toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vasiliev, A.L.; Van Tendeloo, G.; Boikov, Y.; Olsson, E.; Ivanov, S. openurl 
  Title Microstructure of YBa2Cu3O7-x films on buffered Si for microelectronic applications Type A1 Journal article
  Year 1997 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 10 Issue Pages 356-365  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos A1997WY69100015 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.878 Times cited 2 Open Access  
  Notes Approved Most recent IF: 2.878; 1997 IF: 2.183  
  Call Number UA @ lucian @ c:irua:21434 Serial 2076  
Permanent link to this record
 

 
Author Tan, H.; Lebedev, O.I.; McLaughlin, A.C.; Van Tendeloo, G. pdf  doi
openurl 
  Title The superstructure and superconductivity of Ru1222 based RuSr2Gd2-x-yYyCexCu2O10-\delta compounds Type A1 Journal article
  Year 2010 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 23 Issue 11 Pages 115013-115013,8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract For the first time, the local structure and physical properties of Ru1222 based compounds (RuSr(2)Gd(1.4)Ce(0.6)Cu(2)O(10-delta) and RuSr(2)Gd(1.8-x)Y(0.2)CexCu(2)O(10) (x = 0.90-0.55)) have been investigated and analyzed together on the very same compounds. The Ru1222 superstructure was confirmed by TEM at a local scale and was suggested to have an orthorhombic symmetry with space group Aba2 and lattice parameters a(s) similar or equal to root 2a, b(s) similar or equal to root 2a and c(s) = c. This new Ru1222 superstructure distortion from tetragonal symmetry is proposed to have a positive correlation with the superconductivity variation of these compounds. The more the distortion towards orthorhombic symmetry, the higher the critical superconducting temperature these compounds can achieve. The T(c)(0) of RuSr(2)Gd(1.8-x)Y(0.2)Ce(x)Cu(2)O(10-delta) (x = 0.85-0.55) increases monotonically from 4 to 16 K when x decreases from 0.85 to 0.70, then RuSr(2)Gd(2)Cu(2)O(8) defects emerge and the T(c) decreases with decreasing x. Ru1212 defects are observed to intergrow epitaxially with the Ru1222 structure as lamellas along the c-axis in RuSr(2)Gd(1.4)Ce(0.6)Cu(2)O(10-delta). Although Ru1212 is a superconductor, the intergrowth severely restrains its superconductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000284308000013 Publication Date 2010-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.878 Times cited 1 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 2.878; 2010 IF: 2.402  
  Call Number UA @ lucian @ c:irua:95553 Serial 3385  
Permanent link to this record
 

 
Author Tafuri, F.; Carillo, F.; Lombardi, F.; Granozio, F.M.; dii Uccio, U.S.; Testa, G.; Sarnelli, E.; Verbist, K.; Van Tendeloo, G. pdf  doi
openurl 
  Title YBa2Cu3O7-x Josephson junctions and dc SQUIDs based on 45\text{\textdegree} a-axis tilt and twist grain boundaries : atomically clean interfaces for applications Type A1 Journal article
  Year 1999 Publication Superconductor science and technology T2 – International Superconductive Electronics Conference, JUN 21-25, 1999, BERKELEY, CALIFORNIA Abbreviated Journal Supercond Sci Tech  
  Volume 12 Issue 11 Pages 1007-1009  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract YBa2Cu3O7-x artificial grain boundary Josephson junctions have been fabricated, employing a recently implemented biepitaxial technique. The grain boundaries can be obtained by controlling the orientation of the MgO seed layer and are characterized by a misalignment of the c-axes (45 degrees a-axis tilt or 45 degrees a-axis twist). These types of grain boundaries are still mostly unexplored. We carried out a complete characterization of their transport properties and microstructure. Junctions and de SQUIDs associated with these grain boundaries exhibit an excellent Josephson phenomenology and high values of the ICRN product and of the magnetic flux-to-voltage transfer parameter respectively. Remarkable differences in the transport parameters of tilt and twist junctions have been observed, which can be of interest for several applications. A maximum speed of Josephson vortices as calculated from the voltage step values of the order of 2 x 10(6) m s(-1) is obtained. These devices could also have some impact on experiments designed to study the symmetry of the order parameter, exploiting their microstructure and anisotropic properties. High-resolution electron microscopy showed the presence of perfect basal plane faced boundaries in the cross sections of tilt boundaries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000083948400093 Publication Date 2002-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.878 Times cited 3 Open Access  
  Notes Approved Most recent IF: 2.878; 1999 IF: 1.728  
  Call Number UA @ lucian @ c:irua:102896 Serial 3565  
Permanent link to this record
 

 
Author Wang, H.; Picot, T.; Houben, K.; Moorkens, T.; Grigg, J.; Van Haesendonck, C.; Biermans, E.; Bals, S.; Brown, S.A.; Vantomme, A.; Temst, K.; Van Bael, M.J.; pdf  doi
openurl 
  Title The superconducting proximity effect in epitaxial Al/Pb nanocomposites Type A1 Journal article
  Year 2014 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 27 Issue 1 Pages 015008-8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have investigated the superconducting properties of Pb nanoparticles with a diameter ranging from 8 to 20 nm, synthesized by Pb+ ion implantation in a crystalline Al matrix. A detailed structural characterization of the nanocomposites reveals the highly epitaxial relation between the Al crystalline matrix and the Pb nanoparticles. The Al/Pb nanocomposites display a single superconducting transition, with the critical temperature T-c increasing with the Pb content. The dependence of T-c on the Pb/Al volume ratio was compared with theoretical models of the superconducting proximity effect based on the bulk properties of Al and Pb. A very good correspondence with the strong-coupling proximity effect model was found, with an electron-phonon coupling constant in the Pb nanoparticles slightly reduced compared to bulk Pb. Our result differs from other studies on Pb nanoparticle based proximity systems where weak-coupling models were found to better describe the T-c dependence. We infer that the high interface quality resulting from the ion implantation synthesis method is a determining factor for the superconducting properties. Critical field and critical current measurements support the high quality of the nanocomposite superconducting films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000328275000010 Publication Date 2013-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.878 Times cited 2 Open Access Not_Open_Access  
  Notes ; This work was supported by the Research Foundation-Flanders (FWO), the KU Leuven BOF Concerted Research Action programs (GOA/09/006, the KU Leuven BOF CREA/12/015 project, and GOA/14/007) and the EU FP7 program SPIRIT (227012). TP and KH are postdoctoral research fellow and doctoral fellow of the FWO. ; Approved Most recent IF: 2.878; 2014 IF: 2.325  
  Call Number UA @ lucian @ c:irua:112833 Serial 3599  
Permanent link to this record
 

 
Author Molina-Luna, L.; Duerrschnabel, M.; Turner, S.; Erbe, M.; Martinez, G.T.; Van Aert, S.; Holzapfel, B.; Van Tendeloo, G. pdf  doi
openurl 
  Title Atomic and electronic structures of BaHfO3-doped TFA-MOD-derived YBa2Cu3O7−δthin films Type A1 Journal article
  Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 28 Issue 28 Pages 115009  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Tailoring the properties of oxide-based nanocomposites is of great importance for a wide range of materials relevant for energy technology. YBa2Cu3O7−δ (YBCO) superconducting thin films containing nanosized BaHfO3 (BHO) particles yield a significant improvement of the magnetic flux pinning properties and a reduced anisotropy of the critical current density. These films were prepared by chemical solution deposition (CSD) on (100) SrTiO3 (STO) substrates yielding critical current densities up to 3.6 MA cm−2 at 77 K and self-field. Transport in-field J c measurements demonstrated a high pinning force maximum of around 6 GN/m3 for a sample annealed at T = 760 °C that has a doping of 12 mol% of BHO. This sample was investigated by scanning transmission electron microscopy (STEM) in combination with electron energy-loss spectroscopy (EELS) yielding strain and spectral maps. Spherical BHO nanoparticles of 15 nm in size were found in the matrix, whereas the particles at the interface were flat. A 2 nm diffusion layer containing Ti was found at the YBCO (BHO)/STO interface. Local lattice deformation mapping at the atomic scale revealed crystal defects induced by the presence of both sorts of BHO nanoparticles, which can act as pinning centers for magnetic flux lines. Two types of local lattice defects were identified and imaged: (i) misfit edge dislocations and (ii) Ba-Cu-Cu-Ba stacking faults (Y-248 intergrowths). The local electronic structure and charge transfer were probed by high energy resolution monochromated electron energy-loss spectroscopy. This technique made it possible to distinguish superconducting from non-superconducting areas in nanocomposite samples with atomic resolution in real space, allowing the identification of local pinning sites on the order of the coherence length of YBCO (~1.5 nm) and the determination of 0.25 nm dislocation cores.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000366193000018 Publication Date 2015-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.878 Times cited 4 Open Access  
  Notes The authors thank financial support from the European Union under the Framework 6 program as a contract for an Integrated Infrastructure Initiative (References No. 026019 ESTEEM) and by the EUFP6 Research Project “NanoEngineered Superconductors for Power Applications” NESPA no. MRTN-CT-2006-035619. This work was supported by funding from the European Research Council under the Seventh Framework Programme (FP7). L.M.L, S.T. and G.V.T acknowledge ERC grant N°246791 – COUNTATOMS and funding under a contract for an Integrated Infrastructure Initiative, Reference No. 312483- ESTEEM2, as well as the EC project EUROTAPES. G.T.M. and S.V.A acknowledge financial support from the Fund for Scientific Research-Flanders (Reference G.0064.10N and G.0393.11N). M.D. acknowledges financial support from the LOEWE research cluster RESPONSE (Hessen, Germany). M.E. has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement n° NMP-LA-2012-280432.; esteem2jra2; esteem2jra3 Approved Most recent IF: 2.878; 2015 IF: 2.325  
  Call Number c:irua:129199 c:irua:129199 Serial 3942  
Permanent link to this record
 

 
Author Erbe, M.; Hänisch, J.; Hühne, R.; Freudenberg, T.; Kirchner, A.; Molina-Luna, L.; Damm, C.; Van Tendeloo, G.; Kaskel, S.; Schultz, L.; Holzapfel, B. pdf  doi
openurl 
  Title BaHfO3artificial pinning centres in TFA-MOD-derived YBCO and GdBCO thin films Type A1 Journal article
  Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 28 Issue 28 Pages 114002  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Chemical solution deposition (CSD) is a promising way to realize REBa2Cu3O7−x (REBCO;RE = rare earth (here Y, Gd))-coated conductors with high performance in applied magnetic fields. However, the preparation process contains numerous parameters which need to be tuned to achieve high-quality films. Therefore, we investigated the growth of REBCO thin films containing nanometre-scale BaHfO3 (BHO) particles as pinning centres for magnetic flux lines, with emphasis on the influence of crystallization temperature and substrate on the microstructure and superconductivity. Conductivity, microscopy and x-ray investigations show an enhanced performance of BHO nano-composites in comparison to pristine REBCO. Further, those measurements reveal the superiority of GdBCO to YBCO—e.g. by inductive critical current densities, Jc, at self-field and 77 K. YBCO is outperformed by more than 1 MA cm−2 with Jc values of up to 5.0 MA cm−2 for 265 nm thick layers of GdBCO(BHO) on lanthanum aluminate. Transport in-field Jc measurements demonstrate high pinning force maxima of around 4 GN m−3 for YBCO(BHO) and GdBCO(BHO). However, the irreversibility fields are appreciably higher for GdBCO. The critical temperature was not significantly reduced upon BHO addition to both YBCO and GdBCO, indicating a low tendency for Hf diffusion into the REBCO matrix. Angular-dependent Jc measurements show a reduction of the anisotropy in the same order of magnitude for both REBCO compounds. Theoretical models suggest that more than one sort of pinning centre is active in all CSD films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000366193000003 Publication Date 2015-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.878 Times cited 36 Open Access  
  Notes Experimental work was mainly done at IFW Dresden. We thank Juliane Scheiter and Dr Jens Ingolf Mönch of IFW Dresden for technical assistance. The research leading to these results received funding from EUROTAPES, a collaborative project funded by the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no. NMP-LA-2012-280 432. L Molina-Luna and G Van Tendeloo acknowledge funding from the European Research Council (ERC grant nr. 24 691-COUNTATOMS). Approved Most recent IF: 2.878; 2015 IF: 2.325  
  Call Number c:irua:129200 Serial 3941  
Permanent link to this record
 

 
Author Meledin, A.; Turner, S.; Cayado, P.; Mundet, B.; Solano, E.; Ricart, S.; Ros, J.; Puig, T.; Obradors, X.; Van Tendeloo, G. url  doi
openurl 
  Title Unique nanostructural features in Fe, Mn-doped YBCO thin films Type A1 Journal article
  Year 2016 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 29 Issue 29 Pages 125009  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract An attempt to grow a thin epitaxial composite film of YBa2Cu3O7−δ (YBCO) with spinel MnFe2O4 (MFO) nanoparticles on a LAO substrate using the CSD approach resulted in a decomposition of the spinel and various doping modes of YBCO with the Fe and Mn cations. These nanostructural effects lead to a lowering of T c and a slight J c increase in field. Using a combination of advanced transmission electron microscopy (TEM) techniques such as atomic resolution high-angle annular dark field scanning TEM, energy dispersive x-ray spectroscopy and electron energy-loss spectroscopy we have been able to decipher and characterize the effects of the Fe and Mn doping on the film architecture. The YBaCuFeO5 anion-deficient double perovskite phase was detected in the form of 3D inclusions as well as epitaxially grown lamellas within the YBCO matrix. These nano-inclusions play a positive role as pinning centers responsible for the J c/J sf (H) dependency smoothening at high magnetic fields in the YBCO-MFO films with respect to the pristine YBCO films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000387680100001 Publication Date 2016-10-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.878 Times cited 6 Open Access  
  Notes The authors gratefully acknowledge Prof. Dr. A. Abakumov and Dr. J. Gazquez for discussions and corrections. Part of this work was performed within the framework of the EUROTAPES project (FP7-NMP.2011.2.2-1 Grant no. 280432), funded by the European Union. ICMAB research was financed by the Ministry of Economy and Competitiveness, and FEDER funds under the projects MAT2011-28874-C02-01, MAT2014-51778-C2-1-R, ENE2014-56109-C3-3-R and Consolider Nanoselect CSD2007-00041, and by Generalitat de Catalunya (2009 SGR 770, 2015 SGR 753 and Xarmae). ICMAB acknowledges support from Severo Ochoa Program (MINECO, Grant SEV-2015-0496). Approved Most recent IF: 2.878  
  Call Number EMAT @ emat @ c:irua:136444 Serial 4295  
Permanent link to this record
 

 
Author Stafford, B.H.; Sieger, M.; Ottolinger, R.; Meledin, A.; Strickland, N.M.; Wimbush, S.C.; Van Tendeloo, G.; Huehne, R.; Schultz, L. pdf  doi
openurl 
  Title Tilted BaHfO3 nanorod artificial pinning centres in REBCO films on inclined substrate deposited-MgO coated conductor templates Type A1 Journal article
  Year 2017 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 30 Issue 5 Pages 055002  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We grow BaHfO3 (BHO) nanorods in REBa2Cu3O7-x (REBCO, RE: Gd or Y) thin films on metal tapes coated with the inclined substrate deposited (ISD)-MgO template by both electron beam physical vapour deposition and pulsed laser deposition. In both cases the nanorods are inclined by an angle of 21 degrees-29 degrees with respect to the sample surface normal as a consequence of the tilted growth of the REBCO film resulting from the ISD-MgO layer. We present angular critical current density (J(c)) anisotropy as well as field- and temperature-dependant J(c) data of the BHO nanorod-containing GdBCO films demonstrating an increase in J(c) over a wide range of temperatures between 30 and 77 K and magnetic fields up to 8 T. In addition, we show that the angle of the peak in the J(c) anisotropy curve resulting from the nanorods is dependent both on temperature and magnetic field. The largest J(c) enhancement from the addition of the nanorods was found to occur at 30 K, 3 T, resulting in a J(c) of 3.0 MA cm(-2).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000398860300001 Publication Date 2017-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.878 Times cited 6 Open Access Not_Open_Access  
  Notes ; The authors would like to thank Anh Tu Bohn and other colleagues at THEVA Dunnschichtechnik GmbH for technical assistance and helpful discussion and R Nast for assistance with sample patterning. We also acknowledge partial support from EUROTAPES, a collaborative project funded by the European Commission's Seventh Framework Program (FP7/2007-2013) under Grant Agreement n. 280432. ; Approved Most recent IF: 2.878  
  Call Number UA @ lucian @ c:irua:143641 Serial 4694  
Permanent link to this record
 

 
Author Pahlke, P.; Sieger, M.; Ottolinger, R.; Lao, M.; Eisterer, M.; Meledin, A.; Van Tendeloo, G.; Haenisch, J.; Holzapfel, B.; Schultz, L.; Nielsch, K.; Huehne, R. pdf  url
doi  openurl
  Title Influence of artificial pinning centers on structural and superconducting properties of thick YBCO films on ABAD-YSZ templates Type A1 Journal article
  Year 2018 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 31 Issue 4 Pages 044007  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Recent efforts in the development of YBa2Cu3O7-x (YBCO) coated conductors are devoted to the increase of the critical current I-c in magnetic fields. This is typically realized by growing thicker YBCO layers as well as by the incorporation of artificial pinning centers. We studied the growth of doped YBCO layers with a thickness of up to 7 mu m using pulsed laser deposition with a growth rate of about 1.2 nm s(-1). Industrially fabricated ion-beam textured YSZ templates based on metal tapes were used as substrates for this study. The incorporation of BaHfO3 (BHO) or Ba2Y(Nb0.5Ta0.5)O-6 (BYNTO) secondary phase additions leads to a denser microstructure compared to undoped films. A purely c-axis-oriented YBCO growth is preserved up to a thickness of about 4 mu m, whereas misoriented texture components were observed in thicker films. The critical temperature is slightly reduced compared to undoped films and independent of film thickness. The critical current density J(c) of the BHO- and BYNTO-doped YBCO layers is lower at 77 K and self-field compared to pure YBCO layers; however, I-c increases up to a thickness of 5 mu m. A comparison between films with a thickness of 1.3 mu m revealed that the anisotropy of the critical current density J(c)(theta) strongly depends on the incorporated pinning centers. Whereas BHO nanorods lead to a strong B vertical bar vertical bar c-axis peak, the overall anisotropy is significantly reduced by the incorporation of BYNTO forming a mixture of short c-axis-oriented nanorods and small (a-b)-oriented platelets. As a result, the J(c) values of the doped films outperform the undoped samples at higher fields and lower temperatures for most magnetic field directions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000442196400001 Publication Date 2018-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.878 Times cited 9 Open Access OpenAccess  
  Notes ; The authors acknowledge financial support from EURO-TAPES, a collaborative project funded by the European Union's Seventh Framework Programme (FP7/ 2007-2013) under Grant Agreement no. 280432. We thank A Usoskin (Bruker HTS GmbH, Germany) for the provision of buffered templates, and M Bianchetti, A Kursumovic and J L Mac-Manus-Driscoll (University of Cambridge, UK) for the supply of BYNTO targets. The authors also gratefully acknowledge the technical assistance of J Scheiter, M Kuhnel, U Besold (IFW) and R Nast (KIT). ; Approved Most recent IF: 2.878  
  Call Number UA @ lucian @ c:irua:153775 Serial 5108  
Permanent link to this record
 

 
Author Pacquets, L.; Irtem, E.; Neukermans, S.; Daems, N.; Bals, S.; Breugelmans, T. pdf  url
doi  openurl
  Title Size-controlled electrodeposition of Cu nanoparticles on gas diffusion electrodes in methanesulfonic acid solution Type A1 Journal article
  Year 2020 Publication Journal Of Applied Electrochemistry Abbreviated Journal J Appl Electrochem  
  Volume 51 Issue 2 Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract In this paper electrodeposition is used to obtain Cu nanoparticles, as it allows good control over particle size and distribution. These Cu particles were deposited onto a gas diffusion electrode which increased the resulting surface area. Prior to deposition, the surface was pre-treated with NaOH, HNO3, MQ and TX100 to investigate the influence on the electrodeposition of Cu on the gas diffusion electrode (GDE). When using HNO3, the smallest particles with the most homogeneous distribution and high particle roughness were obtained. Once the optimal substrate was determined, we further demonstrated that by altering the electrodeposition parameters, the particle size and density could be tuned. On the one hand, increasing the nucleation potential led to a higher particle density resulting in smaller particles because of an increased competition between particles. Finally, the Cu particle size increased when applying a greater growth charge and growth potential. This fundamental study thus opens up a path towards the synthesis of supported Cu materials with increased surface areas, which is interesting from a catalytic point of view. Larger surface areas are generally correlated with a better catalyst performance and thus higher product yields. This research can contributed in obtaining new insides into the deposition of metallic nanoparticles on rough surfaces. [GRAPHICS] .  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000568651000001 Publication Date 2020-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-891x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.9 Times cited 3 Open Access OpenAccess  
  Notes ; L. Pacquets was supported through a PhD fellowship strategic basic research (1S56918N) of the Research Foundation-Flanders (FWO). N. Daems was supported through a postdoctoral fellowship (12Y3919N-ND) of the Research Foundation-Flanders (FWO). S. Neukermans was supported through an FWO project grant (G093317N). This research was financed by the research counsel of the university of Antwerp (BOF-GOA 33928). The authors recognize the contribution of Thomas Kenis for analytical validation and methodology. ; Approved Most recent IF: 2.9; 2020 IF: 2.235  
  Call Number UA @ admin @ c:irua:171588 Serial 6603  
Permanent link to this record
 

 
Author Ramesha, B.M.; Pawlak, B.; Arenas Esteban, D.; Reekmans, G.; Bals, S.; Marchal, W.; Carleer, R.; Adriaensens, P.; Meynen, V. pdf  url
doi  openurl
  Title Partial hydrolysis of diphosphonate ester during the formation of hybrid Tio₂ nanoparticles : role of acid concentration Type A1 Journal article
  Year 2023 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal  
  Volume Issue Pages e202300437-13  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract In the present work, a method was utilized to control the in‐situ partial hydrolysis of a diphosphonate ester in presence of a titania precursor and in function of acid content and its impact on the hybrid nanoparticles was assessed. The hydrolysis degree of organodiphosphonate ester linkers during the formation of hybrid organic‐inorganic metal oxide nanoparticles, are relatively underexplored . Quantitative solution NMR spectroscopy revealed that during the synthesis of TiO2 nanoparticles, an increase in acid concentration introduces a higher degree of partial hydrolysis of the TEPD linker into diverse acid/ester derivatives of TEPD. Increasing the HCl/Ti ratio from 1 to 3, resulted in an increase in degree of partial hydrolysis of the TEPD linker in solution from 4% to 18.8% under the here applied conditions. As a result of the difference in partial hydrolysis, the linker‐TiO2 bonding was altered. Upon subsequent drying of the colloidal TiO2 solution, different textures, at nanoscale and macroscopic scale, were obtained dependent on the HCl/Ti ratio and thus the degree of hydrolysis of TEPD. Understanding such linker‐TiO2 nanoparticle surface dynamics is crucial for making hybrid organic‐inorganic materials (i.e. (porous) metal phosphonates) employed in applications such as electronic/photonic devices, separation technology and heterogeneous catalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001071673900001 Publication Date 2023-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1439-4235; 1439-7641 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (up) 2.9 Times cited Open Access OpenAccess  
  Notes This work was supported by the Research Foundation-Flanders (FWO Vlaanderen) Project G.0121.17 N. The work was further supported by Hasselt University and the Research Foundation – Flanders (FWO Vlaanderen) via the Hercules project AUHL/15/2 – GOH3816 N. V. M. acknowledges the Research Foundation Flanders (FWO) for project K801621 N. B. M. R. acknowledges, Prof. Dr. Christophe Detavernier and Dr. Davy Deduystche (COCOON, Ghent University) for PXRD and VT-XRD measurements, Prof. Dr. Christophe Van De Velde (iPRACS, University of Antwerp) and Dr. Radu Ciocarlan (LADCA, University of Antwerp) for helpful discussions on PXRD measurements and Dr. Nick Gys (University of Antwerp and VITO) for ICP-OES measurements. Approved Most recent IF: 2.9; 2023 IF: 3.075  
  Call Number UA @ admin @ c:irua:198934 Serial 8911  
Permanent link to this record
 

 
Author Nivesanond, K.; Peeters, A.; Lamoen, D.; van Alsenoy, C. doi  openurl
  Title Ab initio calculation of the interaction energy in the P2 binding pocket of HIV-1 protease Type A1 Journal article
  Year 2005 Publication International Journal Of Quantum Chemistry Abbreviated Journal Int J Quantum Chem  
  Volume 105 Issue 3 Pages 292-299  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000232232300009 Publication Date 2005-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-7608;1097-461X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.92 Times cited 8 Open Access  
  Notes Approved Most recent IF: 2.92; 2005 IF: 1.192  
  Call Number UA @ lucian @ c:irua:54919 Serial 30  
Permanent link to this record
 

 
Author Van Boxem, R.; Partoens, B.; Verbeeck, J. url  doi
openurl 
  Title Inelastic electron-vortex-beam scattering Type A1 Journal article
  Year 2015 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A  
  Volume 91 Issue 91 Pages 032703  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Recent theoretical and experimental developments in the field of electron-vortex-beam physics have raised questions about what exactly this novelty in the field of electron microscopy (and other fields, such as particle physics) really provides. An important part of the answer to these questions lies in scattering theory. The present investigation explores various aspects of inelastic quantum scattering theory for cylindrically symmetric beams with orbital angular momentum. The model system of Coulomb scattering on a hydrogen atom provides the setting to address various open questions: How is momentum transferred? Do vortex beams selectively excite atoms, and how can one employ vortex beams to detect magnetic transitions? The analytical approach presented here provides answers to these questions. OAM transfer is possible, but not through selective excitation; rather, by pre- and postselection one can filter out the relevant contributions to a specific signal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000351035000004 Publication Date 2015-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.925 Times cited 31 Open Access  
  Notes Fwo; 312483 Esteem2; 278510 Vortex; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2015 IF: 2.808  
  Call Number c:irua:123925 c:irua:123925UA @ admin @ c:irua:123925 Serial 1607  
Permanent link to this record
 

 
Author Guzzinati, G.; Clark, L.; Béché, A.; Verbeeck, J. url  doi
openurl 
  Title Measuring the orbital angular momentum of electron beams Type A1 Journal article
  Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A  
  Volume 89 Issue Pages 025803  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The recent demonstration of electron vortex beams has opened up the new possibility of studying orbital angular momentum (OAM) in the interaction between electron beams and matter. To this aim, methods to analyze the OAM of an electron beam are fundamentally important and a necessary next step. We demonstrate the measurement of electron beam OAM through a variety of techniques. The use of forked holographic masks, diffraction from geometric apertures, and diffraction from a knife edge and the application of an astigmatic lens are all experimentally demonstrated. The viability and limitations of each are discussed with supporting numerical simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000332224100014 Publication Date 2014-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.925 Times cited 42 Open Access  
  Notes Vortex; FP7; Countatoms; ESTEEM2; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2014 IF: 2.808  
  Call Number UA @ lucian @ c:irua:114577UA @ admin @ c:irua:114577 Serial 1972  
Permanent link to this record
 

 
Author Clark, L.; Béché, A.; Guzzinati, G.; Verbeeck, J. url  doi
openurl 
  Title Quantitative measurement of orbital angular momentum in electron microscopy Type A1 Journal article
  Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A  
  Volume 89 Issue 5 Pages 053818  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron vortex beams have been predicted to enable atomic scale magnetic information measurement, via transfer of orbital angular momentum. Research so far has focused on developing production techniques and applications of these beams. However, methods to measure the outgoing orbital angular momentum distribution are also a crucial requirement towards this goal. Here, we use a method to obtain the orbital angular momentum decomposition of an electron beam, using a multipinhole interferometer. We demonstrate both its ability to accurately measure orbital angular momentum distribution, and its experimental limitations when used in a transmission electron microscope.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000335826300012 Publication Date 2014-05-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.925 Times cited 23 Open Access  
  Notes 7th Framework Program (FP7); ERC Starting Grant No. 278510- VORTEX 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). 7th Framework Program (FP7), ERC Grant No. 246791- COUNTATOMS. SP – 053818-1; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2014 IF: 2.808  
  Call Number UA @ lucian @ c:irua:117093UA @ admin @ c:irua:117093 Serial 2758  
Permanent link to this record
 

 
Author Van Boxem, R.; Partoens, B.; Verbeeck, J. url  doi
openurl 
  Title Rutherford scattering of electron vortices Type A1 Journal article
  Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A  
  Volume 89 Issue 3 Pages 032715-32719  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract By considering a cylindrically symmetric generalization of a plane wave, the first-order Born approximation of screened Coulomb scattering unfolds two new dimensions in the scattering problem: transverse momentum and orbital angular momentum of the incoming beam. In this paper, the elastic Coulomb scattering amplitude is calculated analytically for incoming Bessel beams. This reveals novel features occurring for wide-angle scattering and quantitative insights for small-angle vortex scattering. The result successfully generalizes the well-known Rutherford formula, incorporating transverse and orbital angular momentum into the formalism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000333690500008 Publication Date 2014-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.925 Times cited 34 Open Access  
  Notes 312483-Esteem2; N246791 – Countatoms; 278510 Vortex; esteem2jra1; esteem2jra3 ECASJO_; Approved Most recent IF: 2.925; 2014 IF: 2.808  
  Call Number UA @ lucian @ c:irua:115562UA @ admin @ c:irua:115562 Serial 2936  
Permanent link to this record
 

 
Author Lubk, A.; Clark, L.; Guzzinati, G.; Verbeeck, J. url  doi
openurl 
  Title Topological analysis of paraxially scattered electron vortex beams Type A1 Journal article
  Year 2013 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A  
  Volume 87 Issue 3 Pages 033834-33838  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We investigate topological aspects of subnanometer electron vortex beams upon elastic propagation through atomic scattering potentials. Two main aspects can be distinguished: (i) significantly reduced delocalization compared to a similar nonvortex beam if the beam centers on an atomic column and (ii) site symmetry dependent splitting of higher-order vortex beams. Furthermore, the results provide insight into the complex vortex line fabric within the elastically scattered wave containing characteristic vortex loops predominantly attached to atomic columns and characteristic twists of vortex lines around atomic columns. DOI: 10.1103/PhysRevA.87.033834  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000316790600011 Publication Date 2013-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.925 Times cited 26 Open Access  
  Notes Countatoms; Vortex; Esteem2; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2013 IF: 2.991  
  Call Number UA @ lucian @ c:irua:108496 Serial 3673  
Permanent link to this record
 

 
Author Juchtmans, R.; Verbeeck, J. url  doi
openurl 
  Title Local orbital angular momentum revealed by spiral-phase-plate imaging in transmission-electron microscopy Type A1 Journal article
  Year 2016 Publication Physical Review A Abbreviated Journal Phys Rev A  
  Volume 93 Issue 93 Pages 023811  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The orbital angular momentum (OAM) of light and matter waves is a parameter that has been getting increasingly more attention over the past couple of years. Beams with a well-defined OAM, the so-called vortex beams, are applied already in, e.g., telecommunication, astrophysics, nanomanipulation, and chiral measurements in optics and electron microscopy. Also, the OAM of a wave induced by the interaction with a sample has attracted a lot of interest. In all these experiments it is crucial to measure the exact (local) OAM content of the wave, whether it is an incoming vortex beam or an exit wave after interacting with a sample. In this work we investigate the use of spiral phase plates (SPPs) as an alternative to the programmable phase plates used in optics to measure OAM. We derive analytically how these can be used to study the local OAM components of any wave function. By means of numerical simulations we illustrate how the OAM of a pure vortex beam can be measured. We also look at a sum of misaligned vortex beams and show how, by using SPPs, the position and the OAM of each individual beam can be detected. Finally, we look at the OAM induced by a magnetic dipole on a free-electron wave and show how the SPP can be used to localize the magnetic poles and measure their “magnetic charge.” Although our findings can be applied to study the OAM of any wave function, our findings are of particular interest for electron microscopy where versatile programmable phase plates do not yet exist.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000369367700006 Publication Date 2016-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.925 Times cited 12 Open Access  
  Notes The authors acknowledge support from the Aspirant Fonds Wetenschappelijk Onderzoek–Vlaanderen (FPO), the EU un- der the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483- ESTEEM2, and the ERC Starting Grant 278510 VORTEX.; esteem2jra2 ECASJO; Approved Most recent IF: 2.925  
  Call Number c:irua:131613 c:irua:131613UA @ admin @ c:irua:131613 Serial 4030  
Permanent link to this record
 

 
Author Clark, L.; Guzzinati, G.; Béché, A.; Lubk, A.; Verbeeck, J. pdf  url
doi  openurl
  Title Symmetry-constrained electron vortex propagation Type A1 Journal article
  Year 2016 Publication Physical review A Abbreviated Journal Phys Rev A  
  Volume 93 Issue 93 Pages 063840  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron vortex beams hold great promise for development in transmission electron microscopy but have yet to be widely adopted. This is partly due to the complex set of interactions that occur between a beam carrying orbital angular momentum (OAM) and a sample. Herein, the system is simplified to focus on the interaction between geometrical symmetries, OAM, and topology. We present multiple simulations alongside experimental data to study the behavior of a variety of electron vortex beams after interacting with apertures of different symmetries and investigate the effect on their OAM and vortex structure, both in the far field and under free-space propagation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000378197200006 Publication Date 2016-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.925 Times cited 7 Open Access  
  Notes L.C., A.B., G.G., and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510—VORTEX. J.V. and A.L. acknowledge financial support from the European Union through the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). The Qu-Ant-EM microscope was partly funded by the Hercules fund of the Flemish Government.; esteem2jra3; ECASJO; Approved Most recent IF: 2.925  
  Call Number c:irua:134086 c:irua:134086 Serial 4090  
Permanent link to this record
 

 
Author Juchtmans, R.; Guzzinati, G.; Verbeeck, J. url  doi
openurl 
  Title Extension of Friedel's law to vortex-beam diffraction Type A1 Journal article
  Year 2016 Publication Physical Review A Abbreviated Journal Phys Rev A  
  Volume 94 Issue 94 Pages 033858  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Friedel's law states that the modulus of the Fourier transform of real functions is centrosymmetric, while the phase is antisymmetric. As a consequence of this, elastic scattering of plane-wave photons or electrons within the first-order Born-approximation, as well as Fraunhofer diffraction on any aperture, is bound to result in centrosymmetric diffraction patterns. Friedel's law, however, does not apply for vortex beams, and centrosymmetry in general is not present in their diffraction patterns. In this work we extend Friedel's law for vortex beams by showing that the diffraction patterns of vortex beams with opposite topological charge, scattered on the same two-dimensional potential, always are centrosymmetric to one another, regardless of the symmetry of the scattering object. We verify our statement by means of numerical simulations and experimental data. Our research provides deeper understanding in vortex-beam diffraction and can be used to design new experiments to measure the topological charge of vortex beams with diffraction gratings or to study general vortex-beam diffraction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384374500010 Publication Date 2016-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.925 Times cited 13 Open Access  
  Notes The authors acknowledge support from the FWO (Aspirant Fonds Wetenschappelijk Onderzoek – Vlaanderen) and the EU under the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2 and ERC Starting Grant No. 278510 VORTEX.; ECASJO_; Approved Most recent IF: 2.925  
  Call Number EMAT @ emat @ c:irua:137200UA @ admin @ c:irua:137200 Serial 4314  
Permanent link to this record
 

 
Author Juchtmans, R.; Clark, L.; Lubk, A.; Verbeeck, J. url  doi
openurl 
  Title Spiral phase plate contrast in optical and electron microscopy Type A1 Journal article
  Year 2016 Publication Physical review A Abbreviated Journal Phys Rev A  
  Volume 94 Issue 94 Pages 023838  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The use of phase plates in the back focal plane of a microscope is a well-established technique in optical microscopy to increase the contrast of weakly interacting samples and is gaining interest in electron microscopy as well. In this paper we study the spiral phase plate (SPP), also called helical, vortex, or two-dimensional Hilbert phase plate, which adds an angularly dependent phase of the form exp(iℓϕk) to the exit wave in Fourier space. In the limit of large collection angles, we analytically calculate that the average of a pair of l=+-1

SPP filtered images is directly proportional to the gradient squared of the exit wave, explaining the edge contrast previously seen in optical SPP work. We discuss the difference between a clockwise-anticlockwise pair of SPP filtered images and derive conditions under which the modulus of the wave's gradient can be seen directly from one SPP filtered image. This work provides the theoretical background to interpret images obtained with a SPP, thereby opening new perspectives for new experiments to study, for example, magnetic materials in an electron microscope.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000381882800011 Publication Date 2016-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.925 Times cited 10 Open Access  
  Notes The authors acknowledge support from the FWO (Aspirant Fonds Wetenschappelijk Onderzoek – Vlaanderen) and the EU under the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2 and ERC Starting Grant No. 278510 VORTEX.; ECASJO_ Approved Most recent IF: 2.925  
  Call Number EMAT @ emat @ c:irua:140086 Serial 4418  
Permanent link to this record
 

 
Author Yin, C.; Krishnan, D.; Gauquelin, N.; Verbeeck, J.; Aarts, J. doi  openurl
  Title Controlling the interfacial conductance in LaAlO3/SrTiO3 in 90 degrees off-axis sputter deposition Type A1 Journal article
  Year 2019 Publication Physical review materials Abbreviated Journal  
  Volume 3 Issue 3 Pages 034002  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report on the fabrication of conducting interfaces between LaAlO3 and SrTiO3 by 90 degrees off-axis sputtering in an Ar atmosphere. At a growth pressure of 0.04 mbar the interface is metallic, with a carrier density of the order of 1 x 10(13) cm(-2) at 3 K. By increasing the growth pressure, we observe an increase of the out-of-plane lattice constants of the LaAlO3 films while the in-plane lattice constants do not change. Also, the low-temperature sheet resistance increases with increasing growth pressure, leading to an insulating interface when the growth pressure reaches 0.10 mbar. We attribute the structural variations to an increase of the La/Al ratio, which also explains the transition from metallic behavior to insulating behavior of the interfaces. Our research shows that the control which is furnished by the Ar pressure makes sputtering as versatile a process as pulsed laser deposition, and emphasizes the key role of the cation stoichiometry of LaAlO3 in the formation of the conducting interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461077100002 Publication Date 2019-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.926 Times cited 4 Open Access Not_Open_Access  
  Notes ; We thank Nikita Lebedev, Aymen Ben Hamida, and Prateek Kumar for useful discussions and Giordano Mattoni, Jun Wang, Vincent Joly, and Hozanna Miro for their technical assistance. We also thank Jean-Marc Triscone and his group for sharing their design of the sputtering system with us. This work is part of the FOM research programme DESCO with Project No. 149, which is (partly) financed by the Netherlands Organisation for Scientific Research (NWO). C.Y. is supported by China Scholarship Council (CSC) with Grant No. 201508110214. N.G., D.K., and J.V. acknowledge financial support from the GOA project “Solarpaint” of the University of Antwerp. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:158547 Serial 5243  
Permanent link to this record
 

 
Author Zhang, G.; Zhou, Y.; Korneychuk, S.; Samuely, T.; Liu, L.; May, P.W.; Xu, Z.; Onufriienko, O.; Zhang, X.; Verbeeck, J.; Samuely, P.; Moshchalkov, V.V.; Yang, Z.; Rubahn, H.-G. doi  openurl
  Title Superconductor-insulator transition driven by pressure-tuned intergrain coupling in nanodiamond films Type A1 Journal article
  Year 2019 Publication Physical review materials Abbreviated Journal  
  Volume 3 Issue 3 Pages 034801  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report on the pressure-driven superconductor-insulator transition in heavily boron-doped nanodiamond films. By systematically increasing the pressure, we suppress the Josephson coupling between the superconducting nanodiamond grains. The diminished intergrain coupling gives rise to an overall insulating state in the films, which is interpreted in the framework of a parallel-series circuit model to be the result of bosonic insulators with preserved localized intragrain superconducting order parameters. Our investigation opens up perspectives for the application of high pressure in research on quantum confinement and coherence. Our data unveil the percolative nature of the electrical transport in nanodiamond films, and highlight the essential role of grain boundaries in determining the electronic properties of this material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460684600002 Publication Date 2019-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.926 Times cited 5 Open Access Not_Open_Access  
  Notes ; Y.Z. and Z.Y. acknowledge support from the National Key Research and Development Program of China (Grants No. 2018YFA0305700 and No. 2016YFA0401804), the National Natural Science Foundation of China (Grants No. 11574323, No. 11704387, and No. U1632275), the Natural Science Foundation of Anhui Province (Grants No. 1708085QA19 and No. 1808085MA06), and the Director's Fund of Hefei Institutes of Physical Science, Chinese Academy of Sciences (YZJJ201621). J.V. and S.K. acknowledge funding from the GOA project “Solarpaint” of the University of Antwerp, and thank the FWO (Research Foundation-Flanders) for financial support under Contract No. G.0044.13N “Charge ordering”. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. T.S., O.O., and P.S. are supported by APVV-0036-11, APVV-0605-14, VEGA 1/0409/15, VEGA 2/0149/16, and EU ERDF-ITMS 26220120005. L.L. acknowledges the financial support of a FWO postdoctoral research fellowship (12V4419N) and the KU Leuven C1 project OPTIPROBE (C14/16/ 063). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:158561 Serial 5260  
Permanent link to this record
 

 
Author Debroye, E.; Yuan, H.; Bladt, E.; Baekelant, W.; Van der Auweraer, M.; Hofkens, J.; Bals, S.; Roeffaers, M.B.J. url  doi
openurl 
  Title Facile morphology-controlled synthesis of organolead iodide perovskite nanocrystals using binary capping agents Type A1 Journal article
  Year 2017 Publication ChemNanoMat : chemistry of nanomaterials for energy, biology and more Abbreviated Journal Chemnanomat  
  Volume 3 Issue 3 Pages 223-227  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Controlling the morphology of organolead halide perovskite crystals is crucial to a fundamental understanding of the materials and to tune their properties for device applications. Here, we report a facile solution-based method for morphology-controlled synthesis of rod-like and plate-like organolead halide perovskite nanocrystals using binary capping agents. The morphology control is likely due to an interplay between surface binding kinetics of the two capping agents at different crystal facets. By high-resolution scanning transmission electron microscopy, we show that the obtained nanocrystals are monocrystalline. Moreover, long photoluminescence decay times of the nanocrystals indicate long charge diffusion lengths and low trap/defect densities. Our results pave the way for large-scale solution synthesis of organolead halide perovskite nanocrystals with controlled morphology for future device applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000399604300003 Publication Date 2017-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2199-692x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.937 Times cited 19 Open Access OpenAccess  
  Notes ; We acknowledge financial support from the Research Foundation-Flanders (FWO, grant G.0197.11, G.0962.13, G0B39.15, postdoctoral fellowship to E. D. and H. Y.), KU Leuven Research Fund (C14/15/053), the Flemish government through long term structural funding Methusalem (CASAS2, Meth/15/04), the Hercules foundation (HER/11/14), the Belgian Federal Science Policy Office (IAP-PH05), the EC through the Marie Curie ITN project iSwitch (GA-642196) and the ERC project LIGHT (GA307523). S. B. acknowledges financial support from European Research Council (ERC Starting Grant # 335078-COLOURATOMS). E. B. gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO Vlaanderen). ; ecas_Sara Approved Most recent IF: 2.937  
  Call Number UA @ lucian @ c:irua:143678UA @ admin @ c:irua:143678 Serial 4656  
Permanent link to this record
 

 
Author Berthold, T.; Castro, C.R.; Winter, M.; Hoerpel, G.; Kurttepeli, M.; Bals, S.; Antonietti, M.; Fechler, N. pdf  url
doi  openurl
  Title Tunable nitrogen-doped carbon nanoparticles from tannic acid and urea and their potential for sustainable soots Type A1 Journal article
  Year 2017 Publication ChemNanoMat : chemistry of nanomaterials for energy, biology and more Abbreviated Journal Chemnanomat  
  Volume 3 Issue 3 Pages 311-318  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nano-sized nitrogen-doped carbon spheres are synthesized from two cheap, readily available and sustainable precursors: tannic acid and urea. In combination with a polymer structuring agent, nitrogen content, sphere size and the surface (up to 400 m(2)g(-1)) can be conveniently tuned by the precursor ratio, temperature and structuring agent content. Because the chosen precursors allow simple oven synthesis and avoid harsh conditions, this carbon nanosphere platform offers a more sustainable alternative to classical soots, for example, as printing pigments or conduction soots. The carbon spheres are demonstrated to be a promising as conductive carbon additive in anode materials for lithium ion batteries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403299200006 Publication Date 2017-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2199-692x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.937 Times cited 14 Open Access OpenAccess  
  Notes ; S.B. is grateful for funding by the European Research Council (ERC starting grant # 335078-COLOURATOMS). ; ecas_Sara Approved Most recent IF: 2.937  
  Call Number UA @ lucian @ c:irua:144287UA @ admin @ c:irua:144287 Serial 4699  
Permanent link to this record
 

 
Author Van Tendeloo, G.; Krekels, T. doi  openurl
  Title HREM of ceramic high Tc superconductors Type A1 Journal article
  Year 1996 Publication Journal of the European Ceramic Society Abbreviated Journal J Eur Ceram Soc  
  Volume 16 Issue Pages 367-378  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Barking Editor  
  Language Wos A1996UC80200005 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0955-2219; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.947 Times cited 1 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:16861 Serial 1507  
Permanent link to this record
 

 
Author Lamoen, D.; Persson, B.N.J. doi  openurl
  Title Adsorption of potassium and oxygen on graphite: a theoretical study Type A1 Journal article
  Year 1998 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys  
  Volume 108 Issue Pages 3332-3341  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000074379600032 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.965 Times cited 91 Open Access  
  Notes Approved Most recent IF: 2.965; 1998 IF: 3.147  
  Call Number UA @ lucian @ c:irua:19420 Serial 64  
Permanent link to this record
 

 
Author Titantah, J.T.; Pierleoni, C.; Ryckaert, J.-P. pdf  doi
openurl 
  Title Single chain elasticity and thermoelasticity of polyethylene Type A1 Journal article
  Year 2002 Publication The journal of chemical physics Abbreviated Journal J Chem Phys  
  Volume 117 Issue 19 Pages 9028-9036  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Single-chain elasticity of polyethylene at theta point up to 90% of stretching with respect to its contour length is computed by Monte Carlo simulation of an atomistic model in continuous space. The elasticity law together with the free-energy and the internal energy variations with stretching are found to be very well represented by the wormlike chain model up to 65% of the chain elongation, provided the persistence length is treated as a temperature-dependent parameter. Beyond this value of elongation simple ideal chain models are not able to describe the Monte Carlo data in a thermodynamic consistent way. This study reinforces the use of the wormlike chain model to interpret experimental data on the elasticity of synthetic polymers in the finite extensibility regime, provided the chain is not yet in its fully stretched regime. Specific solvent effects on the elasticity law and the partition between energetic and entropic contributions to single chain elasticity are investigated. (C) 2002 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000178934700046 Publication Date 2002-10-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.965 Times cited 5 Open Access  
  Notes Approved Most recent IF: 2.965; 2002 IF: 2.998  
  Call Number UA @ lucian @ c:irua:103862 Serial 3018  
Permanent link to this record
 

 
Author Leys, F.E.; March, N.H.; Lamoen, D. doi  openurl
  Title Thermodynamic consistency and integral equations for the liquid structure Type A1 Journal article
  Year 2002 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys  
  Volume 117 Issue Pages 10726  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000179495000031 Publication Date 2002-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606; ISBN Additional Links UA library record; WoS full record;  
  Impact Factor (up) 2.965 Times cited Open Access  
  Notes Approved Most recent IF: 2.965; 2002 IF: 2.998  
  Call Number UA @ lucian @ c:irua:41406 Serial 3634  
Permanent link to this record
 

 
Author Nikolaev, A.V.; Lamoen, D.; Partoens, B. pdf  url
doi  openurl
  Title Extension of the basis set of linearized augmented plane wave (LAPW) method by using supplemented tight binding basis functions Type A1 Journal article
  Year 2016 Publication The journal of chemical physics Abbreviated Journal J Chem Phys  
  Volume 145 Issue 145 Pages 014101  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract In order to increase the accuracy of the linearized augmented plane wave (LAPW) method, we present a new approach where the plane wave basis function is augmented by two different atomic radial components constructed at two different linearization energies corresponding to two different electron bands (or energy windows). We demonstrate that this case can be reduced to the standard treatment within the LAPW paradigm where the usual basis set is enriched by the basis functions of the tight binding type, which go to zero with zero derivative at the sphere boundary. We show that the task is closely related with the problem of extended core states which is currently solved by applying the LAPW method with local orbitals (LAPW+LO). In comparison with LAPW+LO, the number of supplemented basis functions in our approach is doubled, which opens up a new channel for the extension of the LAPW and LAPW+LO basis sets. The appearance of new supplemented basis functions absent in the LAPW+LO treatment is closely related with the existence of the ul-component in the canonical LAPW method. We discuss properties of additional tight binding basis functions and apply the extended basis set for computation of electron energy bands of lanthanum (face and body centered structures) and hexagonal close packed lattice of cadmium. We demonstrate that the new treatment gives lower total energies in comparison with both canonical LAPW and LAPW+LO, with the energy difference more pronounced for intermediate and poor LAPW basis sets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000379584700003 Publication Date 2016-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 2.965 Times cited 11 Open Access  
  Notes A.V.N. acknowledges useful discussions with B. Verberck, E. V. Tkalya, and A. V. Bibikov. Approved Most recent IF: 2.965  
  Call Number c:irua:134290 Serial 4099  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: