Aedermannsdorf, page 1 (2011).
toggle visibility