|   | 
Details
   web
Records
Author Bogaerts, A.; Neyts, E.; Gijbels, R.; van der Mullen, J.
Title Gas discharge plasmas and their applications Type A1 Journal article
Year 2002 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 57 Issue Pages 609-658
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000175779700001 Publication Date 2002-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.241 Times cited 462 Open Access
Notes Approved Most recent IF: 3.241; 2002 IF: 2.695
Call Number UA @ lucian @ c:irua:40181 Serial 1317
Permanent link to this record
 

 
Author Baguer, N.; Bogaerts, A.; Gijbels, R.
Title Hybrid model for a cylindrical hollow cathode glow discharge and comparison with experiments Type A1 Journal article
Year 2002 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 57 Issue Pages 311-326
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000174639800008 Publication Date 2002-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.241 Times cited 31 Open Access
Notes Approved Most recent IF: 3.241; 2002 IF: 2.695
Call Number UA @ lucian @ c:irua:40180 Serial 1521
Permanent link to this record
 

 
Author Bogaerts, A.
Title Hybrid Monte Carlo: fluid model for studying the effects of nitrogen addition to argon glow discharges Type A1 Journal article
Year 2009 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 64 Issue 2 Pages 126-140
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A computer model is developed for describing argon/nitrogen glow discharges. The species taken into account in the model include electrons, Ar atoms in the ground state and in the 4s metastable levels, N2 molecules in the ground state and in six different electronically excited levels, N atoms, Ar+ ions, N+, N2+, N3+ and N4+ ions. The fast electrons are simulated with a Monte Carlo model, whereas all other species are treated in a fluid model. 74 different chemical reactions are considered in the model. The calculation results include the densities of all the different plasma species, as well as information on their production and loss processes. The effect of different N2 additions, in the range between 0.1 and 10%, is investigated.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000263621300002 Publication Date 2008-12-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.241 Times cited 49 Open Access
Notes Approved Most recent IF: 3.241; 2009 IF: 2.719
Call Number UA @ lucian @ c:irua:72829 Serial 1525
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Hybrid Monte-Carlo-fluid modeling network for an argon/hydrogen direct current glow discharge Type A1 Journal article
Year 2002 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 57 Issue Pages 1071-1099
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000177673200006 Publication Date 2002-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.241 Times cited 68 Open Access
Notes Approved Most recent IF: 3.241; 2002 IF: 2.695
Call Number UA @ lucian @ c:irua:40182 Serial 1527
Permanent link to this record
 

 
Author Bogaerts, A.; Chen, Z.; Gijbels, R.; Vertes, A.
Title Laser ablation for analytical sampling: what can we learn from modeling? Type A1 Journal article
Year 2003 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 58 Issue Pages 1867-1893
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000187237900001 Publication Date 2003-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.241 Times cited 321 Open Access
Notes Approved Most recent IF: 3.241; 2003 IF: 2.361
Call Number UA @ lucian @ c:irua:44023 Serial 1783
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.; Vlcek, J.
Title Modeling of glow discharge optical emission spectrometry: calculation of the argon atomic optical emission spectrum Type A1 Journal article
Year 1998 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 53 Issue Pages 1517-1526
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000076626500003 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.241 Times cited 44 Open Access
Notes Approved Most recent IF: 3.241; 1998 IF: 2.758
Call Number UA @ lucian @ c:irua:24125 Serial 2124
Permanent link to this record
 

 
Author Martín, A.; Bordel, N.; Pereiro, R.; Bogaerts, A.
Title Monte Carlo analysis of the electron thermalization process in the afterglow of a microsecond dc pulsed glow discharge Type A1 Journal article
Year 2008 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 63 Issue 11 Pages 1274-1282
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A Monte Carlo model is utilized for studying the behavior of electrons in the afterglow of an analytical microsecond dc pulsed glow discharge. This model uses several quantities as input data, such as electric field and potential, ion flux at the cathode, the fast argon ion and atom impact ionization rates, slow electron density, the electrical characterization of the pulse (voltage and current profiles) and temperature profile. These quantities were obtained by earlier Monte Carlo fluid calculations for a pulsed discharge. Our goal is to study the behavior of the so-called Monte Carlo electrons (i.e., those electrons created at the cathode or by ionization collisions in the plasma which are followed by using the Monte Carlo model) from their origin to the moment when they are absorbed at the cell walls or when they have lost their energy by collisions (being transferred to the group of slow electrons) in the afterglow of the pulsed discharge. The thermalization of the electrons is a phenomenon where the electron-electron Coulomb collisions acquire a special importance. Indeed, in the afterglow the cross sections of the other electron reactions taken into account in the model are very low, because of the very low electron energy. We study the electron energy distributions at several times during and after the pulse and at several positions in the plasma cell, focusing on the thermalization and on the behavior of the electrons in the afterglow. Also, the time evolution of the rates of the various collision processes, the average electron energy, the densities of Monte Carlo and slow electrons and the ionization degree are investigated.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000261905500008 Publication Date 2008-10-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.241 Times cited 9 Open Access
Notes Approved Most recent IF: 3.241; 2008 IF: 2.853
Call Number UA @ lucian @ c:irua:71271 Serial 2195
Permanent link to this record
 

 
Author Lindner, H.; Bogaerts, A.
Title Multi-element model for the simulation of inductively coupled plasmas : effects of helium addition to the central gas stream Type A1 Journal article
Year 2011 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 66 Issue 6 Pages 421-431
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A model for an atmospheric pressure inductively coupled plasma (ICP) is developed which allows rather easy extension to a variable number of species and ionisation degrees. This encompasses an easy calculation of transport parameters for mixtures, ionisation and heat capacity. The ICP is modeled in an axisymmetric geometry, taking into account the gas streaming into a flowing ambient gas. A mixture of argon and helium is applied in the injector gas stream as it is often done in laser ablation ICP spectrometry. The results show a strong influence of the added helium on the center of the ICP, which is important for chemical analysis. The length of the central channel is significantly increased and the temperature inside is significantly higher than in the case of pure argon. This means that higher gas volume flow rates can be applied by addition of helium compared to the use of pure argon. This has the advantage that the gas velocity in the transport system towards the ICP can be increased, which allows shorter washout-times. Consequently, shorter measurement times can be achieved, e.g. for spatial mapping analyses in laser ablation ICP spectrometry. Furthermore, the higher temperature and the longer effective plasma length will increase the maximum size of droplets or particles injected into the ICP that are completely evaporated at the detection site. Thus, we expect an increase of the analytical performance of the ICP by helium addition to the injector gas.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000293488700003 Publication Date 2011-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.241 Times cited 28 Open Access
Notes Approved Most recent IF: 3.241; 2011 IF: 2.876
Call Number UA @ lucian @ c:irua:90190 Serial 2209
Permanent link to this record
 

 
Author Bleiner, D.; Bogaerts, A.
Title Multiplicity and contiguity of ablation mechanisms in laser-assisted analytical micro-sampling Type A1 Journal article
Year 2006 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 61 Issue 4 Pages 421-432
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000238887600008 Publication Date 2006-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.241 Times cited 48 Open Access
Notes Approved Most recent IF: 3.241; 2006 IF: 3.092
Call Number UA @ lucian @ c:irua:58156 Serial 2234
Permanent link to this record
 

 
Author Aghaei, M.; Lindner, H.; Bogaerts, A.
Title Optimization of operating parameters for inductively coupled plasma mass spectrometry : a computational study Type A1 Journal article
Year 2012 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 76 Issue Pages 56-64
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract An inductively coupled plasma, connected to a mass spectrometer interface, is computationally investigated. The effect of pressure behind the sampler, injector gas flow rate, auxiliary gas flow rate, and applied power is studied. There seems to be an optimum range of injector gas flow rate for each setup which guaranties the presence and also a proper length of the central channel in the torch. Moreover, our modeling results show that for any specific purpose, it is possible to control that either only the central gas flow passes through the sampler orifice or that it is accompanied by the auxiliary gas flow. It was also found that depending on geometry, the variation of outgoing gas flow rate is much less than the variation of the injector gas flow rate and this causes a slightly higher pressure inside the torch. The general effect of increasing the applied power is a rise in the plasma temperature, which results in a higher ionization in the coil region. However, the negative effect is reducing the length of the cool central channel which is important to transfer the sample substances to the sampler. Using a proper applied power can enhance the efficiency of the system. Indeed, by changing the gas path lines, the power can control which flow (i.e., only from injector gas or also from the auxiliary gas) goes to the sampler orifice. Finally, as also reported from experiments in literature, the pressure behind the sampler has no dramatic effect on the plasma characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000311008600008 Publication Date 2012-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.241 Times cited 18 Open Access
Notes Approved Most recent IF: 3.241; 2012 IF: 3.141
Call Number UA @ lucian @ c:irua:101356 Serial 2488
Permanent link to this record
 

 
Author Bogaerts, A.; Wagner, E.; Smith, B.W.; Winefordner, J.D.; Pollmann, D.; Harrison, W.W.; Gijbels, R.
Title Three-dimensional density profiles of sputtered atoms and ions in a direct current glow discharge: experimental study and comparison with calculations Type A1 Journal article
Year 1997 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 52 Issue 2 Pages 205-218
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos A1997WR97300006 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; 0038-6987 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.241 Times cited 46 Open Access
Notes Approved Most recent IF: 3.241; 1997 IF: 2.448
Call Number UA @ lucian @ c:irua:19594 Serial 3648
Permanent link to this record
 

 
Author Bogaerts, A.; Guenard, R.D.; Smith, B.W.; Winefordner, J.D.; Harrison, W.W.; Gijbels, R.
Title Three-dimensional density profiles of the argon metastable atoms in a direct current glow discharge: experimental study and comparison with calculations Type A1 Journal article
Year 1997 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 52 Issue 2 Pages 219-229
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos A1997WR97300007 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; 0038-6987 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.241 Times cited 36 Open Access
Notes Approved Most recent IF: 3.241; 1997 IF: 2.448
Call Number UA @ lucian @ c:irua:19598 Serial 3649
Permanent link to this record
 

 
Author Vanraes, P.; Bogaerts, A.
Title Laser-induced excitation mechanisms and phase transitions in spectrochemical analysis – Review of the fundamentals Type A1 Journal article
Year 2021 Publication Spectrochimica Acta Part B-Atomic Spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 179 Issue Pages 106091
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nowadays, lasers are commonly applied in spectrochemical analysis methods, for sampling, plasma formation or a combination of both. Despite the numerous investigations that have been performed on these applications, the underlying processes are still insufficiently understood. In order to fasten progress in the field and in honor of the lifework of professor Rick Russo, we here provide a brief overview of the fundamental mechanisms in lasermatter interaction as proposed in literature, and throw the spotlight on some aspects that have not received much attention yet. For an organized discussion, we choose laser ablation, laser desorption and the associated gaseous plasma formation as the central processes in this perspective article, based on a classification of the laserbased spectrochemical analysis techniques and the corresponding laser-matter interaction regimes. First, we put the looking glass over the excitation and thermalization mechanisms in the laser-irradiated condensed phase, for which we propose the so-called multi-plasma model. This novel model can be understood as an extension of the well-known two-temperature model, featuring multiple thermodynamic dimensions, each of which corresponds to a quasi-particle type. Next, the focus is placed on the mass transfer and ionization mechanisms, after which we shortly highlight the possible role of anisotropic and magnetic effects in the laser-excited material. We hope this perspective article motivates more fundamental research on laser-matter interaction, as a continuation of the lifework of Rick Russo.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000631868700005 Publication Date 2021-03-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.241 Times cited Open Access OpenAccess
Notes University of Antwerp; We acknowledge funding by a University of Antwerp BOF grant and by a University of Antwerp Methusalem grant. Approved Most recent IF: 3.241
Call Number PLASMANT @ plasmant @c:irua:176876 Serial 6710
Permanent link to this record
 

 
Author Cordeiro, R.M.; Yusupov, M.; Razzokov, J.; Bogaerts, A.
Title Parametrization and Molecular Dynamics Simulations of Nitrogen Oxyanions and Oxyacids for Applications in Atmospheric and Biomolecular Sciences Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry B Abbreviated Journal J Phys Chem B
Volume 124 Issue 6 Pages 1082-1089
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nitrogen oxyanions and oxyacids are important agents in atmospheric chemistry and medical biology. Although their chemical behavior in solution is relatively well understood, they may behave very differently at the water/air interface of atmospheric aerosols or at the membrane/water interface of cells. Here, we developed a fully classical model for molecular dynamics simulations of NO3−, NO2−, HNO3, and HNO2 in the framework of the GROMOS 53A6 and 54A7 force field versions. The model successfully accounted for the poorly structured solvation shell and ion pairing tendency of NO3−. Accurate pure-liquid properties and hydration free energies were obtained for the oxyacids. Simulations at the water/air interface showed a local enrichment of HNO3 and depletion of NO3−. The effect was discussed in light of earlier spectroscopic data and ab initio calculations, suggesting that HNO3 behaves as a weaker acid at the surface of water. Our model will hopefully allow for efficient and accurate simulations of nitrogen oxyanions and oxyacids in solution and at microheterogeneous interface environments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000512222500015 Publication Date 2020-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1520-6106 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.3 Times cited Open Access
Notes We thank Universidade Federal do ABC for providing the computational resources needed for completion of this work. This study was financed in part by the Coordenaçaõ de Aperfeiçoamento de Pessoal de Nı ́vel Superior – Brasil (CAPES) – Finance Code 001. Approved Most recent IF: 3.3; 2020 IF: 3.177
Call Number PLASMANT @ plasmant @c:irua:166488 Serial 6340
Permanent link to this record
 

 
Author Kolev, S.; Bogaerts, A.
Title A 2D model for a gliding arc discharge Type A1 Journal article
Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 24 Issue 24 Pages 015025
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this study we report on a 2D fluid model of a gliding arc discharge in argon. Despite the 3D nature of the discharge, 2D models are found to be capable of providing very useful information about the operation of the discharge. We employ two modelsan axisymmetric and a Cartesian one. We show that for the considered experiment and the conditions of a low current arc (around 30 mA) in argon, there is no significant heating of the cathode surface and the discharge is sustained by field electron emission from the cathode accompanied by the formation of a cathode spot. The obtained discharge power and voltage are relatively sensitive to the surface properties and particularly to the surface roughness, causing effectively an amplification of the normal electric field. The arc body and anode region are not influenced by this and depend mainly on the current value. The gliding of the arc is modelled by means of a 2D Cartesian model. The arcelectrode contact points are analysed and the gliding mechanism along the electrode surface is discussed. Following experimental observations, the cathode spot is simulated as jumping from one point to another. A complete arc cycle is modelled from initial ignition to arc decay. The results show that there is no interaction between the successive gliding arcs.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000348298200026 Publication Date 2014-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.302 Times cited 34 Open Access
Notes Approved Most recent IF: 3.302; 2015 IF: 3.591
Call Number c:irua:122538 c:irua:122538 c:irua:122538 c:irua:122538 Serial 3
Permanent link to this record
 

 
Author Bultinck, E.; Bogaerts, A.
Title Characterization of an Ar/O2 magnetron plasma by a multi-species Monte Carlo model Type A1 Journal article
Year 2011 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 20 Issue 4 Pages 045013-045013,12
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A combined Monte Carlo (MC)/analytical surface model is developed to study the plasma processes occurring during the reactive sputter deposition of TiOx thin films. This model describes the important plasma species with a MC approach (i.e. electrons, Ar+ ions, {\rm O}_2
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000295829800015 Publication Date 2011-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.302 Times cited 7 Open Access
Notes Approved Most recent IF: 3.302; 2011 IF: 2.521
Call Number UA @ lucian @ c:irua:89732 Serial 316
Permanent link to this record
 

 
Author Bogaerts, A.
Title Comprehensive modelling network for dc glow discharges in argon Type A1 Journal article
Year 1999 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 8 Issue Pages 210-229
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000080660600004 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.302 Times cited 27 Open Access
Notes Approved Most recent IF: 3.302; 1999 IF: 2.038
Call Number UA @ lucian @ c:irua:24129 Serial 451
Permanent link to this record
 

 
Author Tinck, S.; Bogaerts, A.
Title Computer simulations of an oxygen inductively coupled plasma used for plasma-assisted atomic layer deposition Type A1 Journal article
Year 2011 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 20 Issue 1 Pages 015008-015008,10
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, an O2 inductively coupled plasma used for plasma enhanced atomic layer deposition of Al2O3 thin films is investigated by means of modeling. This work intends to provide more information about basic plasma properties such as species densities and species fluxes to the substrate as a function of power and pressure, which might be hard to measure experimentally. For this purpose, a hybrid model developed by Kushner et al is applied to calculate the plasma characteristics in the reactor volume for different chamber pressures ranging from 1 to 10 mTorr and different coil powers ranging from 50 to 500 W. Density profiles of the various oxygen containing plasma species are reported as well as fluxes to the substrate under various operating conditions. Furthermore, different orientations of the substrate, which can be placed vertically or horizontally in the reactor, are taken into account. In addition, special attention is paid to the recombination process of atomic oxygen on the different reactor walls under the stated operating conditions. From this work it can be concluded that the plasma properties change significantly in different locations of the reactor. The plasma density near the cylindrical coil is high, while it is almost negligible in the neighborhood of the substrate. Ion and excited species fluxes to the substrate are found to be very low and negligible. Finally, the orientation of the substrate has a minor effect on the flux of O2, while it has a significant effect on the flux of O. In the horizontal configuration, the flux of atomic oxygen can be up to one order of magnitude lower than in the vertical configuration.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000286592200009 Publication Date 2011-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.302 Times cited 11 Open Access
Notes Approved Most recent IF: 3.302; 2011 IF: 2.521
Call Number UA @ lucian @ c:irua:85285 Serial 467
Permanent link to this record
 

 
Author Paulussen, S.; Verheyde, B.; Tu, X.; De Bie, C.; Martens, T.; Petrovic, D.; Bogaerts, A.; Sels, B.
Title Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges Type A1 Journal article
Year 2010 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 19 Issue 3 Pages 034015,1-034015,6
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The aim of this work consists of the evaluation of atmospheric pressure dielectric barrier discharges for the conversion of greenhouse gases into useful compounds. Therefore, pure CO2 feed flows are administered to the discharge zone at varying discharge frequency, power input, gas temperature and feed flow rates, aiming at the formation of CO and O2. The discharge obtained in CO2 is characterized as a filamentary mode with a microdischarge zone in each half cycle of the applied voltage. It is shown that the most important parameter affecting the CO2-conversion levels is the gas flow rate. At low flow rates, both the conversion and the CO-yield are significantly higher. In addition, also an increase in the gas temperature and the power input give rise to higher conversion levels, although the effect on the CO-yield is limited. The optimum discharge frequency depends on the power input level and it cannot be unambiguously stated that higher frequencies give rise to increased conversion levels. A maximum CO2 conversion of 30% is achieved at a flow rate of 0.05 L min−1, a power density of 14.75 W cm−3 and a frequency of 60 kHz. The most energy efficient conversions are achieved at a flow rate of 0.2 L min−1, a power density of 11 W cm−3 and a discharge frequency of 30 kHz.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000277982800016 Publication Date 2010-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.302 Times cited 116 Open Access
Notes Approved Most recent IF: 3.302; 2010 IF: 2.218
Call Number UA @ lucian @ c:irua:82408 Serial 512
Permanent link to this record
 

 
Author De Bie, C.; Martens, T.; van Dijk, J.; Paulussen, S.; Verheyde, B.; Corthals, S.; Bogaerts, A.
Title Dielectric barrier discharges used for the conversion of greenhouse gases: modeling the plasma chemistry by fluid simulations Type A1 Journal article
Year 2011 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 20 Issue 2 Pages 024008,1-024008,11
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The conversion of methane to value-added chemicals and fuels is considered to be one of the challenges of the 21st century. In this paper we study, by means of fluid modeling, the conversion of methane to higher hydrocarbons or oxygenates by partial oxidation with CO2 or O2 in a dielectric barrier discharge. Sixty-nine different plasma species (electrons, ions, molecules, radicals) are included in the model, as well as a comprehensive set of chemical reactions. The calculation results presented in this paper include the conversion of the reactants and the yields of the reaction products as a function of residence time in the reactor, for different gas mixing ratios. Syngas (i.e. H2 + CO) and higher hydrocarbons (C2Hx) are typically found to be important reaction products.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000290719900009 Publication Date 2011-04-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.302 Times cited 38 Open Access
Notes Approved Most recent IF: 3.302; 2011 IF: 2.521
Call Number UA @ lucian @ c:irua:87868 Serial 689
Permanent link to this record
 

 
Author Peerenboom, K.; Parente, A.; Kozák, T.; Bogaerts, A.; Degrez, G.
Title Dimension reduction of non-equilibrium plasma kinetic models using principal component analysis Type A1 Journal article
Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 24 Issue 24 Pages 025004
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The chemical complexity of non-equilibrium plasmas poses a challenge for plasma modeling because of the computational load. This paper presents a dimension reduction method for such chemically complex plasmas based on principal component analysis (PCA). PCA is used to identify a low-dimensional manifold in chemical state space that is described by a small number of parameters: the principal components. Reduction is obtained since continuity equations only need to be solved for these principal components and not for all the species. Application of the presented method to a CO2 plasma model including state-to-state vibrational kinetics of CO2 and CO demonstrates the potential of the PCA method for dimension reduction. A manifold described by only two principal components is able to predict the CO2 to CO conversion at varying ionization degrees very accurately.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000356816200008 Publication Date 2015-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.302 Times cited 11 Open Access
Notes Approved Most recent IF: 3.302; 2015 IF: 3.591
Call Number c:irua:123534 Serial 704
Permanent link to this record
 

 
Author Zhao, S.-X.; Gao, F.; Wang, Y.-N.; Bogaerts, A.
Title The effect of F2 attachment by low-energy electrons on the electron behaviour in an Ar/CF4 inductively coupled plasma Type A1 Journal article
Year 2012 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 21 Issue 2 Pages 025008-025008,13
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The electron behaviour in an Ar/CF4 inductively coupled plasma is investigated by a Langmuir probe and a hybrid model. The simulated and measured results include electron density, temperature and electron energy distribution function for different values of Ar/CF4 ratio, coil power and gas pressure. The hybrid plasma equipment model simulations show qualitative agreement with experiment. The effect of F2 electron attachment on the electron behaviour is explored by comparing two sets of data based on different F atom boundary conditions. It is demonstrated that electron attachment at F2 molecules is responsible for the depletion of low-energy electrons, causing a density decrease as well as a temperature increase when CF4 is added to an Ar plasma.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000302779400022 Publication Date 2012-03-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.302 Times cited 23 Open Access
Notes Approved Most recent IF: 3.302; 2012 IF: 2.515
Call Number UA @ lucian @ c:irua:96549 Serial 841
Permanent link to this record
 

 
Author Liu, Y.-X.; Zhang, Q.-Z.; Liu, L.; Song, Y.-H.; Bogaerts, A.; Wang, Y.-N.
Title Electron bounce resonance heating in dual-frequency capacitively coupled oxygen discharges Type A1 Journal article
Year 2013 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 22 Issue 2 Pages 025012-11
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The electron bounce resonance heating (BRH) in dual-frequency capacitively coupled plasmas operated in oxygen is studied by different experimental methods and a particle-in-cell/Monte Carlo collision (PIC/MCC) simulation, and compared with the electropositive argon discharge. In comparison with argon, the experimental results show that in an oxygen discharge the resonance peaks in positive-ion density and light intensity tend to occur at larger electrode gaps. Moreover, at electrode gaps L > 2.5 cm, the positive-ion (and electron) density and the light emission drop monotonically in the oxygen discharge upon increasing L, whereas they rise (after an initial drop) in the argon case. At resonance gap the electronegativity reaches its maximum due to the BRH. All these experimental observations are explained by PIC/MCC simulations, which show that in the oxygen discharge the bulk electric field becomes quite strong and is out of phase with the sheath field. Therefore, it retards the resonance electrons when traversing the bulk, resulting in a suppressed BRH. Both experiment and simulation results show that this effect becomes more pronounced at lower high-frequency power, when the discharge mode changes from electropositive to electronegative. In a pure oxygen discharge, the BRH is suppressed with increasing pressure and almost diminishes at 12 Pa. Finally, the driving frequency significantly affects the BRH, because it determines the phase relation between bulk electric field and sheath electric field.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000317275400014 Publication Date 2013-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.302 Times cited 20 Open Access
Notes Approved Most recent IF: 3.302; 2013 IF: 3.056
Call Number UA @ lucian @ c:irua:106534 Serial 911
Permanent link to this record
 

 
Author Yan, M.; Bogaerts, A.; Goedheer, W.J.; Gijbels, R.
Title Electron energy distribution function in capacitively coupled RF discharges: differences between electropositive Ar and electronegative SiH4 discharges Type A1 Journal article
Year 2000 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 9 Issue Pages 583-591
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000165341000015 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.302 Times cited 21 Open Access
Notes Approved Most recent IF: 3.302; 2000 IF: 1.963
Call Number UA @ lucian @ c:irua:34071 Serial 929
Permanent link to this record
 

 
Author Van Laer, K.; Tinck, S.; Samara, V.; de Marneffe, J.F.; Bogaerts, A.
Title Etching of low-k materials for microelectronics applications by means of a N2/H2 plasma : modeling and experimental investigation Type A1 Journal article
Year 2013 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 22 Issue 2 Pages 025011-25019
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, we investigate the etch process of so-called low-k organic material by means of a N2/H2 capacitively coupled plasma, as applied in the micro-electronics industry for the manufacturing of computer chips. In recent years, such an organic material has emerged as a possible alternative for replacing bulk SiO2 as a dielectric material in the back-end-of-line, because of the smaller parasitic capacity between adjacent conducting lines, and thus a faster propagation of the electrical signals throughout the chip. Numerical simulations with a hybrid plasma model, using an extensive plasma and surface chemistry set, as well as experiments are performed, focusing on the plasma properties as well as the actual etching process, to obtain a better insight into the underlying mechanisms. Furthermore, the effects of gas pressure, applied power and gas composition are investigated to try to optimize the etch process. In general, the plasma density reaches a maximum near the wafer edge due to the so-called 'edge effect'. As a result, the etch rate is not uniform but will also reach its maximum near the wafer edge. The pressure seems not to have a big effect. A higher power increases the etch rate, but the uniformity becomes (slightly) worse. The gas mixing ratio has no significant effect on the etch process, except when a pure H2 or N2 plasma is used, illustrating the synergistic effects of a N2/H2 plasma. In fact, our calculations reveal that the N2/H2 plasma entails an ion-enhanced etch process. The simulation results are in reasonable agreement with the experimental values. The microscopic etch profile shows the desired anisotropic shape under all conditions under study.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000317275400013 Publication Date 2013-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.302 Times cited 13 Open Access
Notes Approved Most recent IF: 3.302; 2013 IF: 3.056
Call Number UA @ lucian @ c:irua:106654 Serial 1084
Permanent link to this record
 

 
Author Kozák, T.; Bogaerts, A.
Title Evaluation of the energy efficiency of CO2 conversion in microwave discharges using a reaction kinetics model Type A1 Journal article
Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 24 Issue 24 Pages 015024
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We use a zero-dimensional reaction kinetics model to simulate CO2 conversion in microwave discharges where the excitation of the vibrational levels plays a significant role in the dissociation kinetics. The model includes a description of the CO2 vibrational kinetics, taking into account state-specific VT and VV relaxation reactions and the effect of vibrational excitation on other chemical reactions. The model is used to simulate a general tubular microwave reactor, where a stream of CO2 flows through a plasma column generated by microwave radiation. We study the effects of the internal plasma parameters, namely the reduced electric field, electron density and the total specific energy input, on the CO2 conversion and its energy efficiency. We report the highest energy efficiency (up to 30%) for a specific energy input in the range 0.41.0 eV/molecule and a reduced electric field in the range 50100 Td and for high values of the electron density (an ionization degree greater than 10−5). The energy efficiency is mainly limited by the VT relaxation which contributes dominantly to the vibrational energy losses and also contributes significantly to the heating of the reacting gas. The model analysis provides useful insight into the potential and limitations of CO2 conversion in microwave discharges.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000348298200025 Publication Date 2014-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.302 Times cited 100 Open Access
Notes Approved Most recent IF: 3.302; 2015 IF: 3.591
Call Number c:irua:122243 Serial 1087
Permanent link to this record
 

 
Author Zhao, S.-X.; Gao, F.; Wang, Y.-N.; Bogaerts, A.
Title Gas ratio effects on the Si etch rate and profile uniformity in an inductively coupled Ar/CF4 plasma Type A1 Journal article
Year 2013 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 22 Issue 1 Pages 015017-15018
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work, a hybrid model is used to investigate the effect of different gas ratios on the Si etching and polymer film deposition characteristics in an Ar/CF4 inductively coupled plasma. The influence of the surface processes on the bulk plasma properties is studied, and also the spatial characteristics of important gas phase and etched species. The densities of F and CF2 decrease when the surface module is included in the simulations, due to the species consumption caused by etching and polymer deposition. The influence of the surface processes on the bulk plasma depends on the Ar/CF4 gas ratio. The deposited polymer becomes thicker at high CF4 content because of more abundant CFx radicals. As a result of the competition between the polymer thickness and the F flux, the etch rate first increases and then decreases upon increasing the CF4 content. The electron properties, more specifically the electron density profile, affect the Si etch characteristics substantially by determining the radical density and flux profiles. In fact, the radial profile of the etch rate is more uniform at low CF4 content since the electron density has a smooth distribution. At high CF4 content, the etch rate is less uniform with a minimum halfway along the wafer radius, because the electron density distribution is more localized. Therefore, our calculations predict that it is better to work at relatively high Ar/CF4 gas ratios, in order to obtain high etch rate and good profile uniformity for etch applications. This, in fact, corresponds to the typical experimental etch conditions in Ar/CF4 gas mixtures as found in the literature, where Ar is typically present at a much higher concentration than CF4.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000314966300022 Publication Date 2012-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.302 Times cited 11 Open Access
Notes Approved Most recent IF: 3.302; 2013 IF: 3.056
Call Number UA @ lucian @ c:irua:102583 Serial 1320
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Liu, Y.-X.; Jiang, W.; Bogaerts, A.; Wang, Y.-N.
Title Heating mechanism in direct current superposed single-frequency and dual-frequency capacitively coupled plasmas Type A1 Journal article
Year 2013 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 22 Issue 2 Pages 025014-25018
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work particle-in-cell/Monte Carlo collision simulations are performed to study the heating mechanism and plasma characteristics in direct current (dc) superposed radio-frequency (RF) capacitively coupled plasmas, operated both in single-frequency (SF) and dual-frequency (DF) regimes. An RF (60/2 MHz) source is applied on the bottom electrode to sustain the discharge, and a dc source is fixed on the top electrode. The heating mechanism appears to be very different in dc superposed SF and DF discharges. When only a single source of 60 MHz is applied, the plasma bulk region is reduced by the dc source, thus the ionization rate and hence the electron density decrease with rising dc voltage. However, when a DF source of 60 and 2 MHz is applied, the electron density can increase upon addition of a dc voltage, depending on the gap length and applied dc voltage. This is explained from the spatiotemporal ionization rates in the DF discharge. In fact, a completely different behavior is observed for the ionization rate in the two half-periods of the LF source. In the first LF half-period, the situation resembles the dc superposed SF discharge, and the reduced plasma bulk region due to the negative dc bias results in a very small effective discharge area and a low ionization rate. On the other hand, in the second half-period, the negative dc bias is to some extent counteracted by the LF voltage, and the sheath close to the dc electrode becomes particularly thin. Consequently, the amplitude of the high-frequency sheath oscillations at the top electrode is largely enhanced, while the LF sheath at the bottom electrode is in its expanding phase and can thus well confine the high-energy electrons. Therefore, the ionization rate increases considerably in this second LF half-period. Furthermore, in addition to the comparison between SF and DF discharges and the effect of gap length and dc voltage, the effect of secondary electrons is examined.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000317275400016 Publication Date 2013-03-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.302 Times cited 9 Open Access
Notes Approved Most recent IF: 3.302; 2013 IF: 3.056
Call Number UA @ lucian @ c:irua:106877 Serial 1413
Permanent link to this record
 

 
Author Bogaerts, A.; Okhrimovskyy, A.; Baguer, N.; Gijbels, R.
Title Hollow cathode discharges with gas flow: numerical modelling for the effect on the sputtered atoms and the deposition flux Type A1 Journal article
Year 2005 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 14 Issue Pages 191-200
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000227652500021 Publication Date 2005-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.302 Times cited 9 Open Access
Notes Approved Most recent IF: 3.302; 2005 IF: 1.798
Call Number UA @ lucian @ c:irua:50478 Serial 1480
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title The ion- and atom-induced secondary electron emission yield: numerical study for the effect of clean and dirty cathode surfaces Type A1 Journal article
Year 2002 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 11 Issue Pages 27-36
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000174336300003 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.302 Times cited 51 Open Access
Notes Approved Most recent IF: 3.302; 2002 IF: 1.816
Call Number UA @ lucian @ c:irua:40184 Serial 1739
Permanent link to this record