toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author van der Snickt, G.; Dubois, H.; Sanyova, J.; Legrand, S.; Coudray, A.; Glaude, C.; Postec, M.; van Espen, P.; Janssens, K. pdf  doi
openurl 
  Title Large-area elemental imaging reveals Van Eyck's original paint layers on the Ghent altarpiece (1432), rescoping its conservation treatment Type A1 Journal article
  Year 2017 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 56 Issue 17 Pages 4797-4801  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A combination of large-scale and micro-scale elemental imaging, yielding elemental distribution maps obtained by, respectively non-invasive macroscopic X-ray fluorescence (MA-XRF) and by secondary electron microscopy/energy dispersive X-ray analysis (SEM-EDX) and synchrotron radiation-based micro-XRF (SR m-XRF) imaging was employed to reorient and optimize the conservation strategy of van Eyck's renowned Ghent Altarpiece. By exploiting the penetrative properties of X-rays together with the elemental specificity offered by XRF, it was possible to visualize the original paint layers by van Eyck hidden below the overpainted surface and to simultaneously assess their condition. The distribution of the high-energy Pb-L and Hg-L emission lines revealed the exact location of hidden paint losses, while Fe-K maps demonstrated how and where these lacunae were filled-up using an iron-containing material. The chemical maps nourished the scholarly debate on the overpaint removal with objective, chemical arguments, leading to the decision to remove all skillfully applied overpaints, hitherto interpreted as work by van Eyck. MA-XRF was also employed for monitoring the removal of the overpaint during the treatment phase. To gather complementary information on the in-depth layer build-up, SEM-EDX and SR mu-XRF imaging was used on paint cross sections to record microscale elemental maps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398576000019 Publication Date 2017-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 11.994 Times cited 11 Open Access  
  Notes ; This research was supported by the Baillet Latour fund, the Belgian Science Policy Office (Projects MO/39/011) and the Gieskes-Strijbis fund. The authors are also indebted to the BOF-GOA SOLAR Paint project of the University of Antwerp Research Council. The church wardens of the cathedral of St. Bavo and their chairman L. Collin are acknowledged for this agreeable collaboration. We also wish to thank conservators L. Depuydt, B. De Volder, F. Rosier, N. Laquiere and G. Steyaert as well as the members of the international committee. We are indebted to Prof. Em. A. Van Grevenstein-Kruse. ; Approved Most recent IF: 11.994  
  Call Number UA @ admin @ c:irua:142376 Serial 5688  
Permanent link to this record
 

 
Author Miliani, C.; Monico, L.; Melo, M.J.; Fantacci, S.; Angelin, E.M.; Romani, A.; Janssens, K. pdf  doi
openurl 
  Title Photochemistry of Artists' Dyes and Pigments : towards better understanding and prevention of colour change in works of art Type A1 Journal article
  Year 2018 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 57 Issue 25 Pages 7324-7334  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The absorption of light gives a pigment its colour and its reason for being, but it also creates excited states, that is, new molecules with an energy excess that can be dissipated through degradation pathways. Photodegradation processes provoke long-term, cumulative and irreversible colour changes (fading, darkening, blanching) of which the prediction and prevention are challenging tasks. Of all the environmental risks that affect heritage materials, light exposure is the only one that cannot be controlled without any impact on the optimal display of the exhibit. Light-induced alterations are not only associated with the pigment itself but also with its interactions with support/binder and, in turn, are further complicated by the nature of the environmental conditions. In this Minireview we investigate how chemistry, encompassing multi-scale analytical investigations of works of art, computational modelling and physical and chemical studies contributes to improve our prediction of artwork appearance before degradation and to establish effective preventive conservation strategies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000434949200006 Publication Date 2018-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 11.994 Times cited 10 Open Access  
  Notes ; We acknowledge: ACS and APS for the permission to adapt Figure 1c,d; RSC to adapt Figures 1e, 3c,d and 4a; Wiley and IUCr to adapt Figures 3b and 4b-d; for the detail of a Andean textile in Figure 5, Museum of Fine Arts, Boston, USA; for the illuminated initial in Figure 6, Torre do Tombo (ANTT). Financial support from the H2020 project IPERION-CH (GA. 654028) is gratefully acknowledged. ; Approved Most recent IF: 11.994  
  Call Number UA @ admin @ c:irua:153184 Serial 5769  
Permanent link to this record
 

 
Author Vanmeert, F.; van der Snickt, G.; Janssens, K. pdf  doi
openurl 
  Title Plumbonacrite identified by X-ray powder diffraction tomography as a missing link during degradation of red lead in a Van Gogh painting Type A1 Journal article
  Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 54 Issue 12 Pages 3607-3610  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Red lead, a semiconductor pigment used by artists since antiquity, is known to undergo several discoloration phenomena. These transformations are either described as darkening of the pigment caused by the formation of either plattnerite (β-PbO2) or galena (PbS) or as whitening by which red lead is converted into anglesite (PbSO4) or (hydro)cerussite (2 PbCO3⋅Pb(OH)2; PbCO3). X-ray powder diffraction tomography, a powerful analytical method that allows visualization of the internal distribution of different crystalline compounds in complex samples, was used to investigate a microscopic paint sample from a Van Gogh painting. A very rare lead mineral, plumbonacrite (3 PbCO3⋅ Pb(OH)2⋅PbO), was revealed to be present. This is the first reported occurrence of this compound in a painting dating from before the mid 20th century. It constitutes the missing link between on the one hand the photoinduced reduction of red lead and on the other hand (hydro)cerussite, and thus sheds new light on the whitening of red lead.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000351178300008 Publication Date 2015-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 11.994 Times cited 24 Open Access  
  Notes ; The authors acknowledge L. Van der Loeff and M. Leeuwestein (Kroller-Muller Museum) for providing the paint sample. We thank Dr. J. Jaroszewicz (WUT) for performing the CT measurements. This research was carried out at the light source PETRA III at DESY, a member of the Helmholtz Association (HGF). We thank Dr. G. Falkenberg and the members of his team for their assistance in using beam line P06. We acknowledge financial support from the University of Antwerp GOA projects “XANES meets EELS” and “SOLARPaint”, as well as from BELSPO (Brussels) Project S2-ART and FWO (Brussels) project “ESRF-Dubble”. ; Approved Most recent IF: 11.994; 2015 IF: 11.261  
  Call Number UA @ admin @ c:irua:124620 Serial 5774  
Permanent link to this record
 

 
Author Freund, R.; Canossa, S.; Cohen, S.M.; Yan, W.; Deng, H.; Guillerm, V.; Eddaoudi, M.; Madden, D.G.; Fairen-Jimenez, D.; Lyu, H.; Macreadie, L.K.; Ji, Z.; Zhang, Y.; Wang, B.; Haase, F.; Wöll, C.; Zaremba, O.; Andreo, J.; Wuttke, S.; Diercks, C.S. url  doi
openurl 
  Title 25 years of Reticular Chemistry Type A1 Journal article
  Year 2021 Publication Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit  
  Volume Issue Pages anie.202101644  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract At its core, reticular chemistry has translated the precision and expertise of organic and inorganic synthesis to the solid state. While initial excitement over metal‐organic frameworks (MOFs) and covalent organic frameworks (COFs) was undoubtedly fueled by their unprecedented porosity and surface areas, the most profound scientific innovation of the field has been the elaboration of design strategies for the synthesis of extended crystalline solids through strong directional bonds. In this contribution we highlight the different classes of reticular materials that have been developed, how these frameworks can be functionalized and how complexity can be introduced into their backbones. Finally, we show how the structural control over these materials is being extended from the molecular scale to their crystal morphology and shape on the nanoscale, all the way to their shaping on the bulk scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000672037800001 Publication Date 2021-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 11.994 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.994  
  Call Number EMAT @ emat @c:irua:177778 Serial 6743  
Permanent link to this record
 

 
Author Beltran, V.; Marchetti, A.; Nuyts, G.; Leeuwestein, M.; Sandt, C.; Borondics, F.; De Wael, K. pdf  url
doi  openurl
  Title Nanoscale analysis of historical paintings by means of O‐PTIR spectroscopy : the identification of the organic particles in L’Arlésienne (portrait of Madame Ginoux) by Van Gogh Type A1 Journal article
  Year 2021 Publication Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit  
  Volume 60 Issue 42 Pages 22753-22760  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Optical-photothermal infrared (O-PTIR) spectroscopy is a recently developed technique that provides spectra comparable to traditional transmission FTIR spectroscopy with nanometric spatial resolution. Hence, O-PTIR is a promising candidate for the analysis of historical paintings, as well as other cultural heritage objects, but its potential has not yet been evaluated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000694015700001 Publication Date 2021-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 11.994 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.994  
  Call Number UA @ admin @ c:irua:179989 Serial 8291  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: