|   | 
Details
   web
Records
Author van den Broek, W.; Verbeeck, J.; Schryvers, D.; de Backer, S.; Scheunders, P.
Title Tomographic spectroscopic imaging; an experimental proof of concept Type A1 Journal article
Year 2009 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 109 Issue 4 Pages 296-303
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Recording the electron energy loss spectroscopy data cube with a series of energy filtered images is a dose inefficient process because the energy slit blocks most of the electrons. When recording the data cube by scanning an electron probe over the sample, perfect dose efficiency is attained; but due to the low current in nanoprobes, this often is slower, with a smaller field of view. In W. Van den Broek et al. [Ultramicroscopy, 106 (2006) 269], we proposed a new method to record the data cube, which is more dose efficient than an energy filtered series. It produces a set of projections of the data cube and then tomographically reconstructs it. In this article, we demonstrate these projections in practice, we present a simple geometrical model that allows for quantification of the projection angles and we present the first successful experimental reconstruction, all on a standard post-column instrument.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000265345400003 Publication Date 2008-12-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.843 Times cited 1 Open Access
Notes Esteem 026019 Approved Most recent IF: 2.843; 2009 IF: 2.067
Call Number UA @ lucian @ c:irua:77271 Serial 3671
Permanent link to this record
 

 
Author Lobato, I.; Van Aert, S.; Verbeeck, J.
Title Progress and new advances in simulating electron microscopy datasets using MULTEM Type A1 Journal article
Year 2016 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 168 Issue 168 Pages 17-27
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new version of the open source program MULTEM is presented here. It includes a graphical user interface, tapering truncation of the atomic potential, CPU multithreading functionality, single/double precision calculations, scanning transmission electron microscopy (STEM) simulations using experimental detector sensitivities, imaging STEM (ISTEM) simulations, energy filtered transmission electron microscopy (EFTEM) simulations, STEM electron energy loss spectroscopy (EELS) simulations along with other improvements in the algorithms. We also present a mixed channeling approach for the calculation of inelastic excitations, which allows one to considerably speed up time consuming EFTEM/STEM-EELS calculations.
Address EMAT, University of Antwerp, Department of Physics, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000380754100003 Publication Date 2016-06-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.843 Times cited 43 Open Access
Notes The authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative. Reference No. 312483- ESTEEM2. The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0369.15N and G.0368.15N).; esteem2jra3; esteem2na3; esteem2_jra2 Approved Most recent IF: 2.843
Call Number c:irua:134088 c:irua:134088UA @ admin @ c:irua:134088 Serial 4093
Permanent link to this record
 

 
Author Béché, A.; Juchtmans, R.; Verbeeck, J.
Title Efficient creation of electron vortex beams for high resolution STEM imaging Type A1 Journal article
Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 178 Issue 178 Pages 12-19
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The recent discovery of electron vortex beams carrying quantised angular momentum in the TEM has led to an active field of research, exploring a variety of potential applications including the possibility of mapping magnetic states at the atomic scale. A prerequisite for this is the availability of atomic sized electron vortex beams at high beam current and mode purity. In this paper we present recent progress showing that by making use of the Aharonov-Bohm effect near the tip of a long single domain ferromagnetic Nickel needle, a very efficient aperture for the production of electron vortex beams can be realised. The aperture transmits more than 99% of all electrons and provides a vortex mode purity of up to 92%. Placing this aperture in the condenser plane of a state of the art Cs corrected microscope allows us to demonstrate atomic resolution HAADF STEM images with spatial resolution better than 1 Angstrom, in agreement with theoretical expectations and only slightly inferior to the performance of a non-vortex probe on the same instrument.
Address EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000403862900003 Publication Date 2016-05-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.843 Times cited 30 Open Access OpenAccess
Notes A.B. and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX. J.V. acknowledges funding from FWO project G.0044.13N ('Charge ordering').; ECASJO_; Approved Most recent IF: 2.843
Call Number c:irua:134085 c:irua:134085UA @ admin @ c:irua:134085 Serial 4094
Permanent link to this record
 

 
Author Muller-Caspary, K.; Krause, F.F.; Grieb, T.; Loffler, S.; Schowalter, M.; Béché, A.; Galioit, V.; Marquardt, D.; Zweck, J.; Schattschneider, P.; Verbeeck, J.; Rosenauer, A.
Title Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy Type A1 Journal article
Year 2016 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 178 Issue 178 Pages 62-80
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This study sheds light on the prerequisites, possibilities, limitations and interpretation of high-resolution differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). We draw particular attention to the well-established DPC technique based on segmented annular detectors and its relation to recent developments based on pixelated detectors. These employ the expectation value of the momentum transfer as a reliable measure of the angular deflection of the STEM beam induced by an electric field in the specimen. The influence of scattering and propagation of electrons within the specimen is initially discussed separately and then treated in terms of a two-state channeling theory. A detailed simulation study of GaN is presented as a function of specimen thickness and bonding. It is found that bonding effects are rather detectable implicitly, e.g., by characteristics of the momentum flux in areas between the atoms than by directly mapping electric fields and charge densities. For strontium titanate, experimental charge densities are compared with simulations and discussed with respect to experimental artifacts such as scan noise. Finally, we consider practical issues such as figures of merit for spatial and momentum resolution, minimum electron dose, and the mapping of larger-scale, built-in electric fields by virtue of data averaged over a crystal unit cell. We find that the latter is possible for crystals with an inversion center. Concerning the optimal detector design, this study indicates that a sampling of 5mrad per pixel is sufficient in typical applications, corresponding to approximately 10x10 available pixels.
Address Institut fur Festkr perphysik, Universitat Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000403862900009 Publication Date 2016-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.843 Times cited 93 Open Access
Notes K.M.-C. acknowledges support from the Deutsche Forschungsgemeinschaft (DFG) under contract MU3660/1-1. This work was further supported by the DFG under contract RO2057/4-2 and O2057/11-1. J.V. and A.B. acknowledge funding from the European Research Council (ERC) under the 7th Framework Program (FP7), and ERC Starting Grant No. 278510-VORTEX. Experimental results are obtained on the Qu-Ant-EM microscope partly funded by the Hercules fund from the Flemish government. J.V. also acknowledges funding through a GOA project “Solarpaint” of the University of Antwerp. SL and PS acknowledge financial support by the Austrian Science Fund (FWF) under grants No. I543-N20 and J3732-N27. ECASJO_; Approved Most recent IF: 2.843
Call Number c:irua:134125UA @ admin @ c:irua:134125 Serial 4098
Permanent link to this record
 

 
Author van den Bos, K.H.W.; Krause, F.F.; Béché, A.; Verbeeck, J.; Rosenauer, A.; Van Aert, S.
Title Locating light and heavy atomic column positions with picometer precision using ISTEM Type A1 Journal article
Year 2016 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 172 Issue 172 Pages 75-81
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Recently, imaging scanning transmission electron microscopy (ISTEM) has been proposed as a promising new technique combining the advantages of conventional TEM (CTEM) and STEM [1]. The ability to visualize light and heavy elements together makes it a particularly interesting new, spatially incoherent imaging mode. Here, we evaluate this technique in term of precision with which atomic column locations can be measured. By using statistical parameter estimation theory, we will show that these locations can be accurately measured with a precision in the picometer range. Furthermore, a quantitative comparison is made with HAADF STEM imaging to investigate the advantages of ISTEM.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000390600200009 Publication Date 2016-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.843 Times cited 8 Open Access
Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0368.15N, G.0369.15N), and by a Ph.D. grant to K.H.W. van den Bos. The research leading to these results has received funding from the Deutsche Forschungsgemeinschaft under Contract No. RO 2057/4-2 and the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2. We thank Prof. G. Koster from the University of Twente for kindly providing us with the PbTiO3 test sample. Approved Most recent IF: 2.843
Call Number EMAT @ emat @ c:irua:136109UA @ admin @ c:irua:136109 Serial 4288
Permanent link to this record
 

 
Author Gauquelin, N.; van den Bos, K.H.W.; Béché, A.; Krause, F.F.; Lobato, I.; Lazar, S.; Rosenauer, A.; Van Aert, S.; Verbeeck, J.
Title Determining oxygen relaxations at an interface: A comparative study between transmission electron microscopy techniques Type A1 Journal article
Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 181 Issue 181 Pages 178-190
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nowadays, aberration corrected transmission electron microscopy (TEM) is a popular method to characterise nanomaterials at the atomic scale. Here, atomically resolved images of nanomaterials are acquired, where the contrast depends on the illumination, imaging and detector conditions of the microscope. Visualization of light elements is possible when using low angle annular dark field (LAADF) STEM, annular bright field (ABF) STEM, integrated differential phase contrast (iDPC) STEM, negative spherical aberration imaging (NCSI) and imaging STEM (ISTEM). In this work, images of a NdGaO3-La0.67Sr0.33MnO3 (NGO-LSMO) interface are quantitatively evaluated by using statistical parameter estimation theory. For imaging light elements, all techniques are providing reliable results, while the techniques based on interference contrast, NCSI and ISTEM, are less robust in terms of accuracy for extracting heavy column locations. In term of precision, sample drift and scan distortions mainly limits the STEM based techniques as compared to NCSI. Post processing techniques can, however, partially compensate for this. In order to provide an outlook to the future, simulated images of NGO, in which the unavoidable presence of Poisson noise is taken into account, are used to determine the ultimate precision. In this future counting noise limited scenario, NCSI and ISTEM imaging will provide more precise values as compared to the other techniques, which can be related to the mechanisms behind the image recording.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411170800022 Publication Date 2017-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.843 Times cited 34 Open Access OpenAccess
Notes The authors acknowledge financial support from Flanders (FWO, Belgium) through project fundings (G.0044.13N, G.0374.13N, G.0368.15N, G.0369.15N), and by a Ph.D. grant to K.H.W.v.d.B. The Qu-Ant-EM microscope used for this study was partly funded by the Hercules fund from the Flemish Government. A.B. and N.G. acknowledge the EUROTAPES project (FP7-NMP.2011.2.2-1 Grant no.280432) which partly funded this study. N.G., A.B. and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The research leading to these results has received funding from the Deutsche Forschungsgemeinschaft under Contract No. RO 2057/4-2 and the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2. We thank Prof. G. Koster from the University of Twente for kindly providing us with the LSMO-NGO test sample. Approved Most recent IF: 2.843
Call Number EMAT @ emat @ c:irua:144435UA @ admin @ c:irua:144435 Serial 4620
Permanent link to this record
 

 
Author Vatanparast, M.; Egoavil, R.; Reenaas, T.W.; Verbeeck, J.; Holmestad, R.; Vullum, P.E.
Title Bandgap measurement of high refractive index materials by off-axis EELS Type A1 Journal article
Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 182 Issue Pages 92-98
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In the present work Cs aberration corrected and monochromated scanning transmission electron microscopy electron energy loss spectroscopy (STEM-EELS) has been used to explore experimental setups that allow bandgaps of high refractive index materials to be determined. Semi-convergence and collection angles in the mu rad range were combined with off-axis or dark field EELS to avoid relativistic losses and guided light modes in the low loss range to contribute to the acquired EEL spectra. Off-axis EELS further supressed the zero loss peak and the tail of the zero loss peak. The bandgap of several GaAs-based materials were successfully determined by simple regression analyses of the background subtracted EEL spectra. The presented set-up does not require that the acceleration voltage is set to below the. Cerenkov limit and can be applied over the entire acceleration voltage range of modern TEMs and for a wide range of specimen thicknesses. (C) 2017 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000413436500013 Publication Date 2017-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.843 Times cited 3 Open Access Not_Open_Access
Notes ; The authors would like to thank Professor Shu Min Wang and Mahdad Sadeghi at the Nanofabrication Laboratory at Chalmers University, Sweden for providing the samples. The Norwegian Research Council is acknowledged for funding the HighQ-IB project under contract no. 10415201. M.V. and T.W.R. acknowledge funding from the EEA Financial Mechanism 2009-2014 under the project contract no 23SEE/30.06.2014. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2(Integrated Infrastructure Initiative-I3) through the system of transnational access. R.E. and J.V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. ; Approved Most recent IF: 2.843
Call Number UA @ lucian @ c:irua:146639UA @ admin @ c:irua:146639 Serial 4778
Permanent link to this record
 

 
Author Verbeeck, J.; Béché, A.; Müller-Caspary, K.; Guzzinati, G.; Luong, M.A.; Den Hertog, M.
Title Demonstration of a 2 × 2 programmable phase plate for electrons Type A1 Journal article
Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 190 Issue Pages 58-65
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract First results on the experimental realisation of a 2 × 2 programmable phase plate for electrons are presented. The design consists of an array of electrostatic elements that influence the phase of electron waves passing through 4 separately controllable aperture holes. This functionality is demonstrated in a conventional transmission electron microscope operating at 300 kV and results are in very close agreement with theoretical predictions. The dynamic creation of a set of electron probes with different phase symmetry is demonstrated, thereby bringing adaptive optics in TEM one step closer to reality. The limitations of the current design and how to overcome these in the future are discussed. Simulations show how further evolved versions of the current proof of concept might open new and exciting application prospects for beam shaping and aberration correction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000432868800007 Publication Date 2018-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.843 Times cited 73 Open Access Not_Open_Access: Available from 19.04.2020
Notes J.V. and A.B. acknowledge funding from the Fund for Scientific Research Flanders FWO project G093417N and the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX and ERC proof of concept project DLV-789598 ADAPTEM. The Qu-Ant-EM microscope used in this work was partly funded by the Hercules fund from the Flemish Government. MdH acknowledges financial support from the ANRCOSMOS (ANR-12-JS10-0002). MdH and ML acknowledge funding from the Laboratoire d’excellence LANEF in Grenoble (ANR-10-LABX-51-01). Approved Most recent IF: 2.843
Call Number EMAT @ emat @c:irua:150459UA @ admin @ c:irua:150459 Serial 4920
Permanent link to this record
 

 
Author Korneychuk, S.; Partoens, B.; Guzzinati, G.; Ramaneti, R.; Derluyn, J.; Haenen, K.; Verbeeck, J.
Title Exploring possibilities of band gap measurement with off-axis EELS in TEM Type A1 Journal article
Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 189 Issue 189 Pages 76-84
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract A technique to measure the band gap of dielectric materials with high refractive index by means of energy electron loss spectroscopy (EELS) is presented. The technique relies on the use of a circular (Bessel) aperture and suppresses Cherenkov losses and surface-guided light modes by enforcing a momentum transfer selection. The technique also strongly suppresses the elastic zero loss peak, making the acquisition, interpretation and signal to noise ratio of low loss spectra considerably better, especially for excitations in the first few eV of the EELS spectrum. Simulations of the low loss inelastic electron scattering probabilities demonstrate the beneficial influence of the Bessel aperture in this setup even for high accelerating voltages. The importance of selecting the optimal experimental convergence and collection angles is highlighted. The effect of the created off-axis acquisition conditions on the selection of the transitions from valence to conduction bands is discussed in detail on a simplified isotropic two band model. This opens the opportunity for deliberately selecting certain transitions by carefully tuning the microscope parameters. The suggested approach is experimentally demonstrated and provides good signal to noise ratio and interpretable band gap signals on reference samples of diamond, GaN and AlN while offering spatial resolution in the nm range. (C) 2018 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000432868500008 Publication Date 2018-03-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.843 Times cited 7 Open Access OpenAccess
Notes ; S.K., B.P. and J.V. acknowledge funding from the “Geconcentreerde Onderzoekacties” (GOA) project “Solarpaint” of the University of Antwerp. S.K. and J.V. also acknowledge the FWO-Vlaanderen for financial support under contract G.0044.13N 'Charge ordering'. Financial support via the Methusalem “NANO” network is acknowledged. GG acknowledges support from a postdoctoral fellowship grant from the Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO). ; Approved Most recent IF: 2.843
Call Number UA @ lucian @ c:irua:151472UA @ admin @ c:irua:151472 Serial 5026
Permanent link to this record
 

 
Author Müller-Caspary, K.; Krause, F.F.; Winkler, F.; Béché, A.; Verbeeck, J.; Van Aert, S.; Rosenauer, A.
Title Comparison of first moment STEM with conventional differential phase contrast and the dependence on electron dose Type A1 Journal article
Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 203 Issue 203 Pages 95-104
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This study addresses the comparison of scanning transmission electron microscopy (STEM) measurements of momentum transfers using the first moment approach and the established method that uses segmented annular detectors. Using an ultrafast pixelated detector to acquire four-dimensional, momentum-resolved STEM signals, both the first moment calculation and the calculation of the differential phase contrast (DPC) signals are done for the same experimental data. In particular, we investigate the ability to correct the segment-based signal to yield a suitable approximation of the first moment for cases beyond the weak phase object approximation. It is found that the measurement of momentum transfers using segmented detectors can approach the first moment measurement as close as 0.13 h/nm in terms of a root mean square (rms) difference in 10 nm thick SrTiO3 for a detector with 16 segments. This amounts to 35% of the rms of the momentum transfers. In addition, we present a statistical analysis of the precision of first moment STEM as a function of dose. For typical experimental settings with recent hardware such as a Medipix3 Merlin camera attached to a probe-corrected STEM, we find that the precision of the measurement of momentum transfers stagnates above certain doses. This means that other instabilities such as specimen drift or scan noise have to be taken into account seriously for measurements that target, e.g., the detection of bonding effects in the charge density.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000465021000013 Publication Date 2018-12-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.843 Times cited 25 Open Access OpenAccess
Notes ; The direct electron detector (Medipix3 Merlin) was funded by the Hercules fund from the Flemish Government. K. Muller-Caspary acknowledges funding from the Initiative and Network Fund of the Helmholtz Association within the framework of the Helmholtz Young Investigator Group moreSTEM (VH-NG-1317) at Forschungszentrum Julich, Germany. F. F. Krause acknowledges funding from the Central Research Development Fund of the University of Bremen, Germany. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 770887). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) and the Research Fund of the University of Antwerp. ; Approved Most recent IF: 2.843
Call Number UA @ admin @ c:irua:160213 Serial 5242
Permanent link to this record
 

 
Author Vanrompay, H.; Skorikov, A.; Bladt, E.; Béché, A.; Freitag, B.; Verbeeck, J.; Bals, S.
Title Fast versus conventional HAADF-STEM tomography of nanoparticles: advantages and challenges Type A1 Journal article
Year 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 221 Issue Pages 113191
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract HAADF-STEM tomography is a widely used experimental technique for analyzing nanometer-scale crystalline structures of a large variety of materials in three dimensions. Unfortunately, the acquisition of conventional HAADF-STEM tilt series can easily take up one hour or more, depending on the complexity of the experiment. It is therefore far from straightforward to investigate samples that do not withstand long acquisition or to acquire large amounts of tilt series during a single TEM experiment. The latter would lead to the ability to obtain statistically meaningful 3D data, or to perform in situ 3D characterizations with a much shorter time resolution. Various HAADF-STEM acquisition strategies have been proposed to accelerate the tomographic acquisition and reduce the required electron dose. These methods include tilting the holder continuously while acquiring a projection “movie” and a hybrid, incremental, methodology which combines the benefits of the conventional and continuous technique. However, until now an experimental evaluation has been lacking. In this paper, the different acquisition strategies will be experimentally compared in terms of speed, resolution and electron dose. This evaluation will be performed based on experimental tilt series acquired for various metallic nanoparticles with different shapes and sizes. We discuss the data processing involved with the fast HAADF-STEM tilt series and provide a general guideline when which acquisition strategy should be preferentially used.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000612539600003 Publication Date 2020-12-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.843 Times cited 15 Open Access OpenAccess
Notes We acknowledge Prof. Luis M. Liz-Marzán and co-workers of the Bionanoplasmonics Laboratory, CIC biomaGUNE, Spain for providing the Au@Ag nanoparticles, Prof. Sara. E. Skrabalak and co-workers of Indiana University, United States for the provision of the Au octopods and Prof. Teri W. Odom of Northwestern University, United States for the provision of the Au nanostars. H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). S.B acknowledges financial support by the Research Foundation Flanders (FWO grant G.0381.16N). This project received funding as well from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO). The authors acknowledge the entire EMAT technical staff for their support.; sygma Approved Most recent IF: 2.843
Call Number EMAT @ emat @c:irua:174551 Serial 6660
Permanent link to this record
 

 
Author Molina, L.; Tan, H.; Biermans, E.; Batenburg, K.J.; Verbeeck, J.; Bals, S.; Van Tendeloo, G.
Title Barrier efficiency of sponge-like La2Zr2O7 buffer layers for YBCO-coated conductors Type A1 Journal article
Year 2011 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 24 Issue 6 Pages 065019-065019,8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Solution derived La2Zr2O7 films have drawn much attention for potential applications as thermal barriers or low-cost buffer layers for coated conductor technology. Annealing and coating parameters strongly affect the microstructure of La2Zr2O7, but different film processing methods can yield similar microstructural features such as nanovoids and nanometer-sized La2Zr2O7 grains. Nanoporosity is a typical feature found in such films and the implications for the functionality of the films are investigated by a combination of scanning transmission electron microscopy (STEM), electron energy-loss spectroscopy (EELS) and quantitative electron tomography. Chemical solution based La2Zr2O7 films deposited on flexible Ni5 at.%W substrates with a {100}lang001rang biaxial texture were prepared for an in-depth characterization. A sponge-like structure composed of nanometer-sized voids is revealed by high-angle annular dark-field scanning transmission electron microscopy in combination with electron tomography. A three-dimensional quantification of nanovoids in the La2Zr2O7 film is obtained on a local scale. Mostly non-interconnected highly faceted nanovoids compromise more than one-fifth of the investigated sample volume. The diffusion barrier efficiency of a 170 nm thick La2Zr2O7 film is investigated by STEM-EELS, yielding a 1.8 ± 0.2 nm oxide layer beyond which no significant nickel diffusion can be detected and intermixing is observed. This is of particular significance for the functionality of YBa2Cu3O7 − δ coated conductor architectures based on solution derived La2Zr2O7 films as diffusion barriers.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000290472900021 Publication Date 2011-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.878 Times cited 31 Open Access
Notes Esteem 026019; Fwo Approved Most recent IF: 2.878; 2011 IF: 2.662
Call Number UA @ lucian @ c:irua:88639UA @ admin @ c:irua:88639 Serial 221
Permanent link to this record
 

 
Author Molina, L.; Egoavil, R.; Turner, S.; Thersleff, T.; Verbeeck, J.; Holzapfel, B.; Eibl, O.; Van Tendeloo, G.
Title Interlayer structure in YBCO-coated conductors prepared by chemical solution deposition Type A1 Journal article
Year 2013 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 26 Issue 7 Pages 075016-75018
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The functionality of YBa2Cu3O7−δ (YBCO)-coated conductor technology depends on the reliability and microstructural properties of a given tape or wire architecture. Particularly, the interface to the metal tape is of interest since it determines the adhesion, mechanical stability of the film and thermal contact of the film to the substrate. A trifluoroacetate (TFA)metal organic deposition (MOD) prepared YBCO film deposited on a chemical solution-derived buffer layer architecture based on CeO2/La2Zr2O7 and grown on a flexible Ni5 at.%W substrate with a {100}⟨001⟩ biaxial texture was investigated. The YBCO film had a thickness was 440 nm and a jc of 1.02 MA cm−2 was determined at 77 K and zero external field. We present a sub-nanoscale analysis of a fully processed solution-derived YBCO-coated conductor by aberration-corrected scanning transmission electron microscopy (STEM) combined with electron energy-loss spectroscopy (EELS). For the first time, structural and chemical analysis of the valence has been carried out on the sub-nm scale. Intermixing of Ni, La, Ce, O and Ba takes place at these interfaces and gives rise to nanometer-sized interlayers which are a by-product of the sequential annealing process. Two distinct interfacial regions were analyzed in detail: (i) the YBCO/CeO2/La2Zr2O7 region (10 nm interlayer) and (ii) the La2Zr2O7/Ni5 at.%W substrate interface region (20 nm NiO). This is of particular significance for the functionality of these YBCO-coated conductor architectures grown by chemical solution deposition.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000319973800024 Publication Date 2013-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.878 Times cited 11 Open Access
Notes vortex; Countatoms; Fwo; Esteem2; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 2.878; 2013 IF: 2.796
Call Number UA @ lucian @ c:irua:108704UA @ admin @ c:irua:108704 Serial 1698
Permanent link to this record
 

 
Author Van Boxem, R.; Partoens, B.; Verbeeck, J.
Title Inelastic electron-vortex-beam scattering Type A1 Journal article
Year 2015 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 91 Issue 91 Pages 032703
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Recent theoretical and experimental developments in the field of electron-vortex-beam physics have raised questions about what exactly this novelty in the field of electron microscopy (and other fields, such as particle physics) really provides. An important part of the answer to these questions lies in scattering theory. The present investigation explores various aspects of inelastic quantum scattering theory for cylindrically symmetric beams with orbital angular momentum. The model system of Coulomb scattering on a hydrogen atom provides the setting to address various open questions: How is momentum transferred? Do vortex beams selectively excite atoms, and how can one employ vortex beams to detect magnetic transitions? The analytical approach presented here provides answers to these questions. OAM transfer is possible, but not through selective excitation; rather, by pre- and postselection one can filter out the relevant contributions to a specific signal.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000351035000004 Publication Date 2015-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.925 Times cited 31 Open Access
Notes Fwo; 312483 Esteem2; 278510 Vortex; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2015 IF: 2.808
Call Number c:irua:123925 c:irua:123925UA @ admin @ c:irua:123925 Serial 1607
Permanent link to this record
 

 
Author Guzzinati, G.; Clark, L.; Béché, A.; Verbeeck, J.
Title Measuring the orbital angular momentum of electron beams Type A1 Journal article
Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 89 Issue Pages 025803
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The recent demonstration of electron vortex beams has opened up the new possibility of studying orbital angular momentum (OAM) in the interaction between electron beams and matter. To this aim, methods to analyze the OAM of an electron beam are fundamentally important and a necessary next step. We demonstrate the measurement of electron beam OAM through a variety of techniques. The use of forked holographic masks, diffraction from geometric apertures, and diffraction from a knife edge and the application of an astigmatic lens are all experimentally demonstrated. The viability and limitations of each are discussed with supporting numerical simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000332224100014 Publication Date 2014-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.925 Times cited 42 Open Access
Notes Vortex; FP7; Countatoms; ESTEEM2; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2014 IF: 2.808
Call Number UA @ lucian @ c:irua:114577UA @ admin @ c:irua:114577 Serial 1972
Permanent link to this record
 

 
Author Clark, L.; Béché, A.; Guzzinati, G.; Verbeeck, J.
Title Quantitative measurement of orbital angular momentum in electron microscopy Type A1 Journal article
Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 89 Issue 5 Pages 053818
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron vortex beams have been predicted to enable atomic scale magnetic information measurement, via transfer of orbital angular momentum. Research so far has focused on developing production techniques and applications of these beams. However, methods to measure the outgoing orbital angular momentum distribution are also a crucial requirement towards this goal. Here, we use a method to obtain the orbital angular momentum decomposition of an electron beam, using a multipinhole interferometer. We demonstrate both its ability to accurately measure orbital angular momentum distribution, and its experimental limitations when used in a transmission electron microscope.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000335826300012 Publication Date 2014-05-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.925 Times cited 23 Open Access
Notes 7th Framework Program (FP7); ERC Starting Grant No. 278510- VORTEX 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). 7th Framework Program (FP7), ERC Grant No. 246791- COUNTATOMS. SP – 053818-1; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2014 IF: 2.808
Call Number UA @ lucian @ c:irua:117093UA @ admin @ c:irua:117093 Serial 2758
Permanent link to this record
 

 
Author Van Boxem, R.; Partoens, B.; Verbeeck, J.
Title Rutherford scattering of electron vortices Type A1 Journal article
Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 89 Issue 3 Pages 032715-32719
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract By considering a cylindrically symmetric generalization of a plane wave, the first-order Born approximation of screened Coulomb scattering unfolds two new dimensions in the scattering problem: transverse momentum and orbital angular momentum of the incoming beam. In this paper, the elastic Coulomb scattering amplitude is calculated analytically for incoming Bessel beams. This reveals novel features occurring for wide-angle scattering and quantitative insights for small-angle vortex scattering. The result successfully generalizes the well-known Rutherford formula, incorporating transverse and orbital angular momentum into the formalism.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000333690500008 Publication Date 2014-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.925 Times cited 34 Open Access
Notes 312483-Esteem2; N246791 – Countatoms; 278510 Vortex; esteem2jra1; esteem2jra3 ECASJO_; Approved Most recent IF: 2.925; 2014 IF: 2.808
Call Number UA @ lucian @ c:irua:115562UA @ admin @ c:irua:115562 Serial 2936
Permanent link to this record
 

 
Author Lubk, A.; Clark, L.; Guzzinati, G.; Verbeeck, J.
Title Topological analysis of paraxially scattered electron vortex beams Type A1 Journal article
Year 2013 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 87 Issue 3 Pages 033834-33838
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We investigate topological aspects of subnanometer electron vortex beams upon elastic propagation through atomic scattering potentials. Two main aspects can be distinguished: (i) significantly reduced delocalization compared to a similar nonvortex beam if the beam centers on an atomic column and (ii) site symmetry dependent splitting of higher-order vortex beams. Furthermore, the results provide insight into the complex vortex line fabric within the elastically scattered wave containing characteristic vortex loops predominantly attached to atomic columns and characteristic twists of vortex lines around atomic columns. DOI: 10.1103/PhysRevA.87.033834
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000316790600011 Publication Date 2013-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.925 Times cited 26 Open Access
Notes Countatoms; Vortex; Esteem2; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2013 IF: 2.991
Call Number UA @ lucian @ c:irua:108496 Serial 3673
Permanent link to this record
 

 
Author Juchtmans, R.; Verbeeck, J.
Title Local orbital angular momentum revealed by spiral-phase-plate imaging in transmission-electron microscopy Type A1 Journal article
Year 2016 Publication Physical Review A Abbreviated Journal Phys Rev A
Volume 93 Issue 93 Pages 023811
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The orbital angular momentum (OAM) of light and matter waves is a parameter that has been getting increasingly more attention over the past couple of years. Beams with a well-defined OAM, the so-called vortex beams, are applied already in, e.g., telecommunication, astrophysics, nanomanipulation, and chiral measurements in optics and electron microscopy. Also, the OAM of a wave induced by the interaction with a sample has attracted a lot of interest. In all these experiments it is crucial to measure the exact (local) OAM content of the wave, whether it is an incoming vortex beam or an exit wave after interacting with a sample. In this work we investigate the use of spiral phase plates (SPPs) as an alternative to the programmable phase plates used in optics to measure OAM. We derive analytically how these can be used to study the local OAM components of any wave function. By means of numerical simulations we illustrate how the OAM of a pure vortex beam can be measured. We also look at a sum of misaligned vortex beams and show how, by using SPPs, the position and the OAM of each individual beam can be detected. Finally, we look at the OAM induced by a magnetic dipole on a free-electron wave and show how the SPP can be used to localize the magnetic poles and measure their “magnetic charge.” Although our findings can be applied to study the OAM of any wave function, our findings are of particular interest for electron microscopy where versatile programmable phase plates do not yet exist.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000369367700006 Publication Date 2016-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.925 Times cited 12 Open Access
Notes The authors acknowledge support from the Aspirant Fonds Wetenschappelijk Onderzoek–Vlaanderen (FPO), the EU un- der the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483- ESTEEM2, and the ERC Starting Grant 278510 VORTEX.; esteem2jra2 ECASJO; Approved Most recent IF: 2.925
Call Number c:irua:131613 c:irua:131613UA @ admin @ c:irua:131613 Serial 4030
Permanent link to this record
 

 
Author Clark, L.; Guzzinati, G.; Béché, A.; Lubk, A.; Verbeeck, J.
Title Symmetry-constrained electron vortex propagation Type A1 Journal article
Year 2016 Publication Physical review A Abbreviated Journal Phys Rev A
Volume 93 Issue 93 Pages 063840
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron vortex beams hold great promise for development in transmission electron microscopy but have yet to be widely adopted. This is partly due to the complex set of interactions that occur between a beam carrying orbital angular momentum (OAM) and a sample. Herein, the system is simplified to focus on the interaction between geometrical symmetries, OAM, and topology. We present multiple simulations alongside experimental data to study the behavior of a variety of electron vortex beams after interacting with apertures of different symmetries and investigate the effect on their OAM and vortex structure, both in the far field and under free-space propagation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000378197200006 Publication Date 2016-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.925 Times cited 7 Open Access
Notes L.C., A.B., G.G., and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510—VORTEX. J.V. and A.L. acknowledge financial support from the European Union through the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). The Qu-Ant-EM microscope was partly funded by the Hercules fund of the Flemish Government.; esteem2jra3; ECASJO; Approved Most recent IF: 2.925
Call Number c:irua:134086 c:irua:134086 Serial 4090
Permanent link to this record
 

 
Author Juchtmans, R.; Guzzinati, G.; Verbeeck, J.
Title Extension of Friedel's law to vortex-beam diffraction Type A1 Journal article
Year 2016 Publication Physical Review A Abbreviated Journal Phys Rev A
Volume 94 Issue 94 Pages 033858
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Friedel's law states that the modulus of the Fourier transform of real functions is centrosymmetric, while the phase is antisymmetric. As a consequence of this, elastic scattering of plane-wave photons or electrons within the first-order Born-approximation, as well as Fraunhofer diffraction on any aperture, is bound to result in centrosymmetric diffraction patterns. Friedel's law, however, does not apply for vortex beams, and centrosymmetry in general is not present in their diffraction patterns. In this work we extend Friedel's law for vortex beams by showing that the diffraction patterns of vortex beams with opposite topological charge, scattered on the same two-dimensional potential, always are centrosymmetric to one another, regardless of the symmetry of the scattering object. We verify our statement by means of numerical simulations and experimental data. Our research provides deeper understanding in vortex-beam diffraction and can be used to design new experiments to measure the topological charge of vortex beams with diffraction gratings or to study general vortex-beam diffraction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384374500010 Publication Date 2016-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.925 Times cited 13 Open Access
Notes The authors acknowledge support from the FWO (Aspirant Fonds Wetenschappelijk Onderzoek – Vlaanderen) and the EU under the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2 and ERC Starting Grant No. 278510 VORTEX.; ECASJO_; Approved Most recent IF: 2.925
Call Number EMAT @ emat @ c:irua:137200UA @ admin @ c:irua:137200 Serial 4314
Permanent link to this record
 

 
Author Juchtmans, R.; Clark, L.; Lubk, A.; Verbeeck, J.
Title Spiral phase plate contrast in optical and electron microscopy Type A1 Journal article
Year 2016 Publication Physical review A Abbreviated Journal Phys Rev A
Volume 94 Issue 94 Pages 023838
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The use of phase plates in the back focal plane of a microscope is a well-established technique in optical microscopy to increase the contrast of weakly interacting samples and is gaining interest in electron microscopy as well. In this paper we study the spiral phase plate (SPP), also called helical, vortex, or two-dimensional Hilbert phase plate, which adds an angularly dependent phase of the form exp(iℓϕk) to the exit wave in Fourier space. In the limit of large collection angles, we analytically calculate that the average of a pair of l=+-1

SPP filtered images is directly proportional to the gradient squared of the exit wave, explaining the edge contrast previously seen in optical SPP work. We discuss the difference between a clockwise-anticlockwise pair of SPP filtered images and derive conditions under which the modulus of the wave's gradient can be seen directly from one SPP filtered image. This work provides the theoretical background to interpret images obtained with a SPP, thereby opening new perspectives for new experiments to study, for example, magnetic materials in an electron microscope.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000381882800011 Publication Date 2016-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.925 Times cited 10 Open Access
Notes The authors acknowledge support from the FWO (Aspirant Fonds Wetenschappelijk Onderzoek – Vlaanderen) and the EU under the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2 and ERC Starting Grant No. 278510 VORTEX.; ECASJO_ Approved Most recent IF: 2.925
Call Number EMAT @ emat @ c:irua:140086 Serial 4418
Permanent link to this record
 

 
Author Yin, C.; Krishnan, D.; Gauquelin, N.; Verbeeck, J.; Aarts, J.
Title Controlling the interfacial conductance in LaAlO3/SrTiO3 in 90 degrees off-axis sputter deposition Type A1 Journal article
Year 2019 Publication Physical review materials Abbreviated Journal
Volume 3 Issue 3 Pages 034002
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report on the fabrication of conducting interfaces between LaAlO3 and SrTiO3 by 90 degrees off-axis sputtering in an Ar atmosphere. At a growth pressure of 0.04 mbar the interface is metallic, with a carrier density of the order of 1 x 10(13) cm(-2) at 3 K. By increasing the growth pressure, we observe an increase of the out-of-plane lattice constants of the LaAlO3 films while the in-plane lattice constants do not change. Also, the low-temperature sheet resistance increases with increasing growth pressure, leading to an insulating interface when the growth pressure reaches 0.10 mbar. We attribute the structural variations to an increase of the La/Al ratio, which also explains the transition from metallic behavior to insulating behavior of the interfaces. Our research shows that the control which is furnished by the Ar pressure makes sputtering as versatile a process as pulsed laser deposition, and emphasizes the key role of the cation stoichiometry of LaAlO3 in the formation of the conducting interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461077100002 Publication Date 2019-03-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.926 Times cited 4 Open Access Not_Open_Access
Notes ; We thank Nikita Lebedev, Aymen Ben Hamida, and Prateek Kumar for useful discussions and Giordano Mattoni, Jun Wang, Vincent Joly, and Hozanna Miro for their technical assistance. We also thank Jean-Marc Triscone and his group for sharing their design of the sputtering system with us. This work is part of the FOM research programme DESCO with Project No. 149, which is (partly) financed by the Netherlands Organisation for Scientific Research (NWO). C.Y. is supported by China Scholarship Council (CSC) with Grant No. 201508110214. N.G., D.K., and J.V. acknowledge financial support from the GOA project “Solarpaint” of the University of Antwerp. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:158547 Serial 5243
Permanent link to this record
 

 
Author Zhang, G.; Zhou, Y.; Korneychuk, S.; Samuely, T.; Liu, L.; May, P.W.; Xu, Z.; Onufriienko, O.; Zhang, X.; Verbeeck, J.; Samuely, P.; Moshchalkov, V.V.; Yang, Z.; Rubahn, H.-G.
Title Superconductor-insulator transition driven by pressure-tuned intergrain coupling in nanodiamond films Type A1 Journal article
Year 2019 Publication Physical review materials Abbreviated Journal
Volume 3 Issue 3 Pages 034801
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report on the pressure-driven superconductor-insulator transition in heavily boron-doped nanodiamond films. By systematically increasing the pressure, we suppress the Josephson coupling between the superconducting nanodiamond grains. The diminished intergrain coupling gives rise to an overall insulating state in the films, which is interpreted in the framework of a parallel-series circuit model to be the result of bosonic insulators with preserved localized intragrain superconducting order parameters. Our investigation opens up perspectives for the application of high pressure in research on quantum confinement and coherence. Our data unveil the percolative nature of the electrical transport in nanodiamond films, and highlight the essential role of grain boundaries in determining the electronic properties of this material.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460684600002 Publication Date 2019-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.926 Times cited 5 Open Access Not_Open_Access
Notes ; Y.Z. and Z.Y. acknowledge support from the National Key Research and Development Program of China (Grants No. 2018YFA0305700 and No. 2016YFA0401804), the National Natural Science Foundation of China (Grants No. 11574323, No. 11704387, and No. U1632275), the Natural Science Foundation of Anhui Province (Grants No. 1708085QA19 and No. 1808085MA06), and the Director's Fund of Hefei Institutes of Physical Science, Chinese Academy of Sciences (YZJJ201621). J.V. and S.K. acknowledge funding from the GOA project “Solarpaint” of the University of Antwerp, and thank the FWO (Research Foundation-Flanders) for financial support under Contract No. G.0044.13N “Charge ordering”. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. T.S., O.O., and P.S. are supported by APVV-0036-11, APVV-0605-14, VEGA 1/0409/15, VEGA 2/0149/16, and EU ERDF-ITMS 26220120005. L.L. acknowledges the financial support of a FWO postdoctoral research fellowship (12V4419N) and the KU Leuven C1 project OPTIPROBE (C14/16/ 063). ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:158561 Serial 5260
Permanent link to this record
 

 
Author Sankaran, K.J.; Deshmukh, S.; Korneychuk, S.; Yeh, C.-J.; Thomas, J.P.; Drijkoningen, S.; Pobedinskas, P.; Van Bael, M.K.; Verbeeck, J.; Leou, K.-C.; Leung, K.-T.; Roy, S.S.; Lin, I.-N.; Haenen, K.
Title Fabrication, microstructure, and enhanced thermionic electron emission properties of vertically aligned nitrogen-doped nanocrystalline diamond nanorods Type A1 Journal article
Year 2018 Publication MRS communications Abbreviated Journal Mrs Commun
Volume 8 Issue 3 Pages 1311-1320
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Vertically aligned nitrogen-doped nanocrystalline diamond nanorods are fabricated from nitrogen-doped nanocrystalline diamond films using reactive ion etching in oxygen plasma. These nanorods show enhanced thermionic electron emission (TEE) characteristics, viz.. a high current density of 12.0 mA/cm(2) and a work function value of 4.5 eV with an applied voltage of 3 Vat 923 K. The enhanced TEE characteristics of these nanorods are ascribed to the induction of nanographitic phases at the grain boundaries and the field penetration effect through the local field enhancement from nanorods owing to a high aspect ratio and an excellent field enhancement factor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000448887900089 Publication Date 2018-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2159-6859; 2159-6867 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.01 Times cited 1 Open Access
Notes The authors thank the financial support of the Research Foundation Flanders (FWO) via Research Grant 12I8416N and Research Project 1519817N, and the Methusalem “NANO” network. The Hercules Foundation Flanders is acknowledged for financial support of the Raman equipment. The Qu-Ant-EM microscope used for the TEM experiments was partly funded by the Hercules fund from the Flemish Government. S.K. and J.V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. K.J. Sankaran and P. Pobedinskas are Postdoctoral Fellows of FWO. Approved Most recent IF: 3.01
Call Number UA @ admin @ c:irua:155521 Serial 5364
Permanent link to this record
 

 
Author Janssen, W.; Turner, S.; Sakr, G.; Jomard, F.; Barjon, J.; Degutis, G.; Lu, Y.G.; D'Haen, J.; Hardy, A.; Bael, M.V.; Verbeeck, J.; Van Tendeloo, G.; Haenen, K.
Title Substitutional phosphorus incorporation in nanocrystalline CVD diamond thin films Type A1 Journal article
Year 2014 Publication Physica status solidi: rapid research letters Abbreviated Journal Phys Status Solidi-R
Volume 8 Issue 8 Pages 705-709
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanocrystalline diamond (NCD) thin films were produced by chemical vapor deposition (CVD) and doped by the addition of phosphine to the gas mixture. The characterization of the films focused on probing the incorporation and distribution of the phosphorus (P) dopants. Electron microscopy evaluated the overall film morphology and revealed the interior structure of the nanosized grains. The homogeneous films with distinct diamond grains featured a notably low sp(2):sp(3)-ratio as confirmed by Raman spectroscopy. High resolution spectroscopy methods demonstrated a homogeneous P-incorporation, both in-depth and in-plane. The P concentration in the films was determined to be in the order of 10(19) cm(-3) with a significant fraction integrated at substitutional donor sites. (C) 2014 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000340484100007 Publication Date 2014-06-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6254; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.032 Times cited 20 Open Access
Notes Fwo G055510n; G056810n; G.045612; 246791 Countatoms; 312483 Esteem2; esteem2_jra3 Approved Most recent IF: 3.032; 2014 IF: 2.142
Call Number UA @ lucian @ c:irua:119220 Serial 3346
Permanent link to this record
 

 
Author Bouwmeester, R.L.; de Hond, K.; Gauquelin, N.; Verbeeck, J.; Koster, G.; Brinkman, A.
Title Stabilization of the Perovskite Phase in the Y-Bi-O System By Using a BaBiO3 Buffer Layer Type A1 Journal Article
Year 2019 Publication Physica Status Solidi-Rapid Research Letters Abbreviated Journal Phys Status Solidi-R
Volume 13 Issue 7 Pages 1970028
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract A topological insulating phase has theoretically been predicted for the thermodynamically unstable perovskite phase of YBiO3. Here, it is shown that the crystal structure of the Y-Bi-O system can be controlled by using a BaBiO3 buffer layer. The BaBiO3 film overcomes the large lattice mismatch with the SrTiO3 substrate by forming a rocksalt structure in between the two perovskite structures. Depositing an YBiO3 film directly on a SrTiO3 substrate gives a fluorite structure. However, when the Y–Bi–O system is deposited on top of the buffer layer with the correct crystal phase and comparable lattice constant, a single oriented perovskite structure with the expected lattice constants is observed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6254 ISBN Additional Links
Impact Factor (up) 3.032 Times cited Open Access
Notes The work at the University of Twente is financially supported by NWO through a VICI grant. N.G. and J.V. acknowledge financial support from the GOA project Solarpaint of the University of Antwerp. The microscope used for this experiment has been partially financed by the Hercules Fund from the Flemish Government. L. Ding is acknowledge for his help with the GPA analysis. Approved Most recent IF: 3.032
Call Number EMAT @ emat @ Serial 5358
Permanent link to this record
 

 
Author Sankaran, K.J.; Duc Quang Hoang; Korneychuk, S.; Kunuku, S.; Thomas, J.P.; Pobedinskas, P.; Drijkoningen, S.; Van Bael, M.K.; D'Haen, J.; Verbeeck, J.; Leou, K.-C.; Leung, K.T.; Lin, I.-N.; Haenen, K.
Title Hierarchical hexagonal boron nitride nanowall-diamond nanorod heterostructures with enhanced optoelectronic performance Type A1 Journal article
Year 2016 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 6 Issue 93 Pages 90338-90346
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A superior field electron emission (FEE) source made from a hierarchical heterostructure, where two-dimensional hexagonal boron nitride (hBN) nanowalls were coated on one-dimensional diamond nanorods (DNRs), is fabricated using a simple and scalable method. FEE characteristics of hBN-DNR display a low turn-on field of 6.0 V mu m(-1), a high field enhancement factor of 5870 and a high life-time stability of 435 min. Such an enhancement in the FEE properties of hBN-DNR derives from the distinctive material combination, i.e., high aspect ratio of the heterostructure, good electron transport from the DNR to the hBN nanowalls and efficient field emission of electrons from the hBN nanowalls. The prospective application of these heterostructures is further evidenced by enhanced microplasma devices using hBN-DNR as a cathode, in which the threshold voltage was lowered to 350 V, affirming the role of hBN-DNR in the improvement of electron emission.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000385451800044 Publication Date 2016-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.108 Times cited 8 Open Access
Notes The authors like to thank the financial support of the Research Foundation Flanders (FWO) via Research Projects G.0456.12 and G.0044.13N, the Methusalem “NANO” network. KJ Sankaran, and P Pobedinskas are Postdoctoral Fellows of the Research Foundation-Flanders (FWO). Approved Most recent IF: 3.108
Call Number UA @ lucian @ c:irua:144757UA @ admin @ c:irua:144757 Serial 4662
Permanent link to this record
 

 
Author Van Rompaey, S.; Dachraoui, W.; Turner, S.; Podyacheva, O.Y.; Tan, H.; Verbeeck, J.; Abakumov, A.; Hadermann, J.
Title Layered oxygen vacancy ordering in Nb-doped SrCo1-xFexO3-\delta perovskite Type A1 Journal article
Year 2013 Publication Zeitschrift für Kristallographie Abbreviated Journal Z Krist-Cryst Mater
Volume 228 Issue 1 Pages 28-34
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure of SrCo0.7Fe0.2Nb0.1O2.72 was determined using a combination of precession electron diffraction (PED), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and spatially resolved electron energy loss spectroscopy (STEM-EELS). The structure has a tetragonal P4/mmm symmetry with cell parameters a = b = a(p), c = 2a(p) (a(p) being the cell parameter of the perovskite parent structure). Octahedral BO2 layers alternate with the anion-deficient BO1.4 layers, the different B cations are randomly distributed over both layers. The specific feature of the SrCo0.7Fe0.2NB0.1O2.72 microstructure is a presence of extensive nanoscale twinning resulting in domains with alignment of the tetragonal c-axis along all three cubic direction of the perovskite subcell.
Address
Corporate Author Thesis
Publisher Place of Publication München Editor
Language Wos 000315475900004 Publication Date 2013-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2194-4946; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.179 Times cited 9 Open Access
Notes Fwo; Countatoms Approved Most recent IF: 3.179; 2013 IF: NA
Call Number UA @ lucian @ c:irua:107698UA @ admin @ c:irua:107698 Serial 1808
Permanent link to this record
 

 
Author Verbeeck, J.; van Dyck, D.; Van Tendeloo, G.
Title Energy-filtered transmission electron microscopy: an overview Type A1 Journal article
Year 2004 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 59 Issue 10/11 Pages 1529-1534
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract This paper aims to give an overview of the technique of energy-filtered transmission electron microscopy (EFTEM). It explains the basic principles of the technique and points to the relevant literature for more detailed issues. Experimental examples are given to show the power of EFTEM to study the chemical composition of nanoscale samples in materials science. Advanced EFTEM applications like imaging spectroscopy and EFTEM tomography are briefly discussed. (C) 2004 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000224848000006 Publication Date 2004-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 3.241 Times cited 37 Open Access
Notes Approved Most recent IF: 3.241; 2004 IF: 3.086
Call Number UA @ lucian @ c:irua:54869UA @ admin @ c:irua:54869 Serial 1038
Permanent link to this record