toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Wang, X.; Yao, X.; Schryvers, D.; Verlinden, B.; Wang, G.; Zhao, G.; Van Humbeeck, J.; Kustov, S.
  Title Anomalous stress-strain behavior of NiTi shape memory alloy close to the border of superelastic window Type A1 Journal article
  Year 2021 Publication Scripta Materialia Abbreviated Journal Scripta Mater
  Volume 204 Issue Pages 114135
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract In this work, we report an anomalous phenomenon on superelastic cycling of NiTi shape memory alloys when deforming at the temperature close to the border of superelastic window. New unexpected effects are found-(i) critical stress for inducing martensite transformation during the second loading cycle is higher than that of the first cycle; ( ii ) the plateau stress of the second cycle decreases to the original level when the strain overcomes the limit of the first cycle; ( iii ) transition from good superelasticity in the first cycle to fully irreversible strain in the second. We propose that defects generated during the first superelastic cycle close to the border of superelastic window impede following stress-induced martensitic transformations, leading to the increase of critical stress beyond yield stress of the B2 matrix, and thus functional fatigue of NiTi alloys. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000690441400007 Publication Date 2021-07-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-6462 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.747 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 3.747
  Call Number UA @ admin @ c:irua:181658 Serial 6853
Permanent link to this record
 

 
Author Schryvers, D.; Cao, S.; Tirry, W.; Idrissi, H.; Van Aert, S.
  Title Advanced three-dimensional electron microscopy techniques in the quest for better structural and functional materials Type A1 Journal article
  Year 2013 Publication Science and technology of advanced materials Abbreviated Journal Sci Technol Adv Mat
  Volume 14 Issue 1 Pages 014206-14213
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract After a short review of electron tomography techniques for materials science, this overview will cover some recent results on different shape memory and nanostructured metallic systems obtained by various three-dimensional (3D) electron imaging techniques. In binary NiTi, the 3D morphology and distribution of Ni4Ti3 precipitates are investigated by using FIB/SEM slice-and-view yielding 3D data stacks. Different quantification techniques will be presented including the principal ellipsoid for a given precipitate, shape classification following a Zingg scheme, particle distribution function, distance transform and water penetration. The latter is a novel approach to quantifying the expected matrix transformation in between the precipitates. The different samples investigated include a single crystal annealed with and without compression yielding layered and autocatalytic precipitation, respectively, and a polycrystal revealing different densities and sizes of the precipitates resulting in a multistage transformation process. Electron tomography was used to understand the interaction between focused ion beam-induced Frank loops and long dislocation structures in nanobeams of Al exhibiting special mechanical behaviour measured by on-chip deposition. Atomic resolution electron tomography is demonstrated on Ag nanoparticles in an Al matrix.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Sendai Editor
  Language Wos 000316463800008 Publication Date 2013-03-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1468-6996;1878-5514; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.798 Times cited 6 Open Access
  Notes Fwo; Iap; Esteem Approved Most recent IF: 3.798; 2013 IF: 2.613
  Call Number UA @ lucian @ c:irua:107343 Serial 77
Permanent link to this record
 

 
Author Boullay, P.; Schryvers, D.; Kohn, R.V.
  Title Bending martensite needles in Ni65Al35 investigated by two-dimensional elasticity and high-resolution transmission electron microscopy Type A1 Journal article
  Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 64 Issue Pages 144105,1-8
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000171530000026 Publication Date 2002-07-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.836 Times cited 18 Open Access
  Notes Approved Most recent IF: 3.836; 2001 IF: NA
  Call Number UA @ lucian @ c:irua:48392 Serial 227
Permanent link to this record
 

 
Author Potapov, P.L.; Jorissen, K.; Schryvers, D.; Lamoen, D.
  Title Effect of charge transfer on EELS integrated cross sections in Mn and Ti oxides Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 70 Issue Pages 045106,1-10
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000223053300016 Publication Date 2004-07-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.836 Times cited 28 Open Access
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
  Call Number UA @ lucian @ c:irua:47333 Serial 803
Permanent link to this record
 

 
Author Dobysheva, L.V.; Potapov, P.L.; Schryvers, D.
  Title Electron-energy-loss spectra of NiO Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 69 Issue Pages 184404,1-6
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000222095500034 Publication Date 2004-05-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.836 Times cited 17 Open Access
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
  Call Number UA @ lucian @ c:irua:51059 Serial 930
Permanent link to this record
 

 
Author Salje, E.K.H.; Zhang, H.; Idrissi, H.; Schryvers, D.; Carpenter, M.A.; Moya, X.; Planes, A.
  Title Mechanical resonance of the austenite/martensite interface and the pinning of the martensitic microstructures by dislocations in Cu74.08Al23.13Be2.79 Type A1 Journal article
  Year 2009 Publication Physical review: B: condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 80 Issue 13 Pages 134114,1-1134114,8
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A single crystal of Cu74.08Al23.13Be2.79 undergoes a martensitic phase transition at 246 and 232 K under heating and cooling, respectively. The phase fronts between the austenite and martensite regions of the sample are weakly mobile with a power-law resonance under external stress fields. Surprisingly, the martensite phase is elastically much harder than the austenite phase showing that interfaces between various crystallographic variants are strongly pinned and cannot be moved by external stress while the phase boundary between the austenite and martensite regions in the sample remains mobile. This unusual behavior was studied by dynamical mechanical analysis (DMA) and resonant ultrasound spectroscopy. The remnant strain, storage modulus, and internal friction were recorded simultaneously for different applied forces in DMA. With increasing forces, the remnant strain increases monotonously while the internal friction peak height shows a minimum at 300 mN. Transmission electron microscopy shows that the pinning is generated by dislocations which are inherited from the austenite phase.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000271351300033 Publication Date 2009-10-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.836 Times cited 38 Open Access
  Notes Multimat Approved Most recent IF: 3.836; 2009 IF: 3.475
  Call Number UA @ lucian @ c:irua:78542 Serial 1975
Permanent link to this record
 

 
Author Potapov, P.L.; Kulkova, S.E.; Schryvers, D.; Verbeeck, J.
  Title Structural and chemical effects on EELS L3,2 ionization edges in Ni-based intermetallic compounds Type A1 Journal article
  Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 64 Issue Pages 184110,1-9
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000172239400038 Publication Date 2002-07-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.836 Times cited 44 Open Access
  Notes Approved Most recent IF: 3.836; 2001 IF: NA
  Call Number UA @ lucian @ c:irua:48393 Serial 3192
Permanent link to this record
 

 
Author Idrissi, H.; Samaee, V.; Lumbeeck, G.; Werf, T.; Pardoen, T.; Schryvers, D.; Cordier, P.
  Title In Situ Quantitative Tensile Testing of Antigorite in a Transmission Electron Microscope Type A1 Journal article
  Year 2020 Publication Journal Of Geophysical Research-Solid Earth Abbreviated Journal J Geophys Res-Sol Ea
  Volume 125 Issue 3 Pages
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The determination of the mechanical properties of serpentinites is essential toward the understanding of the mechanics of faulting and subduction. Here we present the first in situ tensile tests on antigorite in a transmission electron microscope. A push‐to‐pull deformation device is used to perform quantitative tensile tests, during which force and displacement are measured, while the evolving microstructure is imaged with the microscope. The experiments have been performed at room temperature on 2 × 1 × 0.2 μm3 beams prepared by focused ion beam. The specimens are not single crystals despite their small sizes. Orientation mapping indicated that several grains were well oriented for plastic slip. However, no dislocation activity has been observed even though the engineering tensile stress went up to 700 MPa. We show also that antigorite does not exhibit a purely elastic‐brittle behavior since, despite the presence of defects, the specimens accumulate permanent deformation and did not fail within the elastic regime. Instead, we observe that strain localizes at grain boundaries. All observations concur to show that under these experimental conditions, grain boundary sliding is the dominant deformation mechanism. This study sheds a new light on the mechanical properties of antigorite and calls for further studies on the structure and properties of grain boundaries in antigorite and more generally in phyllosilicates.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000530895800023 Publication Date 2020-02-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2169-9313 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 3.9 Times cited Open Access OpenAccess
  Notes We thank S. Guillot for having kindly provided us with the two antigorite samples investigated in this study. We acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program under Grant Agreement 787198—TimeMan. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR‐FNRS). We acknowledge fruitful discussions with A. Baronnet. We thank J. Gasc and an anonymous reviewer for their critical comments. Data (movies of the three in situ deformation experiments) can be downloaded (from https://doi.org/10.5281/zenodo.3583135). Approved Most recent IF: 3.9; 2020 IF: 3.35
  Call Number EMAT @ emat @c:irua:167594 Serial 6355
Permanent link to this record
 

 
Author Samaee, V.; Gatti, R.; Devincre, B.; Pardoen, T.; Schryvers, D.; Idrissi, H.
  Title Dislocation driven nanosample plasticity: new insights from quantitative in-situ TEM tensile testing Type A1 Journal Article
  Year 2018 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk
  Volume 8 Issue 1 Pages 12012
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract Intrinsic dislocation mechanisms in the vicinity of free surfaces of an almost FIB damage-free single crystal Ni sample have been quantitatively investigated owing to a novel sample preparation method combining twin-jet electro-polishing, in-situ TEM heating and FIB. The results reveal that the small-scale plasticity is mainly controlled by the conversion of few tangled dislocations, still present after heating, into stable single arm sources (SASs) as well as by the successive operation of these sources. Strain hardening resulting from the operation of an individual SAS is reported and attributed to the decrease of the length of the source. Moreover, the impact of the shortening of the dislocation source on the intermittent plastic flow, characteristic of SASs, is discussed. These findings provide essential information for the understanding of the regime of ‘dislocation source’ controlled plasticity and the related mechanical size effect.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000460200900001 Publication Date 2018-08-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 4.259 Times cited 9 Open Access Not_Open_Access
  Notes Financial support from the Flemish (FWO) and German Research Foundation (DFG) through the European M-ERA.NET project “FaSS” (Fatigue Simulation near Surfaces) under the grant numbers GA.014.13 N and SCHW855/5-1, respectively, is gratefully acknowledged. V. Samaee also acknowledges the FWO research project G012012N “Understanding nanocrystalline mechanical behaviour from structural investigations”. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Dr. Ruth Schwaiger is acknowledged for providing the Ni foils used to prepare the in-situ TEM tensile specimens. Approved Most recent IF: 4.259
  Call Number EMAT @ emat @c:irua:155772 Serial 5136
Permanent link to this record
 

 
Author Idrissi, H.; Ghidelli, M.; Béché, A.; Turner, S.; Gravier, S.; Blandin, J.-J.; Raskin, J.-P.; Schryvers, D.; Pardoen, T.
  Title Atomic-scale viscoplasticity mechanisms revealed in high ductility metallic glass films Type A1 Journal article
  Year 2019 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
  Volume 9 Issue 1 Pages 13426
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The fundamental plasticity mechanisms in thin freestanding Zr65Ni35 metallic glass films are investigated in order to unravel the origin of an outstanding strength/ductility balance. The deformation process is homogenous until fracture with no evidence of catastrophic shear banding. The creep/relaxation behaviour of the films was characterized by on-chip tensile testing, revealing an activation volume in the range 100–200 Å3. Advanced high-resolution transmission electron microscopy imaging and spectroscopy exhibit a very fine glassy nanostructure with well-defined dense Ni-rich clusters embedded in Zr-rich clusters of lower atomic density and a ~2–3 nm characteristic length scale. Nanobeam electron diffraction analysis reveals that the accumulation of plastic deformation at roomtemperature

correlates with monotonously increasing disruption of the local atomic order. These results provide experimental evidences of the dynamics of shear transformation zones activation in metallic glasses. The impact of the nanoscale structural heterogeneities on the mechanical properties including the rate dependent behaviour is discussed, shedding new light on the governing plasticity mechanisms in metallic glasses with initially heterogeneous atomic arrangement.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000486139700008 Publication Date 2019-09-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 4.259 Times cited Open Access
  Notes H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). This work was supported by the FNRS under Grant PDR – T.0178.19. FWO project G093417N (‘Compressed sensing enabling low dose imaging in transmission electron microscopy’) and Hercules fund ‘Direct electron detector for soft matter TEM’ from Flemish Government are acknowledged. Approved Most recent IF: 4.259
  Call Number EMAT @ emat @c:irua:162786 Serial 5375
Permanent link to this record
 

 
Author Van Cauwenbergh, P.; Samaee, V.; Thijs, L.; Nejezchlebova, J.; Sedlak, P.; Ivekovic, A.; Schryvers, D.; Van Hooreweder, B.; Vanmeensel, K.
  Title Unravelling the multi-scale structure-property relationship of laser powder bed fusion processed and heat-treated AlSi10Mg Type A1 Journal article
  Year 2021 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk
  Volume 11 Issue 1 Pages 6423
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Tailoring heat treatments for Laser Powder Bed Fusion (LPBF) processed materials is critical to ensure superior and repeatable material properties for high-end applications. This tailoring requires in-depth understanding of the LPBF-processed material. Therefore, the current study aims at unravelling the threefold interrelationship between the process (LPBF and heat treatment), the microstructure at different scales (macro-, meso-, micro-, and nano-scale), and the macroscopic material properties of AlSi10Mg. A similar solidification trajectory applies at different length scales when comparing the solidification of AlSi10Mg, ranging from mould-casting to rapid solidification (LPBF). The similarity in solidification trajectories triggers the reason why the Brody-Flemings cellular microsegregation solidification model could predict the cellular morphology of the LPBF as-printed microstructure. Where rapid solidification occurs at a much finer scale, the LPBF microstructure exhibits a significant grain refinement and a high degree of silicon (Si) supersaturation. This study has identified the grain refinement and Si supersaturation as critical assets of the as-printed microstructure, playing a vital role in achieving superior mechanical and thermal properties during heat treatment. Next, an electrical conductivity model could accurately predict the Si solute concentration in LPBF-processed and heat-treated AlSi10Mg and allows understanding the microstructural evolution during heat treatment. The LPBF-processed and heat-treated AlSi10Mg conditions (as-built (AB), direct-aged (DA), stress-relieved (SR), preheated (PH)) show an interesting range of superior mechanical properties (tensile strength: 300-450 MPa, elongation: 4-13%) compared to the mould-cast T6 reference condition.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000632047000003 Publication Date 2021-03-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 4.259 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.259
  Call Number UA @ admin @ c:irua:177634 Serial 6791
Permanent link to this record
 

 
Author Radi, A.; Khalil-Allafi, J.; Etminanfar, M.R.; Pourbabak, S.; Schryvers, D.; Amin-Ahmadi, B.
  Title Influence of stress aging process on variants of nano-N4Ti3precipitates and martensitic transformation temperatures in NiTi shape memory alloy Type A1 Journal article
  Year 2018 Publication Materials & design Abbreviated Journal Mater Design
  Volume 262 Issue 262 Pages 74-81
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract In this study, the effect of a stress aging process on the microstructure and martensitic phase transformation of NiTi shape memory alloy has been investigated. NiTi samples were aged at 450 degrees C for 1 h and 5 h under different levels of external tensile stress of 15, 60 and 150 MPa. Transmission electron microscopy (TEM) was used to characterize different variants and morphology of precipitates. The results show that application of all stress levels restricts the formation of precipitates variants in the microstructure after I h stress aging process. However, all variants can be detected by prolonging aging time to 5 h at 15 MPa stress level and the variants formation is again restricted by increasing the stress level. Moreover, the stress aging process resulted in changing the shape of precipitates in comparison with that of the stress-free aged samples. Coffee-bean shaped morphologies were detected for precipitates in all stress levels. According to the Differential Scanning Calorimetry (DSC) results, the martensite start temperature (M-s) on cooling shifts to higher temperatures with increasing the tensile stress during the aging process. This can be related to the change ofaustenite to martensite interface energy due to the different volume fractions and variants of precipitates. (c) 2018 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2018-01-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0264-1275 ISBN Additional Links UA library record; ; WoS full record; WoS citing articles
  Impact Factor (up) 4.364 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.364
  Call Number UA @ lucian @ c:irua:149854 Serial 4938
Permanent link to this record
 

 
Author Miotti Bettanini, A.; Ding, L.; Mithieux, J.-D.; Parrens, C.; Idrissi, H.; Schryvers, D.; Delannay, L.; Pardoen, T.; Jacques, P.J.
  Title Influence of M23C6 dissolution on the kinetics of ferrite to austenite transformation in Fe-11Cr-0.06C stainless steel Type A1 Journal article
  Year 2019 Publication Materials & design Abbreviated Journal Mater Design
  Volume 162 Issue Pages 362-374
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The design of high-strength martensitic stainless steels requires an accurate control over the stability of undesired phases, like carbides and ferrite, which can hamper strength and ductility. Here, the ferrite to austenite transformation in Fe-11Cr-0.06C has been studied with a combined experimental-modelling approach. Experimental observations of the austenization process indicate that austenite growth proceeds in multiple steps, each one characterized by a different transformation rate. DICTRA based modelling reveals that the dissolution of the M23C6 Cr-rich carbides leads to Cr partitioning between austenite and parent phases, which controls the rate of transformation through (i) a soft-impingement effect and (ii) consequent stabilization of the ferrite, which remains untransformed inside chromium-enriched-zones even after prolonged austenization stage. Slow heating rate and smaller initial particle sizes allow the design of ferrite-free microstructure.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000454128400036 Publication Date 2018-12-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0264-1275 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 4.364 Times cited 3 Open Access OpenAccess
  Notes The authors thank Professor Anne-Francoise Gourgues-Lorenzon and Helene Godin, Ecole Nationale Superiore des Mines de Paris (MINES ParisTech) for their fruitful discussions. AMB thanks Stijn Van den broek (Universiteit Antwerpen) for the skillful preparation of TEM samples with FIB. The financial support of CBMM (Companhia Brasileira de Metalurgia e Mineracao) is gratefully acknowledged. L. Delannay is mandated by the FNRS-Belgium. Computational resources have been provided by the supercomputing facilities of the UCLouvain (CISM/UCL) and the Consortium des Equipements de Calcul Intensif en Federation Wallonie Bruxelles (CÉCI) funded by the Fond de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under convention 2.5020.11.; Cbmm; F.r.s.-fnrs, 2.5020.11 ; Approved Most recent IF: 4.364
  Call Number EMAT @ emat @UA @ admin @ c:irua:156721 Serial 5161
Permanent link to this record
 

 
Author Montero-Sistiaga, M.L.; Pourbabak, S.; Van Humbeeck, J.; Schryvers, D.; Vanmeensel, K.
  Title Microstructure and mechanical properties of Hastelloy X produced by HP-SLM (high power selective laser melting) Type A1 Journal article
  Year 2019 Publication Materials & design Abbreviated Journal Mater Design
  Volume 165 Issue Pages 107598
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract In order to increase the production rate during selective laser melting (SLM), a high power laser with a large beam diameter is used to build fully dense Hastelloy X parts. Compared to SLM with a low power and small diameter beam, the productivity was increased from 6 mm3/s to 16 mm3/s, i.e. 2.6 times faster. Besides the productivity benefit, the influence of the use of a high power laser on the rapid solidification microstructure and concomitant material properties is highlighted. The current paper compares the microstructure and tensile properties of Hastelloy X built with low and high power lasers. The use of a high power laser results in wider and shallower melt pools inducing an enhanced morphological and crystallographic texture along the building direction (BD). In addition, the increased heat input results in coarser sub-grains or high density dislocation walls for samples processed with a high power laser. Additionally, the influence of hot isostatic pressing (HIP) as a post-processing technique was evaluated. After HIP, the tensile fracture strain increased as compared to the strain in the as-built state and helped in obtaining competitive mechanical properties as compared to conventionally processed Hastelloy X parts.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000458259300020 Publication Date 2019-01-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0264-1275 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 4.364 Times cited 15 Open Access OpenAccess
  Notes This research was supported by the ENGIE Research and Technology Division. The authors acknowledge ENGIE Research and Technology Division for the use of the SLM280HL machine. S.P. likes to thank the Flemish Science Foundation FWO for financial support under Project G.0366.15N. Approved Most recent IF: 4.364
  Call Number EMAT @ emat @UA @ admin @ c:irua:157469 Serial 5176
Permanent link to this record
 

 
Author Cao, S.; Zeng, C.Y.; Li, Y.Y.; Yao, X.; Ma, X.; Samaee, V.; Schryvers, D.; Zhang, X.P.
  Title Quantitative FIB/SEM three-dimensional characterization of a unique Ni₄Ti₃ network in a porous Ni50.8Ti49.2 alloy undergoing a two-step martensitic transformation Type A1 Journal article
  Year 2020 Publication Materials Characterization Abbreviated Journal Mater Charact
  Volume 169 Issue Pages 110595
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The three-dimensional (3D) nanostructure of Ni4Ti3 precipitates in a porous Ni50.8Ti49.2 alloy has been re-constructed by “Slice-and-View” in a Focused Ion Beam/Scanning Electron Microscope (FIB/SEM). The 3D configuration of these precipitates forming a network structure in the B2 austenite matrix has been characterized via 3D visualization and quantitative analysis including volume fraction, skeleton, degree of anisotropy and local thickness. It is found that dense Ni4Ti3 precipitates occupy 54% of the volume in the B2 austenite matrix. Parallel Ni4Ti3 precipitates grow alongside the surface of a micro-pore, yielding an asymmetric structure, while nano voids do not seem to affect the growth of Ni4Ti3 precipitates. The small average local thickness of the precipitates around 60 nm allows their coherency with the matrix, and further induces the R-phase transformation in the matrix. On the other hand, the B2 matrix exhibits a winding and narrow structure with a skeleton of 18.20 mm and a thickness similar to the precipitates. This discontinuous matrix segmented by the Ni4Ti3 network and pores is responsible for the gradual transformation by stalling the martensite propagation.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000584353100001 Publication Date 2020-08-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 4.7 Times cited Open Access OpenAccess
  Notes ; This work was supported by the National Natural Science Foundation of China under Grant Nos. 51401081 and 51571092, the Natural Science Foundation of Guangdong Province through Key Project under Grant No. 2018B0303110012 and General Project under Grant No. 2017A030313323, and China Scholarship Council (CSC). ; Approved Most recent IF: 4.7; 2020 IF: 2.714
  Call Number UA @ admin @ c:irua:173547 Serial 6590
Permanent link to this record
 

 
Author Ding, L.; Raskin, J.-P.; Lumbeeck, G.; Schryvers, D.; Idrissi, H.
  Title TEM investigation of the role of the polycrystalline-silicon film/substrate interface in high quality radio frequency silicon substrates Type A1 Journal article
  Year 2020 Publication Materials Characterization Abbreviated Journal Mater Charact
  Volume 161 Issue Pages 110174-10
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The microstructural characteristics of two polycrystalline silicon (poly-Si) films with different electrical properties produced by low-pressure chemical vapour deposition on top of high resistivity silicon substrates were investigated by advanced transmission electron microscopy (TEM), including high resolution aberration corrected TEM and automated crystallographic orientation mapping in TEM. The results reveal that the nature of the poly-Si film/Si substrate interface is the main factor controlling the electrical resistivity of the poly-Si films. The high resistivity and high electrical linearity of poly-Si films are strongly promoted by the Sigma 3 twin type character of the poly-Si/Si substrate interface, leading to the generation of a huge amount of extended defects including stacking faults, Sigma 3 twin boundaries as well as Sigma 9 grain boundaries at this interface. Furthermore, a high density of interfacial dislocations has been observed at numerous common and more exotic grain boundaries deviating from their standard crystallographic planes. In contrast, poly-Si film/Si substrate interfaces with random character do not favour the formation of such complex patterns of defects, leading to poor electrical resistivity of the poly-Si film. This finding opens windows for the development of high resistivity silicon substrates for Radio Frequency (RF) integrated circuits (ICs) applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000521515800027 Publication Date 2020-01-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 4.7 Times cited Open Access Not_Open_Access
  Notes ; H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). ; Approved Most recent IF: 4.7; 2020 IF: 2.714
  Call Number UA @ admin @ c:irua:168664 Serial 6621
Permanent link to this record
 

 
Author Yang, T.; Kong, Y.; Li, K.; Lu, Q.; Wang, Y.; Du, Y.; Schryvers, D.
  Title Quasicrystalline clusters transformed from C14-MgZn₂ nanoprecipitates in Al alloys Type A1 Journal article
  Year 2023 Publication Materials characterization Abbreviated Journal
  Volume 199 Issue Pages 112772-112777
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Ultrafine faulty C14-MgZn2 Laves phase precipitates containing quasicrystalline clusters and demonstrating the formation of binary quasicrystalline precipitates with Penrose-like random-tiling were observed in the over-aged FCC matrix of a commercial 7N01 Al-Zn-Mg alloy, using high angle annular dark field scanning transmission electron microscopy. The evolution from C14-Laves phase to quasicrystalline clusters is illustrated, and five-fold symmetry can be found in both real and reciprocal spaces. Our findings reveal the possibility of quasicrystalline formation from Laves phase in a highly plastic metal matrix like Al and demonstrate the structural relationship between Laves phase and quasicrystals.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000954788800001 Publication Date 2023-03-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 4.7 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 4.7; 2023 IF: 2.714
  Call Number UA @ admin @ c:irua:196106 Serial 8446
Permanent link to this record
 

 
Author Gaouyat, L.; He, Z.; Colomer, J.-F.; Lambin, P.; Mirabella, F.; Schryvers, D.; Deparis, O.
  Title Revealing the innermost nanostructure of sputtered NiCrOx solar absorber cermets Type A1 Journal article
  Year 2014 Publication Solar energy materials and solar cells Abbreviated Journal Sol Energ Mat Sol C
  Volume 122 Issue Pages 303-308
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Conversion of solar energy into thermal energy helps reducing consumption of non-renewable energies. Cermets (ceramicmetal composites) are versatile materials suitable, amongst other applications, for solar selective absorbers. Although the presence of metallic Ni particles in the dielectric matrix is a prerequisite for efficient solar selective absorption in NiCrOx cermets, no clear evidence of such particles is reported so far. By combining comprehensive chemical and structural analyses, we reveal the presumed nanostructure which is at the origin of the remarkable optical properties of this cermet material. Using sputtered NiCrOx layers in a solar absorber multilayer stack on aluminium substrate allows us to achieve solar absorptance as high as α=96.1% while keeping thermal emissivity as low as ε=2.2%, both values being comparable to best values recorded so far. With the nanostructure of sputtered NiCrOx cermets eventually revealed, further optimization of solar absorbers can be anticipated and technological exploitation of cermet materials in other applications can be foreseen.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000331494200040 Publication Date 2013-11-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0927-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 4.784 Times cited 12 Open Access
  Notes Approved Most recent IF: 4.784; 2014 IF: 5.337
  Call Number UA @ lucian @ c:irua:113086 Serial 2902
Permanent link to this record
 

 
Author Vanhumbeeck, J.-F.; Tian, H.; Schryvers, D.; Proost, J.
  Title Stress-assisted crystallisation in anodic titania Type A1 Journal article
  Year 2011 Publication Corrosion science Abbreviated Journal Corros Sci
  Volume 53 Issue 4 Pages 1269-1277
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The relationship between the microstructural and internal stress evolution during Ti anodising is discussed. Samples anodised galvanostatically to 12 V and 40 V, corresponding to different stages of the internal stress evolution, were examined by in-plane and cross-section transmission electron microscopy. Electron diffraction patterns have been complemented with stoichiometry data obtained from energy loss near edge structure spectra. The sample anodised to 40 V was observed to consist of two regions, with a crystallised inner region adjacent to the metal/oxide interface. Crystallisation of this region is associated with the presence of large compressive internal stresses which build up during anodising up to 12 V.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000288972000016 Publication Date 2010-12-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0010-938X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 5.245 Times cited 11 Open Access
  Notes Fwo Approved Most recent IF: 5.245; 2011 IF: 3.734
  Call Number UA @ lucian @ c:irua:88385 Serial 3177
Permanent link to this record
 

 
Author Wang, X.; Kustov, S.; Li, K.; Schryvers, D.; Verlinden, B.; Van Humbeeck, J.
  Title Effect of nanoprecipitates on the transformation behavior and functional properties of a Ti50.8 at.% Ni alloy with micron-sized grains Type A1 Journal article
  Year 2015 Publication Acta materialia Abbreviated Journal Acta Mater
  Volume 82 Issue 82 Pages 224-233
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract In order to take advantage of both grain refinement and precipitation hardening effects, nanoscaled Ni4Ti3 precipitates are introduced in a Ti50.8 at.% Ni alloy with micron-sized grains (average grain size of 1.7 μm). Calorimetry, electrical resistance studies and thermomechanical tests were employed to study the transformation behavior and functional properties in relation to the obtained microstructure. A significant suppression of martensite transformation by the obtained microstructure is observed. The thermomechanical tests show that the advantageous properties of both grain refinement and precipitation hardening are combined in the developed materials, resulting in superior shape memory characteristics and stability of pseudoelasticity. It is concluded that introducing nanoscaled Ni4Ti3 precipitates into small grains is a new approach to improve the functional properties of NiTi shape memory alloys.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000347017800021 Publication Date 2014-10-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 5.301 Times cited 51 Open Access
  Notes Fwo Approved Most recent IF: 5.301; 2015 IF: 4.465
  Call Number c:irua:120469 Serial 824
Permanent link to this record
 

 
Author Yang, Z.; Tirry, W.; Lamoen, D.; Kulkova, S.; Schryvers, D.
  Title Electron energy-loss spectroscopy and first-principles calculation studies on a Ni-Ti shape memory alloy Type A1 Journal article
  Year 2008 Publication Acta materialia Abbreviated Journal Acta Mater
  Volume 56 Issue 3 Pages 395-404
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000253020900011 Publication Date 2007-12-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 5.301 Times cited 20 Open Access
  Notes Goa; Ec Rtn; Fwo Approved Most recent IF: 5.301; 2008 IF: 3.729
  Call Number UA @ lucian @ c:irua:67462 Serial 931
Permanent link to this record
 

 
Author Berg, L.K.; Gjønnes, J.; Hansen, V.; Li, X.Z.; Knutson-Wedel, M.; Waterloo, G.; Schryvers, D.; Wallenberg, L.R.
  Title GP-zones in Al-Zn-Mg alloys and their role in artificial aging Type A1 Journal article
  Year 2001 Publication Acta materialia Abbreviated Journal Acta Mater
  Volume 49 Issue Pages 3443-3451
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000171445700006 Publication Date 2002-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 5.301 Times cited 261 Open Access
  Notes Approved Most recent IF: 5.301; 2001 IF: 2.658
  Call Number UA @ lucian @ c:irua:48363 Serial 1361
Permanent link to this record
 

 
Author Colla, M.-S.; Wang, B.; Idrissi, H.; Schryvers, D.; Raskin, J.-P.; Pardoen, T.
  Title High strength-ductility of thin nanocrystalline palladium films with nanoscale twins : on-chip testing and grain aggregate model Type A1 Journal article
  Year 2012 Publication Acta materialia Abbreviated Journal Acta Mater
  Volume 60 Issue 4 Pages 1795-1806
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The mechanical behaviour of thin nanocrystalline palladium films with an ∼30 nm in plane grain size has been characterized on chip under uniaxial tension. The films exhibit a large strain hardening capacity and a significant increase in the strength with decreasing thickness. Transmission electron microscopy has revealed the presence of a moderate density of growth nanotwins interacting with dislocations. A semi-analytical grain aggregate model is proposed to investigate the impact of different contributions to the flow behaviour, involving the effect of twins, of grain size and of the presence of a thin surface layer. This model provides guidelines to optimizing the strength/ductility ratio of the films.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000301989500035 Publication Date 2012-02-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 5.301 Times cited 38 Open Access
  Notes Iap Approved Most recent IF: 5.301; 2012 IF: 3.941
  Call Number UA @ lucian @ c:irua:94213 Serial 1465
Permanent link to this record
 

 
Author Rotaru, G.-M.; Tirry, W.; Sittner, P.; van Humbeeck, J.; Schryvers, D.
  Title Microstructural study of equiatomic PtTi martensite and the discovery of a new long-period structure Type A1 Journal article
  Year 2007 Publication Acta materialia Abbreviated Journal Acta Mater
  Volume 55 Issue 13 Pages 4447-4454
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000248436400021 Publication Date 2007-06-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 5.301 Times cited 7 Open Access
  Notes Fwo G.0465.05; Multimat Approved Most recent IF: 5.301; 2007 IF: 3.624
  Call Number UA @ lucian @ c:irua:65849 Serial 2047
Permanent link to this record
 

 
Author Delville, R.; Malard, B.; Pilch, J.; Schryvers, D.
  Title Microstructure changes during non-conventional heat treatment of thin NiTi wires by pulsed electric current studied by transmission electron microscopy Type A1 Journal article
  Year 2010 Publication Acta materialia Abbreviated Journal Acta Mater
  Volume 58 Issue 13 Pages 4503-4515
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Transmission electron microscopy, electrical resistivity measurements and mechanical testing were employed to investigate the evolution of microstructure and functional superelastic properties of 0.1 mm diameter as-drawn NiTi wires subjected to a non-conventional heat treatment by controlled electric pulse currents. This method enables a better control of the recovery and recrystallization processes taking place during the heat treatment and accordingly a better control on the final microstructure. Using a stepwise approach of millisecond pulse annealing, it is shown how the microstructure evolves from a severely deformed state with no functional properties to an optimal nanograined microstructure (2050 nm) that is partially recovered through polygonization and partially recrystallized and that has the best functional properties. Such a microstructure is highly resistant against dislocation slip upon cycling, while microstructures annealed for longer times and showing mostly recrystallized grains were prone to dislocation slip, particularly as the grain size exceeds 200 nm.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000279787100020 Publication Date 2010-06-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 5.301 Times cited 110 Open Access
  Notes Multimat; FWO IAA Approved Most recent IF: 5.301; 2010 IF: 3.791
  Call Number UA @ lucian @ c:irua:83279 Serial 2062
Permanent link to this record
 

 
Author Bartova, B.; Wiese, N.; Schryvers, D.; Chapman, J.N.; Ignacova, S.
  Title Microstructure of precipitates and magnetic domain structure in an annealed Co38Ni33Al29 shape memory alloy Type A1 Journal article
  Year 2008 Publication Acta materialia Abbreviated Journal Acta Mater
  Volume 56 Issue 16 Pages 4470-4476
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The microstructure of a Co38Ni33Al29 ferromagnetic shape memory alloy was determined by conventional transmission electron microscopy (TEM), electron diffraction studies together with advanced microscopy techniques and in situ Lorentz microscopy. Rod-like precipitates, 1060 nm long, of hexagonal close-packed -Co were confirmed to be present by high-resolution TEM. The orientation relationship between the precipitates and B2 matrix is described by the Burgers orientation relationship. The crystal structure of the martensite obtained after cooling is tetragonal L10 with a (111) twinning plane. The magnetic domain structure was determined during an in situ cooling experiment using the Fresnel mode of Lorentz microscopy. While transformation proceeds from B2 austenite to L10 martensite, new domains are nucleated, leading to a decrease in domain width, with the magnetization lying predominantly along a single direction. It was possible to completely describe the relationship between magnetic domains and crystallographic directions in the austenite phase though complications existed for the martensite phase.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000259931300033 Publication Date 2008-06-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 5.301 Times cited 23 Open Access
  Notes Multimat Approved Most recent IF: 5.301; 2008 IF: 3.729
  Call Number UA @ lucian @ c:irua:72321 Serial 2072
Permanent link to this record
 

 
Author Boullay, P.; Schryvers, D.; Ball, J.M.
  Title Nano-structures at martensite macrotwin interfaces in Ni65Al35 Type A1 Journal article
  Year 2003 Publication Acta materialia Abbreviated Journal Acta Mater
  Volume 51 Issue 5 Pages 1421-1436
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The atomic configurations at macrotwin interfaces between microtwinned martensite plates in Ni65Al35 material are investigated using transmission electron microscopy. The observed structures are interpreted in view of possible formation mechanisms for these interfaces. A distinction is made between cases in which the microtwins, originating from mutually perpendicular {110} austenite planes, enclose a final angle larger or smaller than 90degrees. Two different configurations, a crossing and a step type are described. Depending on the actual case, tapering, bending and tip splitting of the smaller microtwinvariants are observed. The most reproducible deformations occur in a region of approximately 5-10 nm width around the interface while a variety of structural defects are observed further away from the interface. These structures and deformations are interpreted in terms of the coalescence of two separately nucleated microtwinned martensite plates and the need to accommodate remaining stresses. (C) 2003 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000181677700018 Publication Date 2003-03-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 5.301 Times cited 31 Open Access
  Notes Approved Most recent IF: 5.301; 2003 IF: 3.059
  Call Number UA @ lucian @ c:irua:48364 Serial 2248
Permanent link to this record
 

 
Author Potapov, P.L.; Ochin, P.; Pons, J.; Schryvers, D.
  Title Nanoscale inhomogeneities in melt-spun Ni-Al Type A1 Journal article
  Year 2000 Publication Acta materialia Abbreviated Journal Acta Mater
  Volume 48 Issue Pages 3833-3845
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000089632800003 Publication Date 2002-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 5.301 Times cited 28 Open Access
  Notes Approved Most recent IF: 5.301; 2000 IF: 2.166
  Call Number UA @ lucian @ c:irua:48362 Serial 2265
Permanent link to this record
 

 
Author Idrissi, H.; Renard, K.; Ryelandt, L.; Schryvers, D.; Jacques, P.J.
  Title On the mechanism of twin formation in FeMnC TWIP steels Type A1 Journal article
  Year 2010 Publication Acta materialia Abbreviated Journal Acta Mater
  Volume 58 Issue 7 Pages 2464-2476
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Although it is well known that FeMnC TWIP steels exhibit high work-hardening rates, the elementary twinning mechanisms controlling the plastic deformation of these steels have still not been characterized. The aim of the present study is to analyse the extended defects related to the twinning occurrence using transmission electron microscopy. Based on these observations, the very early stage of twin nucleation can be attributed to the pole mechanism with deviation proposed by Cohen and Weertman or to the model of Miura, Takamura and Narita, while the twin growth is controlled by the pole mechanism proposed by Venables. High densities of sessile Frank dislocations are observed within the twins at the early stage of deformation, which can affect the growth and the stability of the twins, but also the strength of these twins and their interactions with the gliding dislocations present in the matrix. This experimental evidence is discussed and compared to recent results in order to relate the defects analysis to the macroscopic behaviour of this category of material.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000276523200018 Publication Date 2010-01-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 5.301 Times cited 244 Open Access
  Notes Iap Approved Most recent IF: 5.301; 2010 IF: 3.791
  Call Number UA @ lucian @ c:irua:82270 Serial 2441
Permanent link to this record
 

 
Author Tirry, W.; Schryvers, D.
  Title Quantitative determination of strain fields around Ni4Ti3 precipitates in NiTi Type A1 Journal article
  Year 2005 Publication Acta materialia Abbreviated Journal Acta Mater
  Volume 53 Issue 4 Pages 1041-1049
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000226774500014 Publication Date 2004-12-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) 5.301 Times cited 97 Open Access
  Notes Approved Most recent IF: 5.301; 2005 IF: 3.430
  Call Number UA @ lucian @ c:irua:55686 Serial 2750
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: