toggle visibility
Search within Results:
Display Options:
Number of records found: 8874

Select All    Deselect All
 | 
Citations
 | 
   print
Quenching of the Hall effect in localised high magnetic field regions”. Novoselov KS, Geim AK, Dubonos SV, Cornelissens YG, Peeters FM, Maan JC, Physica. E: Low-dimensional systems and nanostructures 12, 244 (2002). http://doi.org/10.1016/S1386-9477(01)00364-2
toggle visibility
Resonant magnetopolaron effect in GaAs/AlGaAs multiple quantum well structures”. Wang YJ, Nichel HA, McCombe BD, Peeters FM, Shi JM, Hai GQ, Wu XG, Eustis TJ, Schaff W, Physica. E: Low-dimensional systems and nanostructures 2, 161 (1998). http://doi.org/10.1016/S1386-9477(98)00035-6
toggle visibility
Spatial interference induced spin polarization in a three-terminal quantum ring”. Kálmán O, Földi P, Benedict MG, Peeters FM, Physica. E: Low-dimensional systems and nanostructures 40, 567 (2008). http://doi.org/10.1016/j.physe.2007.08.014
toggle visibility
Spin-engineered quantum dots”. Fleurov V, Ivanov VA, Peeters FM, Vagner ID, Physica. E: Low-dimensional systems and nanostructures 14, 361 (2002). http://doi.org/10.1016/S1386-9477(01)00487-8
toggle visibility
The spin structure of two vertically coupled quantum dots”. Partoens B, Peeters FM, Physica. E: Low-dimensional systems and nanostructures 6, 577 (2000). http://doi.org/10.1016/S1386-9477(99)00114-9
toggle visibility
Strong resonant intersubband magnetopolaron effect in heavily modulation-doped GaAs/AlGaAs single quantum wells at high magnetic fields”. Wang YJ, Leem YA, McCombe BD, Wu XG, Peeters FM, Jones E, Reno J, Lee XY, Jiang HW, Physica. E: Low-dimensional systems and nanostructures 6, 195 (2000). http://doi.org/10.1016/S1386-9477(99)00086-7
toggle visibility
Theory of the band mixing induced negative magnetoresistance in broken gap superlattices”. Symons DM, Peeters FM, Lakrimi M, Khym S, Portal JC, Mason NJ, Nicholas RJ, Walker PJ, Physica. E: Low-dimensional systems and nanostructures 2, 353 (1998). http://doi.org/10.1016/S1386-9477(98)00074-5
toggle visibility
Theory of trions in quantum wells”. Riva C, Peeters FM, Varga K, Physica. E: Low-dimensional systems and nanostructures T2 –, 14th International Conference on the Electronic Properties of, Two-Dimensional Systems, JUL 30-AUG 03, 2001, PRAGUE, CZECH REPUBLIC 12, 543 (2002). http://doi.org/10.1016/S1386-9477(01)00484-2
toggle visibility
Transition from two-dimensional to three-dimensional classical artificial atoms”. Cornelissens YG, Partoens B, Peeters FM, Physica. E: Low-dimensional systems and nanostructures 8, 314 (2000). http://doi.org/10.1016/S1386-9477(00)00163-6
toggle visibility
Two-level anti-crossings high up in the single-particle energy spectrum of a quantum dot”. Payette C, Austing DG, Yu G, Gupta JA, Nair SV, Partoens B, Amaha S, Tarucha S, Physica. E: Low-dimensional systems and nanostructures 40, 1807 (2008). http://doi.org/10.1016/j.physe.2007.09.060
toggle visibility
Type of phase transitions in a mesoscopic superconducting disc”. Deo PS, Schweigert VA, Peeters FM, Geim AK, Physica: E 1, 297 (1997). http://doi.org/10.1016/S1386-9477(97)00063-5
toggle visibility
Vortex states in mescopic superconductors”. Peeters FM, Baelus BJ, Milošević, MV, Physica. E: Low-dimensional systems and nanostructures 18, 312 (2003). http://doi.org/10.1016/S1386-9477(02)01058-5
toggle visibility
Vortex structure of few-electron quantum dots”. Anisimovas E, Tavernier MB, Peeters FM, Physica. E: Low-dimensional systems and nanostructures 40, 1621 (2008). http://doi.org/10.1016/j.physe.2007.10.031
toggle visibility
Effect of substitutional impurities on the electronic transport properties of graphene”. Berdiyorov GR, Bahlouli H, Peeters FM, Physica. E: Low-dimensional systems and nanostructures 84, 22 (2016). http://doi.org/10.1016/j.physe.2016.05.024
toggle visibility
Wave packet propagation through branched quantum rings under applied magnetic fields”. de Sousa AA, Chaves A, Pereira TAS, de Farias GA, Peeters FM, Physica. E: Low-dimensional systems and nanostructures 114, 113598 (2019). http://doi.org/10.1016/J.PHYSE.2019.113598
toggle visibility
Theoretical prediction of the PtOX (X = S and Se) monolayers as promising optoelectronic and thermoelectric 2D materials”. Nguyen DK, Hoat DM, Bafekry A, Van On V, Rivas-Silva JF, Naseri M, Cocoletzi GH, Physica E-Low-Dimensional Systems &, Nanostructures 131, 114732 (2021). http://doi.org/10.1016/J.PHYSE.2021.114732
toggle visibility
Evaluation of different rectangular scan strategies for STEM imaging”. Velazco A, Nord M, Béché, A, Verbeeck J, Ultramicroscopy , 113021 (2020). http://doi.org/10.1016/j.ultramic.2020.113021
toggle visibility
Atom column detection from simultaneously acquired ABF and ADF STEM images”. Fatermans J, den Dekker Aj, Müller-Caspary K, Gauquelin N, Verbeeck J, Van Aert S, Ultramicroscopy 219, 113046 (2020). http://doi.org/10.1016/j.ultramic.2020.113046
toggle visibility
HAADF-STEM block-scanning strategy for local measurement of strain at the nanoscale”. Prabhakara V, Jannis D, Guzzinati G, Béché, A, Bender H, Verbeeck J, Ultramicroscopy 219, 113099 (2020). http://doi.org/10.1016/j.ultramic.2020.113099
toggle visibility
Hidden Markov model for atom-counting from sequential ADF STEM images: Methodology, possibilities and limitations”. De wael A, De Backer A, Van Aert S, Ultramicroscopy 219, 113131 (2020). http://doi.org/10.1016/j.ultramic.2020.113131
toggle visibility
Source/drain materials for Ge nMOS devices: phosphorus activation in epitaxial Si, Ge, Ge1-xSnx and SiyGe1-x-ySnx”. Vohra A, Makkonen I, Pourtois G, Slotte J, Porret C, Rosseel E, Khanam A, Tirrito M, Douhard B, Loo R, Vandervorst W, Ecs Journal Of Solid State Science And Technology 9, 044010 (2020). http://doi.org/10.1149/2162-8777/AB8D91
toggle visibility
Reducing electron beam damage through alternative STEM scanning strategies, Part I: Experimental findings”. Velazco A, Béché, A, Jannis D, Verbeeck J, Ultramicroscopy 232, 113398 (2022). http://doi.org/10.1016/j.ultramic.2021.113398
toggle visibility
Event driven 4D STEM acquisition with a Timepix3 detector: Microsecond dwell time and faster scans for high precision and low dose applications”. Jannis D, Hofer C, Gao C, Xie X, Béché, A, Pennycook Tj, Verbeeck J, Ultramicroscopy 233, 113423 (2022). http://doi.org/10.1016/j.ultramic.2021.113423
toggle visibility
Reliable phase quantification in focused probe electron ptychography of thin materials”. Hofer C, Pennycook TJ, Ultramicroscopy 254, 113829 (2023). http://doi.org/10.1016/j.ultramic.2023.113829
toggle visibility
Nanowire facilitated transfer of sensitive TEM samples in a FIB”. Gorji S, Kashiwar A, Mantha LS, Kruk R, Witte R, Marek P, Hahn H, Kübel C, Scherer T, Ultramicroscopy 219, 113075 (2020). http://doi.org/10.1016/J.ULTRAMIC.2020.113075
toggle visibility
Dynamical diffraction of high-energy electrons investigated by focal series momentum-resolved scanning transmission electron microscopy at atomic resolution”. Robert Hl, Lobato I, Lyu Fj, Chen Q, Van Aert S, Van Dyck D, Müller-Caspary K, Ultramicroscopy 233, 113425 (2022). http://doi.org/10.1016/j.ultramic.2021.113425
toggle visibility
Farmers' preferences towards water hyacinth control : a contingent valuation study”. Van Oijstaeijen W, Van Passel S, Cools J, Janssens de Bisthoven L, Huge J, Berihun D, Ejigu N, Nyssen J, Journal Of Great Lakes Research 46, 1459 (2020). http://doi.org/10.1016/J.JGLR.2020.06.009
toggle visibility
Reducing electron beam damage through alternative STEM scanning strategies, Part II: Attempt towards an empirical model describing the damage process”. Jannis D, Velazco A, Béché, A, Verbeeck J, Ultramicroscopy , 113568 (2022). http://doi.org/10.1016/j.ultramic.2022.113568
toggle visibility
Phase offset method of ptychographic contrast reversal correction”. Hofer C, Gao C, Chennit T, Yuan B, Pennycook TJ, Ultramicroscopy , 113922 (2024). http://doi.org/10.1016/j.ultramic.2024.113922
toggle visibility
Optimal experiment design for element specific atom counting using multiple annular dark field scanning transmission electron microscopy detectors”. Sentürk DG, De Backer A, Friedrich T, Van Aert S, Ultramicroscopy 242, 113626 (2022). http://doi.org/10.1016/j.ultramic.2022.113626
toggle visibility
Select All    Deselect All
 | 
Citations
 | 
   print

Save Citations:
Export Records: