toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lin, A.G.; Xiang, B.; Merlino, D.J.; Baybutt, T.R.; Sahu, J.; Fridman, A.; Snook, A.E.; Miller, V. pdf  doi
openurl 
  Title Non-thermal plasma induces immunogenic cell death in vivo in murine CT26 colorectal tumors Type A1 Journal article
  Year 2018 Publication Oncoimmunology Abbreviated Journal  
  Volume 7 Issue 9 Pages e1484978  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Immunogenic cell death is characterized by the emission of danger signals that facilitate activation of an adaptive immune response against dead-cell antigens. In the case of cancer therapy, tumor cells undergoing immunogenic death promote cancer-specific immunity. Identification, characterization, and optimization of stimuli that induce immunogenic cancer cell death has tremendous potential to improve the outcomes of cancer therapy. In this study, we show that non-thermal, atmospheric pressure plasma can be operated to induce immunogenic cell death in an animal model of colorectal cancer. In vitro, plasma treatment of CT26 colorectal cancer cells induced the release of classic danger signals. Treated cells were used to create a whole-cell vaccine which elicited protective immunity in the CT26 tumor mouse model. Moreover, plasma treatment of subcutaneous tumors elicited emission of danger signals and recruitment of antigen presenting cells into tumors. An increase in T cell responses targeting the colorectal cancer-specific antigen guanylyl cyclase C (GUCY2C) were also observed. This study provides the first evidence that non-thermal plasma is a bone fide inducer of immunogenic cell death and highlights its potential for clinical translation for cancer immunotherapy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000443993100030 Publication Date 2018-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2162-4011; 2162-402x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) Times cited 28 Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:155651 Serial 5119  
Permanent link to this record
 

 
Author Bal, K. url  openurl
  Title New ways to bridge the gap between microscopic simulations and macroscopic chemistry Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:154836 Serial 5118  
Permanent link to this record
 

 
Author Verlackt, C. pdf  openurl
  Title The behavior of plasma-generated reactive species in plasma medicine Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:155115 Serial 5079  
Permanent link to this record
 

 
Author Ghorbanfekr Kalashami, H. url  openurl
  Title Graphene-based membranes and nanoconfined water : molecular dynamics simulation study Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 243 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:160548 Serial 5216  
Permanent link to this record
 

 
Author Paunska, T.; Trenchev, G.; Bogaerts, A.; Kolev, S. url  doi
openurl 
  Title A 2D model of a gliding arc discharge for CO2conversion Type P1 Proceeding
  Year 2019 Publication AIP conference proceedings T2 – 10th Jubilee Conference of the Balkan-Physical-Union (BPU), AUG 26-30, 2018, Sofia, BULGARIA Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The study presents a 2D fluid plasma model of a gliding arc discharge for dissociation of CO2 which allows its subsequent conversion into value-added chemicals. The model is based on the balance equations of charged and neutral particles, the electron energy balance equation, the gas thermal balance equation and the current continuity equation. By choosing the modeling domain to be the plane perpendicular to the arc current, the numerical calculations are significantly simplified. Thus, the model allows us to explore the influence of the gas instabilities (turbulences) on the energy efficiency of CO2 conversion. This paper presents results for plasma parameters at different values of the effective turbulent thermal conductivity leading to enhanced energy transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472653800069 Publication Date 2019-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 2075 Series Issue Edition  
  ISSN 978-0-7354-1803-5; 978-0-7354-1803-5; 0094-243x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:161422 Serial 6281  
Permanent link to this record
 

 
Author Razzokov, J. url  openurl
  Title Molecular level simulations for plasma medicine applications Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 173 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:159654 Serial 5277  
Permanent link to this record
 

 
Author Michielsen, I. url  openurl
  Title Plasma catalysis : study of packing materials on CO2 reforming in a DBD reactor Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 215 p.  
  Keywords Doctoral thesis; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:160087 Serial 5278  
Permanent link to this record
 

 
Author Ramakers, M. openurl 
  Title Using a gliding arc plasmatron for CO2 conversion : the future in industry? Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 235 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record;  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:158254 Serial 5282  
Permanent link to this record
 

 
Author Trenchev, G. pdf  openurl
  Title Computational modelling of atmospheric DC discharges for CO2 conversion Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 206 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:163986 Serial 6290  
Permanent link to this record
 

 
Author Van der Paal, J. url  openurl
  Title Generation, transport and molecular interactions of reactive species in plasma medicine Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 237 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:162591 Serial 6297  
Permanent link to this record
 

 
Author Vets, C. pdf  openurl
  Title Growth properties of carbon nanomaterials : towards tuning for electronic applications Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 130 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:164737 Serial 6299  
Permanent link to this record
 

 
Author Chuon, S. url  openurl
  Title Simulation numérique multi-échelles du procédé de dépôt par pulvérisation cathodique magnétron Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 137 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:166091 Serial 6322  
Permanent link to this record
 

 
Author Demuynck, R.; Efimova, I.; Lin, A.; Declercq, H.; Krysko, D.V. url  doi
openurl 
  Title A 3D cell death assay to quantitatively determine ferroptosis in spheroids Type A1 Journal article
  Year 2020 Publication Cells Abbreviated Journal  
  Volume 9 Issue 3 Pages 703-713  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The failure of drug efficacy in clinical trials remains a big issue in cancer research. This is largely due to the limitations of two-dimensional (2D) cell cultures, the most used tool in drug screening. Nowadays, three-dimensional (3D) cultures, including spheroids, are acknowledged to be a better model of the in vivo environment, but detailed cell death assays for 3D cultures (including those for ferroptosis) are scarce. In this work, we show that a new cell death analysis method, named 3D Cell Death Assay (3DELTA), can efficiently determine different cell death types including ferroptosis and quantitatively assess cell death in tumour spheroids. Our method uses Sytox dyes as a cell death marker and Triton X-100, which efficiently permeabilizes all cells in spheroids, was used to establish 100% cell death. After optimization of Sytox concentration, Triton X-100 concentration and timing, we showed that the 3DELTA method was able to detect signals from all cells without the need to disaggregate spheroids. Moreover, in this work we demonstrated that 2D experiments cannot be extrapolated to 3D cultures as 3D cultures are less sensitive to cell death induction. In conclusion, 3DELTA is a more cost-effective way to identify and measure cell death type in 3D cultures, including spheroids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000529337400180 Publication Date 2020-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4409 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) Times cited 5 Open Access  
  Notes ; Research in the D.V.K. group is supported by Fund for Scientific Research Flanders (1506218N, 1507118N, G051918N and G043219N) and Ghent University (Special Research Fund IOP 01/O3618). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:167215 Serial 6446  
Permanent link to this record
 

 
Author Vermeiren, V. url  openurl
  Title Chemical kinetics modeling of non-equilibrium and thermal effects in vibrationally active CO2 plasmas Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 207 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:173385 Serial 6468  
Permanent link to this record
 

 
Author Nematollahi, P. url  openurl
  Title Density functional theory calculations for understanding gas conversion reactions on single metal atom embedded carbon-based nanocatalysts Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 173 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169310 Serial 6481  
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmeneva, M.A.; Surmenev, R.A.; Neyts, E.C. url  doi
openurl 
  Title Effect of van der Waals interactions on the adhesion strength at the interface of the hydroxyapatite-titanium biocomposite : a first-principles study Type A1 Journal article
  Year 2020 Publication RSC advances Abbreviated Journal  
  Volume 10 Issue 62 Pages 37800-37805  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Hydroxyapatite (HAP) is frequently used as biocompatible coating on Ti-based implants. In this context, the HAP-Ti adhesion is of crucial importance. Here, we report ab initio calculations to investigate the influence of Si incorporation into the amorphous calcium-phosphate (a-HAP) structure on the interfacial bonding mechanism between the a-HAP coating and an amorphous titanium dioxide (a-TiO2) substrate, contrasting two different density functionals: PBE-GGA, and DFT-D3, which are capable of describing the influence of the van der Waals (vdW) interactions. In particular, we discuss the effect of dispersion on the work of adhesion (W-ad), equilibrium geometries, and charge density difference (CDD). We find that replacement of P by Si in a-HAP (a-Si-HAP) with the creation of OH vacancies as charge compensation results in a significant increase in the bond strength between the coating and substrate in the case of using the PBE-GGA functional. However, including the vdW interactions shows that these forces considerably contribute to the W-ad. We show that the difference (W-ad – W-ad(vdW)) is on average more than 1.1 J m(-2) and 0.5 J m(-2) for a-HAP/a-TiO2 and a-Si-HAP/a-TiO2, respectively. These results reveal that including vdW interactions is essential for accurately describing the chemical bonding at the a-HAP/a-TiO2 interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000583523300025 Publication Date 2020-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) Times cited Open Access  
  Notes ; The authors gratefully acknowledge financial support from the Russian president's grant MK-330.2020.8 and BOF Fellowships for International Joint PhD students funded by University of Antwerp (UAntwerp, project number 32545). The work was carried out at Tomsk Polytechnic University within the framework of Tomsk Polytechnic University Competitiveness Enhancement Program grant and in part using the Turing HPC infrastructure of the CalcUA core facility of the UAntwerp, a division of the Flemish Supercomputer Centre (VSC), funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerp, Belgium. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:173603 Serial 6499  
Permanent link to this record
 

 
Author Zhang, H. file  openurl
  Title Optical diagnostics of spatiotemporal evolution characteristics of nanosecond laser-induced plasma in gases Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 117 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:171436 Serial 6572  
Permanent link to this record
 

 
Author Heijkers, S. url  openurl
  Title Plasma chemistry modelling for CO2 and CH4 conversion in various plasma types Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 316 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:168055 Serial 6582  
Permanent link to this record
 

 
Author Jafarzadeh, A. url  openurl
  Title First-principle studies of plasma-catalyst interactions for greenhouse gas conversion Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 163 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174073 Serial 6765  
Permanent link to this record
 

 
Author Ranjbar, S. file  openurl
  Title Mathematical model of plasma therapy on bacterial growth Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 95 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:175471 Serial 6768  
Permanent link to this record
 

 
Author Kolev, S.; Paunska, T.; Trenchev, G.; Bogaerts, A. url  doi
openurl 
  Title Modeling the CO2 dissociation in pulsed atmospheric-pressure discharge Type P1 Proceeding
  Year 2020 Publication Technologies Abbreviated Journal  
  Volume Issue Pages 012007  
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract CO2 dissociation and its subsequent conversion into added-value chemicals is a promising strategy for recycling CO2 gas into reusable products. One of the possible methods is direct plasma-induced dissociation. In this work we study the efficiency of CO2 dissociation in pulsed atmospheric-pressure gas discharge between two conducting electrodes by a 0-D numerical plasma model. The purpose of the study is to provide results on the optimal conditions of CO2 conversion with respect to the energy efficiency and dissociation by varying the maximum power density value and the pulse length. The power density is directly related to the discharge current and the reduced electric field in the discharge. We consider pulse lengths in the range from hundreds of nanosecond up to milliseconds. The results obtained show that the dissociation degree and energy efficiency are sensitive to the pulse length (duration) and the power density, so that a considerable improvement of the discharge performance can be achieved by fine-tuning these parameters. The study is intended to provide guidance in designing an experimental set-up and a power supply with the characteristics necessary to achieve optimal conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000593712900007 Publication Date 2020-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 1492 Series Issue Edition  
  ISSN 1742-6588; 1742-6596 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174447 Serial 6769  
Permanent link to this record
 

 
Author Uytdenhouwen, Y. url  openurl
  Title Tuning the performance of a DBD plasma reactor for CO2 reforming Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 303 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174026 Serial 6774  
Permanent link to this record
 

 
Author Oliveira, M.C. openurl 
  Title Influence of phase-separated domains on the permeability of oxidized lipid membranes Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages 151 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Biological membranes are under constant attack of reactive oxygen and nitrogen species (RONS), which may lead to a complex mixture of nitro-oxidized lipids that are responsible for structural and dynamic changes on the membrane. Because of that, nitro-oxidized lipids are also associated with several tumors and inflammatory and neurodegenerative diseases. Moreover, lipid oxidation may induce membrane phase-separated domains, which also drastically affect the membrane function. Evidence suggests that domain interfaces are “hot spots” for pore formation, but the underlying mechanisms remain elusive. There is an urgent need for an improved understanding of oxidation-induced phase separation on membrane properties. Likewise, the molecular structure at domain interfaces still needs to be elucidated. To evaluate the effect of lipid nitro-oxidation on the permeability of single-phase (homogeneous) and phase-separated (heterogeneous) phospholipid bilayers (PLBs), we performed atomistic molecular dynamics (MD) simulations using: (1) single-phase PLBs composed of several isomers of nitrated and/or oxidized lipids; (2) phase-separated PLBs composed of coexisting liquid ordered (Lo) and liquid disordered (Ld) domains, where the Ld domain is composed of non-oxidized and/or oxidized lipids. Our results show that nitrated lipids increase the membrane permeability of single-phase PLBs by three-fold compared to oxidized lipids. In addition, we show that oxidized lipids in the presence of nitrated lipids decrease the membrane permeability, suggesting an interaction between nitrated and oxidized lipids. Overall, the permeability of single-phase and phase-separated PLBs was comparable, and the presence of oxidized lipids increases the membrane permeability only in single-phase PLBs. Despite the latter, the presence of only 1.5% of lipid aldehydes at the Lo/Ld domain interfaces of phase-separated PLBs was able to increase the membrane permeability. In consequence of this, we also performed coarse-grained MD simulations to evaluate whether lipid aldehydes have a preference to accumulate at the interface between Lo/Ld domains. Our results show that lipid aldehydes derived from mono-unsaturated lipids accumulate at the interface, but those derived from poly-unsaturated lipids remain in the Ld domain. This study is of interest for photodynamic therapy and plasma medicine for cancer treatment, to understand the effects caused by RONS in cell membranes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:191039 Serial 7173  
Permanent link to this record
 

 
Author van 't Veer, K.C. url  openurl
  Title Plasma kinetics modelling of nitrogen fixation : ammonia synthesis in dielectric barrier discharges with catalysts Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages 241 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Ammonia (NH3) synthesis is crucial for the production of artificial fertilizer and is carried out through the Haber-Bosch process. With an energy consumption of 30 GJ/t-NH3 and the emission of 2 kg-CO2/kg-NH3, ammonia is the chemical with the largest environmental footprint. Haber-Bosch operates under high pressure and high temperature conditions. Plasma technology potentially allows greener ammonia production. Dielectric barrier discharges are a popular plasma source in which a catalyst is easily incorporated. The combination of plasma and catalyst can circumvent the harsh reaction conditions of the Haber-Bosch process. Plasma kinetics modelling is used to gain insight into the mechanisms of such plasma-catalytic systems. Special attention is given to the instantaneous power absorbed by the electrons, the relevant fraction of the microdischarges and the discharge volumes. The importance of vibrational excitation is investigated. Depending on the exact discharge conditions, it was found that both the strong microdischarges and vibrational excitation can be simultaneously important for the ammonia yield. The temporal behavior of filamentary dielectric barrier discharges was explicitly taken into account. Ammonia was found to decompose during the microdischarges due to electron impact dissociation. At the same time atomic nitrogen and other excited species are created. Those reactive species recombine to ammonia in the afterglow through various elementary Eley-Rideal and Langmuir-Hinshelwood surface reaction steps with a net ammonia gain. Finally, the concept of the fraction of microdischarges was generalized. It directly represents the efficiency with which the applied electric power is transferred to each individual particle in the plasma reactor. It is argued that any type of spatial or temporal non-uniformity of the plasma will cause unequal treatment of the gas molecules in the reactor, corresponding to a lower efficiency at which the power is transferred to the gas molecules. All of those insights aid in an increased understanding of plasma-catalytic ammonia synthesis as a potential green chemistry solution to the synthesis of ammonia on small scale.    
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:188246 Serial 7193  
Permanent link to this record
 

 
Author Van Alphen, S. url  openurl
  Title Modelling plasma reactors for sustainable CO2 conversion and N2 fixation Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 202 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract 200 years ago, humanity started the industrial revolution by discovering fossil fuels, which lead to unprecedented technological advancements. However it has become alarmingly clear that the major environmental concerns associated with fossil fuels require a short-term transition from a carbon-based energy economy to a sustainable one based on green electricity. A key step concerning this transition exists in developing electricity-driven alternatives for chemical processes that rely on fossil fuels as a raw material. A technology that is gaining increasing interest to achieve this, is plasma technology. Using plasmas to induce chemical reactions by selectively heating electrons in a gas has already delivered promising results for gas conversion applications like CO2 conversion and N2 fixation, but plasma reactors still require optimization to be considered industrially competitive to existing fossil fuel-based processes and emerging other electricity-based technologies. In this thesis I develop computational models to describe plasma reactors and identify key mechanisms in three different plasma reactors for three different gas conversion applications, i.e. N2 fixation, combined CO2-CH4 conversion and CO2 splitting. I first developed models to describe a new rotating gliding arc (GA) reactor operating in two arc modes, which, as revealed by my model, are characterized by distinct plasma chemistry pathways. Subsequently, my colleague and I study the quenching effect of an effusion nozzle to this rotating GA reactor, reaching the best results to date for N2 fixation into NOx at atmospheric pressure, i.e., NOx concentrations up to 5.9%, at an energy cost down to 2.1 MJ/mol. Afterwards, I investigate the possible improvement of N2 admixtures in plasma-based CO2 and CH4 conversion, as significant amounts of N2 are often found in industrial CO2 waste streams, and gas separations are financially costly. Through combining my models with the experiment from a fellow PhD student, we reveal that moderate amounts of N2 (i.e. around 20%) increase both the electron density and the gas temperature to yield an overall energy cost reduction of 21%. Finally, I model quenching nozzles for plasma-based CO2 conversion in a microwave reactor, to explain the enhancements in CO2 conversion that were demonstrated in experiments. Through computational modelling I reveal that the nozzle introduces fast gas quenching resulting in the suppression of recombination reactions, which have more impact at low flow rates, where recombination is the most limiting factor in the conversion process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:194811 Serial 7270  
Permanent link to this record
 

 
Author Wang, J. url  openurl
  Title Plasma catalysis : study of CO2 reforming of CH4 in a DBD reactor Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages XVI, 232 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The plasma-based dry reforming in a dielectric barrier discharge (DBD) reactor is important to achieve sustainable goals, but many challenges remain. For example, the conversion and energy yield of DBD reactors are relatively low, and the catalysts or packing materials used in existing studies cannot improve them, possibly due to the unsuitable properties and structures of catalysts or packing materials for plasma processes. In order to study the effect of catalyst structure on plasma-based dry reforming, a controllable synthesis of the catalyst supports or templates was explored. In Chapter 2, an initially immiscible synthesis method was proposed to synthesize uniform silica spheres, which can replace the organic solvent-based Stöber method to successfully synthesize silica particles with the same size ranges as the original Stöber process without addition of organic solvents. Using the silica spheres as templates, 3D porous Cu and CuO catalysts with different pore sizes were synthesized in Chapter 3 to study the effect of catalyst pore size on the plasma-catalytic dry reforming. In most cases, the smaller the pore size, the higher the conversion of CH4 and CO2 due to the reaction of radicals and ions formed in the plasma. An exception are the samples synthesized from 1 μm silica, which show better performance due to the electric field enhancement for pore sizes close to the Debye length. Besides the pore size, the particle diameter of the catalyst or packing is also one of the important factors affecting the interaction between plasma and catalyst. In Chapter 4, SiO2 spheres (with or without supported metal) were used to study the effect of different support particle sizes on plasma-based dry reforming. We found that a uniform SiO2 packing improves the conversion of plasma-based dry reforming. The conversion of plasma-based dry reforming first increases and then decreases with increasing particle size, due to the balance between the promoting and hindering effect of the particle filling on the plasma discharge. Chapter 5 is to improve the design of the DBD reactor itself, in order to try to increase its low energy yield. Some stainless steel rings were put over the inner electrode rod of the DBD reactor. The presence of rings increases the local electric field, the displaced charges and the discharge fraction, and also makes the discharge more stable and with more uniform intensity. The placement of the rings improves the performance of the reactor at 30 W supplied power.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:194045 Serial 7273  
Permanent link to this record
 

 
Author Kovács, A. url  openurl
  Title A structured methodology for natural deep eutectic solvent selection and formulation for enzymatic reactions Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages viii, 216 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Natural deep eutectic solvents (NADES) show great promise as media for enzymatic reactions in areas where (bio)compatibility with natural or medicinal products is a must. While in theory they can be tailored to the intended reaction to ensure optimized yields, the knowledge to date is predominantly empirical, with some mechanistic reports providing a fragmented view at best. Therefore, it is not easy to explain experimental observations, let alone make predictions. The aim of this study was to develop a structured, holistic understanding of the effects of NADES media on enzymatic reactions, distinguishing between effects on solubility, solvation, viscosity, inhibition and denaturation. Experimental and computational chemistry methods were combined to separately study the interactions between enzyme, substrate, and NADES as reaction media. The initial enzyme activity and the final conversion of vinyl laurate transesterification by immobilized Candida antarctica lipase were studied experimentally. The direct effect of NADES on the same enzyme was modeled by molecular dynamics simulation. The effect of solubility was studied by both experimental and computational methods. To predict the solubility and viscosity of NADES, data-driven models were developed by combining group contribution and machine learning methods, based on the accumulated experimental knowledge on NADES found in the literature. Finally, the composed relationships and prediction models were applied to the practical example of deacetylation of mannosylerythritol lipids (MELs). The experimental findings show that the chosen NADES system has a significant effect on both the apparent initial activity and the final conversion. However, in the simulations, the enzyme retains its original structure; moreover, NADES has an additional stabilizing effect on the enzyme. In addition, changes in the molar ratio of the compounds in NADES do not show a significant effect on the stability of the enzyme. These results indicate that the main effect of NADES on the reaction is mainly related to the substrate-solvent interactions (solvation energy) and the viscosity of the system. On the other hand, the experimental results only confirmed the significance of solvation, viscosity did not show a clear correlation with the studied reaction parameters. The machine learning models built for solubility and viscosity gave quantitative predictions of these properties. The accumulated knowledge was used to optimize the yield in the deacetylation reaction of MELs. The combination of these methods provides fundamental knowledge about the effect of NADES on biocatalysis, but the results are also applicable to other uses of NADES.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:194886 Serial 7276  
Permanent link to this record
 

 
Author De Backer, J. url  openurl
  Title The versatile nature of cytoglobin, the Swiss army knife among globins, with a preference for oxidative stress Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages XVIII, 232 p.  
  Keywords Doctoral thesis; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Proteinscience, proteomics and epigenetic signaling (PPES)  
  Abstract Since its discovery 20 years ago, many studies have been performed to gain insight into the functional role of cytoglobin (Cygb). However, Cygb has been proven to be a promiscuous protein. Yet, there is a consensus that Cygb is a cytoprotective protein involved in redox homeostasis. CYGB is a ubiquitously expressed hexacoordinated globin that is highly expressed in melanocytes and is often found to be downregulated during melanocyte-to-melanoma transition. In Chapter III, we investigated the molecular mechanism through which CYGB could be involved in redox regulation. Here, we showed that CYGB contains two redox-sensitive cysteine residues and that the formation of an intramolecular disulfide bridge resulted in the heme group becoming more accessible to external ligands. This supports the hypothesis that Cys38 and Cys83 serve as sensitive redox sensors. In Chapter IV we showed that CYGB mRNA and protein levels were elevated upon exposure to hypoxia. Interestingly, this upregulation was most likely HIF-2α-dependent. We propose that in melanoma, HIF-2α, rather than HIF-1α, positively regulates CYGB under hypoxic conditions in a cell type specific way. In Chapter V, the cytotoxic effect of indirect NTP treatment in two melanoma cell lines with divergent endogenous CYGB expression levels was investigated. We confirmed that NTP endows cytotoxicity that induces cell death through apoptosis and that this was mediated through the production of ROS. Moreover, we showed that CYGB protects melanoma cells from ROS-induced apoptosis by the scavenging of ROS. Interestingly, CYGB expression influenced the expression of NRF2 and HO-1. We identified the lncRNA MEG3 as a possible mechanism through which NRF2 expression and its downstream target HO-1 can be regulated by CYGB. In chapter VI, increased basal ROS levels and higher degree of lipid peroxidation upon RSL3 treatment contributed to the increased sensitivity of CYGB knockdown G361 cells to ferroptosis. Furthermore, transcriptome analysis demonstrates the enrichment of multiple cancer malignancy pathways upon CYGB knockdown, supporting a tumor-suppressive role for CYGB. Remarkably, CYGB expression regulation was identified as a critical determinant of the ferroptosis–pyroptosis therapy response. This suggests that CYGB is involved in the regulation of multiple modes of programmed cell death. FInally, we sought to delineate the RONS that are responsible for plasma-induced ICD. Our results highlight the importance of the short-lived species. Furthermore, we are first to demonstrate that NTP-created vaccine is safely prepared and offers complete protection. Moreover, we provide conclusive evidence that direct application of NTP induces ICD in melanoma.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (down) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:193568 Serial 7277  
Permanent link to this record
 

 
Author Adelmann, C.; Sankaran, K.; Dutta, S.; Gupta, A.; Kundu, S.; Jamieson, G.; Moors, K.; Pinna, N.; Ciofi, I.; Van Elshocht, S.; Bommels, J.; Boccardi, G.; Wilson, C.J.; Pourtois, G.; Tokei, Z. pdf  doi
openurl 
  Title Alternative Metals: from ab initio Screening to Calibrated Narrow Line Models Type P1 Proceeding
  Year 2018 Publication Proceedings of the IEEE ... International Interconnect Technology Conference T2 – IEEE International Interconnect Technology Conference (IITC), JUN 04-07, 2018, Santa Clara, CA Abbreviated Journal  
  Volume Issue Pages 154-156  
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We discuss the selection and assessment of alternative metals by a combination of ab initio computation of electronic properties, experimental resistivity assessments, and calibrated line resistance models. Pt-group metals as well as Nb are identified as the most promising elements, with Ru showing the best combination of material properties and process maturity. An experimental assessment of the resistivity of Ru, Ir, and Co lines down to similar to 30 nm(2) is then used to devise compact models for line and via resistance that can be compared to Cu predictions. The main advantage of alternative metals originates from the possibility for barrierless metallization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000468672900051 Publication Date 2018-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-5386-4337-2; 978-1-5386-4337-2 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:160473 Serial 7436  
Permanent link to this record
 

 
Author Truong, B.; Siegert, K.; Lin, A.; Miller, V.; Krebs, F.C. pdf  doi
openurl 
  Title Apical application of nanosecond-pulsed dielectric barrier discharge plasma causes the basolateral release of adenosine triphosphate as a damage-associated molecular pattern from polarized HaCaT cells Type A1 Journal article
  Year 2017 Publication Plasma medicine Abbreviated Journal  
  Volume 7 Issue 2 Pages 117-131  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Promising biomedical uses for nonthermal plasma (NTP) in the fields of regenerative medicine, cancer therapy, and vaccine delivery involve the noninvasive application of uniform nonequilibrium plasma (including dielectric barrier discharge plasma) to living skin. Whereas most investigations have focused on achieving desired therapeutic outcomes, fewer studies have examined the mechanisms and pathways by which epithelial cells respond to NTP exposure. Using a transwell apical-basolateral-chambered system to culture the human keratinocyte HaCaT cell line, in vitro experiments were performed to demonstrate the effects of nanosecond-pulsed dielectric barrier discharge (nsDBD) plasma on polarized epithelial cell viability, monolayer permeability, intracellular oxidative stress, and the release of adenosine triphosphate (ATP). Application of nsDBD plasma at 60 Hz or below had minimal or no effect on HaCaT monolayer viability or permeability. nsDBD plasma exposure did, however, result in frequency-dependent reductions in intracellular glutathione (indicating direct induction of oxidative stress by nsDBD plasma) and increased extracellular ATP concentrations in the ba-solateral (subepithelial) media, which are indicators of cellular stress and an NTP-induced inflammatory response. These studies provide new insights into nsDBD plasma-induced inflammation and local innate immune responses initiated by polarized epithelial tissues.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2017-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (down) Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155656 Serial 7465  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: