|   | 
Details
   web
Records
Author van den Heuvel, W.; Tikhomirov, V.K.; Kirilenko, D.; Schildermans, N.; Chibotaru, L.F.; Vanacken, J.; Gredin, P.; Mortier, M.; Van Tendeloo, G.; Moshchalkov, V.V.
Title Ultralow blocking temperature and breakdown of the giant spin model in Er3+-doped nanoparticles Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 9 Pages 094421-094421,8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The magnetization of luminescent Er3+-doped PbF2 nanoparticles (formula Er0.3Pb0.7F2.3) has been studied. Despite the high concentration of the doping Er3+ ions and relatively large size (8 nm) of these nanoparticles we have found no deviation between field-cooled and zero-field-cooled magnetization curves down to T=0.35 K, which points out an ultralow blocking temperature for the reversal of magnetization. We also have found strongly deviating magnetization curves M(H/T) for different temperatures T. These results altogether show that the investigated nanoparticles are not superparamagnetic, but rather each Er3+ ion in these nanoparticles is found in a paramagnetic state down to very low temperatures, which implies the breakdown of the Néel-Brown giant spin model in the case of these nanoparticles. Calculations of magnetization within a paramagnetic model of noninteracting Er3+ ions completely support this conclusion. Due to the ultralow blocking temperature, these nanoparticles have a potential for magnetic field-induced nanoscale refrigeration with an option of their optical localization and temperature control.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000281773300005 Publication Date 2010-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.836 Times cited 11 Open Access
Notes Fwo Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:85423 Serial 3796
Permanent link to this record
 

 
Author Vernimmen, J.; Guidotti, M.; Silvestre-Albero, J.; Jardim, E.O.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Psaro, R.; Rodríguez-Reinoso, F.; Meynen, V.; Cool, P.
Title Immersion calorimetry as a tool to evaluate the catalytic performance of titanosilicate materials in the epoxidation of cyclohexene Type A1 Journal article
Year 2011 Publication Langmuir: the ACS journal of surfaces and colloids Abbreviated Journal Langmuir
Volume 27 Issue 7 Pages 3618-3625
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Different types of titanosilicates are synthesized, structurally characterized, and subsequently catalytically tested in the liquid-phase epoxidation of cyclohexene. The performance of three types of combined zeolitic/mesoporous materials is compared with that of widely studied Ti-grafted-MCM-41 molecular sieve and the TS-1 microporous titanosilicate. The catalytic test results are correlated with the structural characteristics of the different catalysts. Moreover, for the first time, immersion calorimetry with the same substrate molecule as in the catalytic test reaction is applied as an extra means to interpret the catalytic results. A good correlation between catalytic performance and immersion calorimetry results is found. This work points out that the combination of catalytic testing and immersion calorimetry can lead to important insights into the influence of the materials structural characteristics on catalysis. Moreover, the potential of using immersion calorimetry as a screening tool for catalysts in epoxidation reactions is shown.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000288970900054 Publication Date 2011-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0743-7463;1520-5827; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.833 Times cited 19 Open Access
Notes Approved Most recent IF: 3.833; 2011 IF: 4.186
Call Number UA @ lucian @ c:irua:88366 Serial 1557
Permanent link to this record
 

 
Author Buschmann, V.; Van Tendeloo, G.
Title Structural characterization of colloidal Ag2Se nanocrystals Type A1 Journal article
Year 1998 Publication Langmuir Abbreviated Journal Langmuir
Volume 14 Issue Pages 1528-1531
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000072914700007 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0743-7463;1520-5827; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.833 Times cited 15 Open Access
Notes Approved Most recent IF: 3.833; 1998 IF: 2.813
Call Number UA @ lucian @ c:irua:25659 Serial 3218
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Lebedev, O.I.; Parfenova, A.; Turner, S.; Tondello, E.; Van Tendeloo, G.
Title Tailored vapor-phase growth of CuxO-TiO2(x=1,2) nanomaterials decorated with Au particles Type A1 Journal article
Year 2011 Publication Langmuir: the ACS journal of surfaces and colloids Abbreviated Journal Langmuir
Volume 27 Issue 10 Pages 6409-6417
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report on the fabrication of CuxOTiO2 (x = 1, 2) nanomaterials by an unprecedented vapor-phase approach. The adopted strategy involves the growth of porous CuxO matrices by means of chemical vapor deposition (CVD), followed by the controlled dispersion of TiO2 nanoparticles. The syntheses are performed on Si(100) substrates at temperatures of 400550 °C under wet oxygen atmospheres, adopting Cu(hfa)2·TMEDA (hfa =1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′,N′-tetramethylethylenediamine) and Ti(O-iPr)2(dpm)2 (O-iPr = isopropoxy; dpm = 2,2,6,6-tetramethyl-3,5-heptanedionate) as copper and titanium precursors, respectively. Subsequently, finely dispersed gold nanoparticles are introduced in the as-prepared systems via radio frequency (RF)-sputtering under mild conditions. The synthesis process results in the formation of systems with chemical composition and nano-organization strongly dependent on the nature of the initial CuxO matrix and on the deposited TiO2 amount. The decoration with low-size gold clusters paves the way to the engineering of hierarchically organized nanomaterials.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000290292900082 Publication Date 2011-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0743-7463;1520-5827; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.833 Times cited 36 Open Access
Notes Fwo Approved Most recent IF: 3.833; 2011 IF: 4.186
Call Number UA @ lucian @ c:irua:88940 Serial 3467
Permanent link to this record
 

 
Author Gensterblum, G.; Hevesi, K.; Han, B.Y.; Yu, L.M.; Pireaux, J.J.; Thiry, P.A.; Caudano, R.; Lucas, A.A.; Bernaerts, D.; Amelinckx, S.; Van Tendeloo, G.; Bendele, G.; Buslaps, T.; Johnson, R.L.; Foss, M.; Feidenhans’l, R.; Le Lay, G.;
Title Growth mode and electronic-structure of the epitaxial C60(111)/GeS(001) interface Type A1 Journal article
Year 1994 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 50 Issue 16 Pages 11981-11995
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1994PR43400080 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.736 Times cited 81 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:99825 Serial 1393
Permanent link to this record
 

 
Author Hiroi, Z.; Amelinckx, S.; Van Tendeloo, G.; Kobayashi, N.
Title Microscopic origin of dimerization in the CuO2 chains in Sr14Cu24O41 Type A1 Journal article
Year 1996 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 54 Issue 22 Pages 849-855
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1996VX71800045 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.736 Times cited 33 Open Access
Notes Approved CHEMISTRY, PHYSICAL 77/144 Q3 # MATHEMATICS, INTERDISCIPLINARY 19/101 Q1 # PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 17/35 Q2 #
Call Number UA @ lucian @ c:irua:16871 Serial 2030
Permanent link to this record
 

 
Author Hervieu, M.; Van Tendeloo, G.; Caignaert, V.; Maignan, A.; Raveau, B.
Title Monoclinic microdomains and clustering in the colossal magnetoresistance manganites Pr0.7Ca0.25Sr0.05MnO3 and Pr0.75Sr0.25MnO3 Type A1 Journal article
Year 1996 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 53 Issue 21 Pages 14274-14284
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1996UQ72600049 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.736 Times cited 75 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:16863 Serial 2190
Permanent link to this record
 

 
Author Filippousi, M.; Papadimitriou, S.A.; Bikiaris, D.N.; Pavlidou, E.; Angelakeris, M.; Zamboulis, D.; Tian, H.; Van Tendeloo, G.
Title Novel coreshell magnetic nanoparticles for Taxol encapsulation in biodegradable and biocompatible block copolymers : preparation, characterization and release properties Type A1 Journal article
Year 2013 Publication International journal of pharmaceutics Abbreviated Journal Int J Pharmaceut
Volume 448 Issue 1 Pages 221-230
Keywords A1 Journal article; Pharmacology. Therapy; Electron microscopy for materials research (EMAT)
Abstract Theranostic polymeric nanocarriers loaded with anticancer drug Taxol and superparamagnetic iron oxide nanocrystals have been developed for possible magnetic resonance imaging (MRI) use and cancer therapy. Multifunctional nanocarriers with a coreshell structure have been prepared by coating superparamagnetic Fe3O4 nanoparticles with block copolymer of poly(ethylene glycol)-b-poly(propylene succinate) with variable molecular weights of the hydrophobic block poly(prolylene succinate). The multifunctional polymer nano-vehicles were prepared using a nanoprecipitation method. Scanning transmission electron microscopy revealed the encapsulation of magnetic nanoparticles inside the polymeric matrix. Energy dispersive X-ray spectroscopy and electron energy loss spectroscopy mapping allowed us to determine the presence of the different material ingredients in a quantitative way. The diameter of the nanoparticles is below 250 nm yielding satisfactory encapsulation efficiency. The nanoparticles exhibit a biphasic drug release pattern in vitro over 15 days depending on the molecular weight of the hydrophobic part of the polymer matrix. These new systems where anti-cancer therapeutics like Taxol and iron oxide nanoparticles (IOs) are co-encapsulated into new facile polymeric nanoparticles, could be addressed as potential multifunctional vehicles for simultaneous drug delivery and targeting imaging as well as real time monitoring of therapeutic effects.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000319052000026 Publication Date 2013-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-5173; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.649 Times cited 29 Open Access
Notes Countatoms Approved Most recent IF: 3.649; 2013 IF: 3.785
Call Number UA @ lucian @ c:irua:107348 Serial 2374
Permanent link to this record
 

 
Author Filippousi, M.; Turner, S.; Leus, K.; Siafaka, P.I.; Tseligka, E.D.; Vandichel, M.; Nanaki, S.G.; Vizirianakis, I.S.; Bikiaris, D.N.; Van Der Voort, P.; Van Tendeloo, G.
Title Biocompatible Zr-based nanoscale MOFs coated with modified poly(epsilon-caprolactone) as anticancer drug carriers Type A1 Journal article
Year 2016 Publication International journal of pharmaceutics Abbreviated Journal Int J Pharmaceut
Volume 509 Issue 509 Pages 208-218
Keywords A1 Journal article; Pharmacology. Therapy; Electron microscopy for materials research (EMAT)
Abstract Nanoscale Zr-based metal organic frameworks (MOFs) UiO-66 and UiO-67 were studied as potential anticancer drug delivery vehicles. Two model drugs were used, hydrophobic paclitaxel and hydrophilic cisplatin, and were adsorbed onto/into the nano MOFs (NMOFs). The drug loaded MOFs were further encapsulated inside a modified poly(epsilon-caprolactone) with d-alpha-tocopheryl polyethylene glycol succinate polymeric matrix, in the form of microparticles, in order to prepare sustained release formulations and to reduce the drug toxicity. The drugs physical state and release rate was studied at 37 degrees C using Simulated Body Fluid. It was found that the drug release depends on the interaction between the MOFs and the drugs while the controlled release rates can be attributed to the microencapsulated formulations. The in vitro antitumor activity was assessed using HSC-3 (human oral squamous carcinoma; head and neck) and U-87 MG (human glioblastoma grade IV; astrocytoma) cancer cells. Cytotoxicity studies for both cell lines showed that the polymer coated, drug loaded MOFs exhibited better anticancer activity compared to free paclitaxel and cisplatin solutions at different concentrations.
Address EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000378949800022 Publication Date 2016-05-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-5173 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.649 Times cited 37 Open Access
Notes This work is performed within the framework of the IAP-P7/05. S.T. Gratefully acknowledges the Fund for Scientific Research Flanders (FWO). K.L. acknowledges the financial support from the Ghent University BOF postdoctoral grant 01P06813T and UGent GOA Grant 01G00710. Approved Most recent IF: 3.649
Call Number c:irua:134039 Serial 4088
Permanent link to this record
 

 
Author Eleftheriadis, G.K.; Filippousi, M.; Tsachouridou, V.; Darda, M.-A.; Sygellou, L.; Kontopoulou, I.; Bouropoulos, N.; Steriotis, T.; Charalambopoulou, G.; Vizirianakis, I.S.; Van Tendeloo, G.; Fatouros, D.G.
Title Evaluation of mesoporous carbon aerogels as carriers of the non-steroidal anti-inflammatory drug ibuprofen Type A1 Journal article
Year 2016 Publication International journal of pharmaceutics Abbreviated Journal Int J Pharmaceut
Volume 515 Issue 515 Pages 262-270
Keywords A1 Journal article; Pharmacology. Therapy; Electron microscopy for materials research (EMAT)
Abstract Towards the development of novel drug carriers for oral delivery of poorly soluble drugs mesoporous aerogel carbons (CAs), namely CA10 and CA20 with different pore sizes (10 and 20 nm, respectively), were evaluated. The non-steroidal anti-inflammatory lipophilic compound ibuprofen was incorporated via passive loading. The drug loaded carbon aerogels were systemically investigated by means of High-Resolution Transmission Electron Microscopy (HR-TEM), Nitrogen physisorption studies, X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), X-ray photon electron spectroscopy (XPS) and zeta-potential studies. In vitro release studies were performed in simulated intestinal fluids reflecting both fasted (FaSSIF) and fed (FeSSIF) state conditions. Cytotoxicity studies were conducted with human intestinal cells (Caco-2). Drug was in an amorphous state in the pores of the carbon carrier as shown from the physicochemical characterization studies. The results showed marked differences in the release profiles for ibuprofen from the two aerogels in the media tested whereas in vitro toxicity profiles appear to be compatible with potential therapeutic applications at low concentrations. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000389150700024 Publication Date 2016-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-5173 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.649 Times cited 7 Open Access
Notes Approved Most recent IF: 3.649
Call Number UA @ lucian @ c:irua:140231 Serial 4441
Permanent link to this record
 

 
Author Gorlé, C.; van Beeck, J.; Rambaud, P.; Van Tendeloo, G.
Title CFD modelling of small particle dispersion: the influence of the turbulence kinetic energy in the atmospheric boundary layer Type A1 Journal article
Year 2009 Publication Atmospheric environment : an international journal Abbreviated Journal Atmos Environ
Volume 43 Issue 3 Pages 673-681
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract When considering the modelling of small particle dispersion in the lower part of the Atmospheric Boundary Layer (ABL) using Reynolds Averaged Navier Stokes simulations, the particle paths depend on the velocity profile and on the turbulence kinetic energy, from which the fluctuating velocity components are derived to predict turbulent dispersion. It is therefore important to correctly reproduce the ABL, both for the velocity profile and the turbulence kinetic energy profile. For RANS simulations with the standard kå model, Richards and Hoxey (1993. Appropriate boundary conditions for computational wind engineering models using the kå turbulence model. Journal of Wind Engineering and Industrial Aerodynamics 4647, 145153.) proposed a set of boundary conditions which result in horizontally homogeneous profiles. The drawback of this method is that it assumes a constant profile of turbulence kinetic energy, which is not always consistent with field or wind tunnel measurements. Therefore, a method was developed which allows the modelling of a horizontally homogeneous turbulence kinetic energy profile that is varying with height. By comparing simulations performed with the proposed method to simulations performed with the boundary conditions described by Richards and Hoxey (1993. Appropriate boundary conditions for computational wind engineering models using the kå turbulence model. Journal of Wind Engineering and Industrial Aerodynamics 4647, 145153.), the influence of the turbulence kinetic energy on the dispersion of small particles over flat terrain is quantified.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000262737900023 Publication Date 2008-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1352-2310; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.629 Times cited 79 Open Access
Notes Iwt Approved Most recent IF: 3.629; 2009 IF: 3.139
Call Number UA @ lucian @ c:irua:76016 Serial 306
Permanent link to this record
 

 
Author García Sánchez, C.; Van Tendeloo, G.; Gorle, C.
Title Quantifying inflow uncertainties in RANS simulations of urban pollutant dispersion Type A1 Journal article
Year 2017 Publication Atmospheric environment : an international journal Abbreviated Journal Atmos Environ
Volume 161 Issue Pages 263-273
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Numerical simulations of flow and pollutant dispersion in urban environments have the potential to support design and policy decisions that could reduce the population's exposure to air pollution. Reynolds-averaged Navier-Stokes simulations are a common modeling technique for urban flow and dispersion, but several sources of uncertainty in the simulations can affect the accuracy of the results. The present study proposes a method to quantify the uncertainty related to variability in the inflow boundary conditions. The method is applied to predict flow and pollutant dispersion in downtown Oklahoma City and the results are compared to field measurements available from the Joint Urban 2003 measurement campaign. Three uncertain parameters that define the inflow profiles for velocity, turbulence kinetic energy and turbulence dissipation are defined: the velocity magnitude and direction, and the terrain roughness length. The uncertain parameter space is defined based on the available measurement data, and a non-intrusive propagation approach that employs 729 simulations is used to quantify the uncertainty in the simulation output. A variance based sensitivity analysis is performed to identify the most influential uncertain parameters, and it is shown that the predicted tracer concentrations are influenced by all three uncertain variables. Subsequently, we specify different probability distributions for the uncertain inflow variables based on the available measurement data and calculate the corresponding means and 95% confidence intervals for comparison with the field measurements at 35 locations in downtown Oklahoma City. (C) 2017 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000403515900025 Publication Date 2017-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.629 Times cited 17 Open Access OpenAccess
Notes ; The first author's contribution to this work was supported by the doctoral (PhD) grant number 131423 for strategic basic research from the Agency for Innovation by Science and Technology in Flanders (IWT). This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number CTS160009 (Towns et al., 2014). ; Approved Most recent IF: 3.629
Call Number UA @ lucian @ c:irua:145761 Serial 4749
Permanent link to this record
 

 
Author Meynen, V.; Cool, P.; Vansant, E.F.; Kortunov, P.; Grinberg, F.; Kärger, J.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.
Title Deposition of vanadium silicalite-1 nanoparticles on SBA-15 materials: structural and transport characteristics of SBA-VS-15 Type A1 Journal article
Year 2007 Publication Microporous and mesoporous materials Abbreviated Journal Micropor Mesopor Mat
Volume 99 Issue 1/2 Pages 14-22
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000243845200003 Publication Date 2006-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.615 Times cited 23 Open Access
Notes FWO; GOA; Inside-Pores NoE (FP-EU) Approved Most recent IF: 3.615; 2007 IF: 2.210
Call Number UA @ lucian @ c:irua:61567 Serial 647
Permanent link to this record
 

 
Author Ribbens, S.; Meynen, V.; Van Tendeloo, G.; Ke, X.; Mertens, M.; Maes, B.U.W.; Cool, P.; Vansant, E.F.
Title Development of photocatalytic efficient Ti-based nanotubes and nanoribbons by conventional and microwave assisted synthesis strategies Type A1 Journal article
Year 2008 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 114 Issue 1/3 Pages 401-409
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Organic synthesis (ORSY)
Abstract Titanate nanotubes were prepared via a hydrothermal treatment of TiO2 powders (Riedel De Haen) in a basic solution. Morphology and structure of the prepared samples were characterized by high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), XRD, FT-Raman spectroscopy, nitrogen sorption and DSC. The photocatalytic activity was evaluated by photocatalytic oxidation of rhodamine 6G. Trititanate nanotubes (TTNT) with inner pore diameters between 4 and 4.2 nm and surface areas up till 360 m(2)/g could be synthesized. The synthesis route was modified by introduction of a calcination step, by applying a lower hydrothermal temperature and microwave irradiation in order to increase the photocatalytic activity of the porous photoactive nanotubular materials. Calcination and a softer hydrothermal treatment led to the formation of anatase without affecting the surface area and nanotubular shape of the samples. In this way, the photocatalytic activity of the original trititanate nanotubes could be significantly increased. By making use of microwave assisted synthesis, the photocatalytic activity call also be increased due to the presence of anatase. However, by applying microwave synthesis, a different structure was obtained, nanoribbons (NR) instead of nanotubcs, resulting in a decrease in surface area and porosity.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000258432100040 Publication Date 2008-02-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.615 Times cited 47 Open Access
Notes Fwo; Crp (Ua) Approved Most recent IF: 3.615; 2008 IF: 2.555
Call Number UA @ lucian @ c:irua:69696 Serial 683
Permanent link to this record
 

 
Author Filippousi, M.; Turner, S.; Katsikini, M.; Pinakidou, F.; Zamboulis, D.; Pavlidou, E.; Van Tendeloo, G.
Title Direct observation and structural characterization of natural and metal ion-exchanged HEU-type zeolites Type A1 Journal article
Year 2015 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 210 Issue 210 Pages 185-193
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The atomic structure of natural HEU-type zeolite and two ion-exchanged variants of the zeolite, Ag+ (Ag-HEU) and Zn2+ (Zn-HEU) ion exchanged HEU-type zeolites, are investigated using advanced transmission electron microscopy techniques in combination with X-ray powder diffraction and X-ray absorption fine structure measurements. In both ion-exchanged materials, loading of the natural HEU zeolite is confirmed. Using low-voltage, aberration-corrected transmission electron microscopy at low-dose conditions, the local crystal structure of natural HEU-type zeolite is determined and the interaction of the ion-exchanged natural zeolites with the Ag+ and Zn2+ ions is studied. In the case of Ag-HEU, the presence of Ag+ ions and clusters at extra-framework sites as well as Ag nanoparticles has been confirmed. The Ag nanoparticles are preferentially positioned at the zeolite surface. For Zn-HEU, no large Zn(O) nanopartides are present, instead, the HEU channels are evidenced to be decorated by small Zn(O) clusters. (c) 2015 Elsevier Inc. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000353733300024 Publication Date 2015-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.615 Times cited 5 Open Access
Notes 246791 Countatoms; Iap-Pai; Fwo Approved Most recent IF: 3.615; 2015 IF: 3.453
Call Number c:irua:126006 Serial 715
Permanent link to this record
 

 
Author Stevens, W.J.J.; Mertens, M.; Mullens, S.; Thijs, I.; Van Tendeloo, G.; Cool, P.; Vansant, E.F.
Title Formation mechanism of SBA-16 spheres and control of their dimensions Type A1 Journal article
Year 2006 Publication Microporous and mesoporous materials Abbreviated Journal Micropor Mesopor Mat
Volume 93 Issue Pages 119-124
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000239252700014 Publication Date 2006-03-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.615 Times cited 34 Open Access
Notes Approved Most recent IF: 3.615; 2006 IF: 2.796
Call Number UA @ lucian @ c:irua:58822 Serial 1252
Permanent link to this record
 

 
Author van Oers, C.J.; Stevens, W.J.J.; Bruijn, E.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Meynen, V.; Cool, P.
Title Formation of a combined micro- and mesoporous material using zeolite Beta nanoparticles Type A1 Journal article
Year 2009 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 120 Issue 1/2 Pages 29-34
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Composite micro- and mesoporous materials are synthesized using zeolite Beta nanoparticles without the need for a structure directing agent to form the mesopores. This leads to important ecological and economical advantages. The influence of the way of cooling the aged nanoparticles solution on the formation of the composite materials has been studied. The materials have been characterized towards porosity by N2-sorption, towards zeolitic properties by TGA, DRIFT, XRD and TEM, towards aluminium content by EPMA. All prepared structures possess zeolitic properties. However, the method of cooling down of the aged seeds leads to differences in the porosity and intensity of the zeolitic characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000264619200006 Publication Date 2008-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.615 Times cited 42 Open Access
Notes Crp; Sfr Ua Approved Most recent IF: 3.615; 2009 IF: 2.652
Call Number UA @ lucian @ c:irua:74950 Serial 1254
Permanent link to this record
 

 
Author de Clippel, F.; Harkiolakis, A.; Vosch, T.; Ke, X.; Giebeler, L.; Oswald, S.; Houthoofd, K.; Jammaer, J.; Van Tendeloo, G.; Martens, J.A.; Jacobs, P.A.; Baron, G.V.; Sels, B.F.; Denayer, J.F.M.
Title Graphitic nanocrystals inside the pores of mesoporous silica : synthesis, characterization and an adsorption study Type A1 Journal article
Year 2011 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 144 Issue 1/3 Pages 120-133
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This work presents a new carbonsilica hybrid material, denoted as CSM, with remarkable sorption properties. It consists of intraporous graphitic nanocrystals grown in the pores of mesoporous silica. CSM is obtained by a subtle incipient wetness impregnation of Al-containing mesoporous silica with furfuryl alcohol (FA)/hemelitol solutions. Both the volume match of the impregnation solution with that of the silica template pore volume, and the presence of Al3+ in the silica, are crucial to polymerize FA selectively inside the mesopores. Carbonization of the intraporous polymer was then performed by pyrolysis under He up to 1273 K. The resulting CSMs were examined by SEM, HRTEM, 27Al MAS NMR, N2 adsorption, XRD, TGA, TPD, XPS, pycnometry and Raman spectroscopy. Mildly oxidized graphitic-like carbon nanoblocks, consisting of a few graphene-like sheets, were thus identified inside the template mesopores. Random stacking of these carbon crystallites generates microporosity resulting in biporous materials at low carbon content and microporous materials at high carbon loadings. Very narrow pore distributions were obtained when pyrolysis was carried out under slow heating rate, viz. 1 K min−1. Adsorption and shape selective properties of the carbon filled mesoporous silica were studied by performing pulse chromatography and breakthrough experiments, and by measuring adsorption isotherms of linear and branched alkanes. Whereas the parent mesoporous silica shows unselective adsorption, their CSM analogues preferentially adsorb linear alkanes. The sorption capacity and selectivity can be adjusted by changing the pore size of the template or by varying the synthesis conditions. A relation between the carbon crystallites size and the shape selective behaviour of the corresponding CSM for instance is demonstrated. Most interestingly, CSM shows separation factors for linear and branched alkanes up to values comparable to those of zeolitic molecular sieves.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000293435400016 Publication Date 2011-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.615 Times cited 15 Open Access
Notes Approved Most recent IF: 3.615; 2011 IF: 3.285
Call Number UA @ lucian @ c:irua:92325 Serial 1380
Permanent link to this record
 

 
Author Wiktor, C.; Turner, S.; Zacher, D.; Fischer, R.A.; Van Tendeloo, G.
Title Imaging of intact MOF-5 nanocrystals by advanced TEM at liquid Type A1 Journal article
Year 2012 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 162 Issue Pages 131-135
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract First results on the imaging of intact metalorganic framework (MOF) pores in MOF-5 nanocrystals by aberration corrected transmission electron microscopy (TEM) under liquid nitrogen conditions are presented. The applied technique is certainly transferable to other MOF systems, permitting detailed studies of MOF interfaces, MOFnanoparticle interaction and MOF thin films.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000308284800018 Publication Date 2012-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.615 Times cited 30 Open Access
Notes Fwo Approved Most recent IF: 3.615; 2012 IF: 3.365
Call Number UA @ lucian @ c:irua:100467 Serial 1554
Permanent link to this record
 

 
Author Seftel, E.M.; Popovici, E.; Mertens, M.; Van Tendeloo, G.; Cool, P.; Vansant, E.
Title The influence of the cationic ratio on the incorporation of Ti4+ in the brucite-like sheets of layered double hydroxides Type A1 Journal article
Year 2008 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 111 Issue 1-3 Pages 12-17
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000255847100004 Publication Date 2007-07-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.615 Times cited 29 Open Access
Notes Approved Most recent IF: 3.615; 2008 IF: 2.555
Call Number UA @ lucian @ c:irua:69136 Serial 1644
Permanent link to this record
 

 
Author de Witte, K.; Busuioc, A.M.; Meynen, V.; Mertens, M.; Bilba, N.; Van Tendeloo, G.; Cool, P.; Vansant, E.F.
Title Influence of the synthesis parameters of TiO2-SBA-15 materials on the adsorption and photodegradation of rhodamine-6G Type A1 Journal article
Year 2008 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 110 Issue 1 Pages 100-110
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000254056200013 Publication Date 2007-10-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.615 Times cited 54 Open Access
Notes Approved Most recent IF: 3.615; 2008 IF: 2.555
Call Number UA @ lucian @ c:irua:68280 Serial 1654
Permanent link to this record
 

 
Author Liu, S.; Lebedev, O.I.; Mertens, M.; Meynen, V.; Cool, P.; Van Tendeloo, G.; Vansant, E.F.
Title The merging of silica-surfactant microspheres under hydrothermal conditions Type A1 Journal article
Year 2008 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 116 Issue Pages 141-146
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Post-synthesis hydrothermal treatments have been used to improve the quality of MCM-41 materials. In our latest work, merging of surfactant-containing silica microspheres during the hydrothermal treatments was observed. Mechanistic insights and the different stages that are involved in the merging process can be summarized as follows. First, the surfaces of the starting microspheres open up due to the dissolution of silica. Then the dissolved silica species provide mass source for the formation of particle necks connecting two neighboring microspheres. Gradually, surfaces of the starting microspheres are flattened to meet the needs of further growth of the necks. Finally, some chain-like highly-ordered mesoporous structures up to several micrometers are formed. The observed merging of the surfactant-containing microspheres is a re-assembling process, which is under the control of electrostatic force between the dissolved silica species and the surfactant cations. The occluded surfactant cations in the precursor spheres play important roles in the merging process.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000261133600021 Publication Date 2008-04-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.615 Times cited 5 Open Access
Notes Fwo; Goa Approved Most recent IF: 3.615; 2008 IF: 2.555
Call Number UA @ lucian @ c:irua:72021 Serial 1997
Permanent link to this record
 

 
Author Stevens, W.J.J.; Meynen, V.; Bruijn, E.; Lebedev, O.I.; Van Tendeloo, G.; Cool, P.; Vansant, E.F.
Title Mesoporous material formed by acidic hydrothermal assembly of silicalite-1 precursor nanoparticles in the absence of meso-templates Type A1 Journal article
Year 2008 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 110 Issue 1 Pages 77-85
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000254056200010 Publication Date 2007-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.615 Times cited 21 Open Access
Notes Fwo; Crp; Inside-Pores Approved Most recent IF: 3.615; 2008 IF: 2.555
Call Number UA @ lucian @ c:irua:68229 Serial 1998
Permanent link to this record
 

 
Author Blin, J.L.; Becue, A.; Pauwels, B.; Van Tendeloo, G.; Su, B.L.
Title Non-ionic surfactant (C13EOm, m=6, 12 and 18) for large pore mesoporous molecular sieves preparation Type A1 Journal article
Year 2001 Publication Microporous and mesoporous materials Abbreviated Journal Micropor Mesopor Mat
Volume 44/45 Issue Pages 41-51
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000169557700007 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.615 Times cited 27 Open Access
Notes Approved Most recent IF: 3.615; 2001 IF: 2.497
Call Number UA @ lucian @ c:irua:54789 Serial 2346
Permanent link to this record
 

 
Author Cheng, J.-P.; Zhang, X.B.; Ye, Y.; Tu, J.P.; Liu, F.; Tao, X.Y.; Geise, H.J.; Van Tendeloo, G.
Title Production of carbon nanotubes with marine manganese nodule as a versatile catalyst Type A1 Journal article
Year 2005 Publication Microporous and mesoporous materials Abbreviated Journal Micropor Mesopor Mat
Volume 81 Issue Pages 73-78
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000229665200008 Publication Date 2005-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.615 Times cited 20 Open Access
Notes Approved Most recent IF: 3.615; 2005 IF: 3.355
Call Number UA @ lucian @ c:irua:54791 Serial 2722
Permanent link to this record
 

 
Author Verlooy, P.L.H.; Robeyns, K.; van Meervelt, L.; Lebedev, O.I.; Van Tendeloo, G.; Martens, J.A.; Kirschhock, C.E.A.
Title Synthesis and characterization of the new cyclosilicate hydrate (hexamethyleneimine)4.[Si8O16(OH)4].12H2O Type A1 Journal article
Year 2010 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 130 Issue 1/3 Pages 14-20
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new cyclosilicate hydrate with composition (C6H14N)4·[Si8O16(OH)4]·12H2O was crystallized and the structure determined by single-crystal X-ray diffraction. The structure, described by the tetragonal space group I41/a, with unit cell dimensions of a = 39.2150(2) Å and c = 14.1553(2) Å, contains columns of hydrogen-bonded cubic octamer silicate anions. The space between silicate columns holds hydrogen-bonded water and protonated hexamethyleneimine molecules compensating the negative charge of the silicate. The crystal water can be removed resulting in a rearrangement of the columns into orthorhombic symmetry. Removal of the organic moiety causes amorphisation. Flash evacuation results in a new microporous material with pore volumes typical of a zeolite.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000275702600003 Publication Date 2009-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.615 Times cited 5 Open Access
Notes Approved Most recent IF: 3.615; 2010 IF: 3.220
Call Number UA @ lucian @ c:irua:82448 Serial 3418
Permanent link to this record
 

 
Author Ribbens, S.; Beyers, E.; Schellens, K.; Mertens, M.; Ke, X.; Bals, S.; Van Tendeloo, G.; Meynen, V.; Cool, P.
Title Systematic evaluation of thermal and mechanical stability of different commercial and synthetic photocatalysts in relation to their photocatalytic activity Type A1 Journal article
Year 2012 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 156 Issue Pages 62-72
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract The effect of thermal treatment and mechanical stress on the structural and photocatalytic properties of eight different (synthetic and commercial) photocatalysts has been thoroughly investigated. Different mesoporous Ti-based materials were prepared via surfactant based synthesis routes (e.g. Pluronic 123, CTMABr = Cetyltrimethylammonium bromide) or via template-free synthesis routes (e.g. trititanate nanotubes). Also, the stabilizing effect of the NaOH/NH4OH post-treatment on the templated mesoporous materials and their photocatalytic activity was investigated. Furthermore, the thermal and mechanical properties of commercially available titanium dioxides such as P25 Evonik® and Millenium PC500® were studied. The various photocatalysts were analyzed with N2-sorption, X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) to obtain information concerning the specific surface area, pore volume, crystal structure, morphology, phase transitions, etc. In general, results show that the NaOH post-treatment leads to an increased control of the crystallization process during calcination resulting in a higher thermal stability, but at the same time diminishes the photocatalytic activity. Mesoporous materials in which pre-synthesized nanoparticles are used as titania source have the best mechanical stability whereas the mechanical stability of the nanotubes is the most limited. At increased temperatures and pressures, the tested commercial titanium dioxides lose their superior photocatalytic activity caused by a decreased accessibility of the active sites. The observed changes in adsorption capacities and photocatalytic activities cannot be assigned to one single phenomenon. In this respect, it shows the need to define a general/standard method to compare different photocatalysts. Furthermore, it is shown that the photocatalytic properties do not necessarily deteriorate under thermal stress, but can be improved due to crystallization, even though the initial material is (partially) destroyed. It is shown that the usefulness of a specific type of photocatalyst strongly depends on the application and the temperature/pressure to which it needs to resist.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000303625200010 Publication Date 2012-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.615 Times cited 8 Open Access
Notes Fwo Approved Most recent IF: 3.615; 2012 IF: 3.365
Call Number UA @ lucian @ c:irua:96910 Serial 3466
Permanent link to this record
 

 
Author Chemchuen, S.; Zhou, K.; Kabir, N.A.; Chen, Y.; Ke, X.; Van Tendeloo, G.; Verpoort, F.
Title Tuning metal sites of DABCO MOF for gas purification at ambient conditions Type A1 Journal article
Year 2015 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 201 Issue 201 Pages 277-285
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Metalorganic frameworks (MOFs) have emerged as new porous materials for capture and separation of binary gas mixtures. Tuning the metal sites in MOF structures has an impact on properties, which enhance affinity of gas adsorption and selectivity (e.g., surface area, cavity, electric field, etc.). The synthesis and characterization of a M-DABCO series (M = Ni, Co, Cu, Zn) of MOFs are described in this study. The experiments were conducted using multicomponent gas mixtures and the Ideal Adsorbed Solution Theory (IAST) was applied to determine the CO2/CH4 selectivity. Experimental adsorption isotherms were fitted with a model equation to evaluate the characteristic adsorption energy (Isosteric, Qst) of this series. The Ni metal in the M-DABCO series reveals the best performance concerning CO2 adsorption and CH4/CO2 selectivity at ambient conditions based on IAST calculations. The combination of characterizations, calculations and adsorption experiments were used to discuss the metal impact on the adsorption sites in the M-DABCO series at ambient conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000345185200030 Publication Date 2014-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.615 Times cited 38 Open Access
Notes 246791-Countatoms Approved Most recent IF: 3.615; 2015 IF: 3.453
Call Number c:irua:120473 Serial 3748
Permanent link to this record
 

 
Author Seftel, E.M.; Popovici, E.; Mertens, M.; de Witte, K.; Van Tendeloo, G.; Cool, P.; Vansant, E.F.
Title Zn-Al layered double hydroxides: synthesis, characterization and photocatalytic application Type A1 Journal article
Year 2008 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 113 Issue 1/3 Pages 296-304
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000257362100035 Publication Date 2007-12-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.615 Times cited 154 Open Access
Notes Approved Most recent IF: 3.615; 2008 IF: 2.555
Call Number UA @ lucian @ c:irua:68281 Serial 3934
Permanent link to this record
 

 
Author Celentano, G.; Rizzo, F.; Augieri, A.; Mancini, A.; Pinto, V.; Rufoloni, A.; Vannozzi, A.; MacManus-Driscoll, J.L.; Feighan, J.; Kursumovic, A.; Meledin, A.; Mayer, J.; Van Tendeloo, G.
Title YBa2Cu3O7−xfilms with Ba2Y(Nb,Ta)O6nanoinclusions for high-field applications Type A1 Journal article
Year 2020 Publication Superconductor Science & Technology Abbreviated Journal Supercond Sci Tech
Volume 33 Issue 4 Pages 044010
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The structural and transport properties of YBa2Cu3O7−x films grown by pulsed laser deposition with mixed 2.5 mol% Ba2YTaO6 (BYTO) and 2.5 mol% Ba2YNbO6 (BYNO) double-perovskite secondary phases are investigated in an extended film growth rate, R = 0.02–1.8 nm s−1. The effect of R on the film microstructure analyzed by TEM techniques shows an evolution from sparse and straight to denser, thinner and splayed continuous columns, with mixed BYNO + BYTO (BYNTO) composition, as R increases from 0.02 nm s−1 to 1.2 nm s−1. This microstructure results in very efficient flux pinning at 77 K, leading to a remarkable improvement in the critical current density (J c) behaviour, with the maximum pinning force density F p(Max) = 13.5 GN m−3 and the irreversibility field in excess of 11 T. In this range, the magnetic field values at which the F p is maximized varies from 1 T to 5 T, being related to the BYNTO columnar density. The film deposited when R = 0.3 nm s−1 exhibits the best performances over the whole temperature and magnetic field ranges, achieving F p(Max) = 900 GN m−3 at 10 K and 12 T. At higher rates, R > 1.2 nm s−1, BYNTO columns show a meandering nature and are prone to form short nanorods. In addition, in the YBCO film matrix a more disordered structure with a high density of short stacking faults is observed. From the analysis of the F p(H, T) curves it emerges that in films deposited at the high R limit, the vortex pinning is no longer dominated by BYNTO columnar defects, but by a new mechanism showing the typical temperature scaling law. Even though this microstructure produces a limited improvement at 77 K, it exhibits a strong J c improvement at lower temperature with F p = 700 GN m−3 at 10 K, 12 T and 900 GN m−3 at 4.2 K, 18 T.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000525650500001 Publication Date 2020-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.6 Times cited Open Access OpenAccess
Notes This work was partially financially supported by EUROTAPES, a collaborative project funded by the European Commission’s Seventh Framework Program (FP7/2007–2013) under Grant Agreement No. 280432. This work has been partially carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom programme 2014-2018 and 2019-2020 under grant agreement N° 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3 (Nano-engineered YBCO Superconducting Tapes for High Field Applications, NESTApp). G. C. acknowledges the support of Michele De Angelis for XRD measurements and calculations. Approved Most recent IF: 3.6; 2020 IF: 2.878
Call Number UA @ lucian @c:irua:168582 Serial 6394
Permanent link to this record