|   | 
Details
   web
Records
Author Vishwakarma, M.; Batra, Y.; Hadermann, J.; Singh, A.; Ghosh, A.; Mehta, B.R.
Title Exploring the role of graphene oxide as a co-catalyst in the CZTS photocathodes for improved photoelectrochemical properties Type A1 Journal article
Year 2022 Publication ACS applied energy materials Abbreviated Journal
Volume 5 Issue 6 Pages (up) 7538-7549
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The hydrogen evolution properties of CZTS heterostructure photocathodes are reported with graphene oxide (GO) as a co-catalyst layer coated by a drop-cast method and an Al2O3 protection layer fabricated using atomic layer deposition. In the CZTS absorber, a minor deviation from stoichiometry across the cross section of the thin film results in nanoscale growth of spurious phases, but the kesterite phase remains the dominant phase. We have investigated the band alignment parameters such as the band gap, work function, and Fermi level position that are crucial for making kesterite-based heterostructure devices. The photocurrent density in the photocathode CZTS/CdS/ZnO is found to be improved to -4.71 mAmiddotcm(-2) at -0.40 V-RHE, which is 3 times that of the pure CZTS. This enhanced photoresponse can be attributed to faster carrier separation at p-n junction regions driven by upward band bending at CZTS grain boundaries and the ZnO layer. GO as a co-catalyst over the heterostructure photocathode significantly improves the photocurrent density to -6.14 mAmiddotcm(-2) at -0.40 V-RHE by effective charge migration in the CZTS/CdS/ZnO/GO configuration, but the onset potential shifts only after application of the Al2O3 protection layer. Significant photocurrents of -29 mAmiddotcm(-2) at -0.40 V-RHE and -8 mAmiddotcm(-2) at 0 V-RHE are observed, with an onset potential of 0.7 V-RHE in CZTS/CdS/ZnO/GO/Al2O3. The heterostructure configuration and the GO co-catalyst reduce the charge-transfer resistance, while the Al2O3 top layer provides a stable photocurrent for a prolonged time (similar to 16 h). The GO co-catalyst increases the flat band potential from 0.26 to 0.46 V-RHE in CZTS/CdS/ZnO/GO, which supports the bias-induced band bending at the electrolyte-electrode interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000820418400001 Publication Date 2022-05-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.4
Call Number UA @ admin @ c:irua:189666 Serial 7082
Permanent link to this record
 

 
Author Herzog, M.J.; Gauquelin, N.; Esken, D.; Verbeeck, J.; Janek, J.
Title Increased Performance Improvement of Lithium-Ion Batteries by Dry Powder Coating of High-Nickel NMC with Nanostructured Fumed Ternary Lithium Metal Oxides Type A1 Journal article
Year 2021 Publication ACS applied energy materials Abbreviated Journal ACS Appl. Energy Mater.
Volume 4 Issue 9 Pages (up) 8832-8848
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Dry powder coating is an effective approach to protect the surfaces of layered cathode active materials (CAMs) in lithium-ion batteries. Previous investigations indicate an incorporation of lithium ions in fumed Al2O3, ZrO2, and TiO2 coatings on LiNi0.7Mn0.15Co0.15O2 during cycling, improving the cycling performance. Here, this coating approach is transferred for the first time to fumed ternary LiAlO2, Li4Zr3O8, and Li4Ti5O12 and directly compared with their lithium-free equivalents. All materials could be processed equally and their nanostructured small aggregates accumulate on the CAM surfaces to quite homogeneous coating layers with a certain porosity. The LiNixMnyCozO2 (NMC) coated with lithium-containing materials shows an enhanced improvement in overall capacity, capacity retention, rate performance, and polarization behavior during cycling, compared to their lithium-free analogues. The highest rate performance was achieved with the fumed ZrO2 coating, while the best long-term cycling stability with the highest absolute capacity was obtained for the fumed LiAlO2-coated NMC. The optimal coating agent for NMC to achieve a balanced system is fumed Li4Ti5O12, providing a good compromise between high rate capability and good capacity retention. The coating agents prevent CAM particle cracking and degradation in the order LiAlO2 ≈ Al2O3 > Li4Ti5O12 > Li4Zr3O8 > ZrO2 > TiO2. A schematic model for the protection and electrochemical performance enhancement of high-nickel NMC with fumed metal oxide coatings is sketched. It becomes apparent that physical and chemical characteristics of the coating significantly influence the performance of NMC. A high degree of coating-layer porosity is favorable for the rate capability, while a high coverage of the surface, especially in vulnerable grain boundaries, enhances the long-term cycling stability and improves the cracking behavior of NMCs. While zirconium-containing coatings possess the best chemical properties for high rate performances, aluminum-containing coatings feature a superior chemical nature to protect high-nickel NMCs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000703338600018 Publication Date 2021-09-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 15 Open Access OpenAccess
Notes For his support in scanning electron microscopy analysis, the authors thank Erik Peldszus. N. G. and J. V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and from the Flemish Research Fund (FWO) project G0F1320N. The Qu-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:183949 Serial 6823
Permanent link to this record
 

 
Author Yildiz, A.; Chouki, T.; Atli, A.; Harb, M.; Verbruggen, S.W.; Ninakanti, R.; Emin, S.
Title Efficient iron phosphide catalyst as a counter electrode in dye-sensitized solar cells Type A1 Journal article
Year 2021 Publication ACS applied energy materials Abbreviated Journal
Volume 4 Issue 10 Pages (up) 10618-10626
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Developing an efficient material as a counter electrode (CE) with excellent catalytic activity, intrinsic stability, and low cost is essential for the commercial application of dye-sensitized solar cells (DSSCs). Transition metal phosphides have been demonstrated as outstanding multifunctional catalysts in a broad range of energy conversion technologies. Here, we exploited different phases of iron phosphide as CEs in DSSCs with an I–/I3–-based electrolyte. Solvothermal synthesis using a triphenylphosphine precursor as a phosphorus source allows to grow a Fe2P phase at 300 °C and a FeP phase at 350 °C. The obtained iron phosphide catalysts were coated on fluorine-doped tin oxide substrates and heat-treated at 450 °C under an inert gas atmosphere. The solar-to-current conversion efficiency of the solar cells assembled with the Fe2P material reached 3.96 ± 0.06%, which is comparable to the device assembled with a platinum (Pt) CE. DFT calculations support the experimental observations and explain the fundamental origin behind the improved performance of Fe2P compared to FeP. These results indicate that the Fe2P catalyst exhibits excellent performance along with desired stability to be deployed as an efficient Pt-free alternative in DSSCs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000711236300022 Publication Date 2021-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:181953 Serial 7853
Permanent link to this record
 

 
Author Wu, X.; Ding, J.; Cui, W.; Lin, W.; Xue, Z.; Yang, Z.; Liu, J.; Nie, X.; Zhu, W.; Van Tendeloo, G.; Sang, X.
Title Enhanced electrical properties of Bi2-xSbxTe3 nanoflake thin films through interface engineering Type A1 Journal article
Year 2024 Publication Energy & environment materials Abbreviated Journal
Volume Issue Pages (up) e12755-8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The structure-property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure. Designing thermoelectric materials with a simple, structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties. Here, we synthesized Bi2-xSbxTe3 (x = 0, 0.1, 0.2, 0.4) nanoflakes using a hydrothermal method, and prepared Bi2-xSbxTe3 thin films with predominantly (0001) interfaces by stacking the nanoflakes through spin coating. The influence of the annealing temperature and Sb content on the (0001) interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy. Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the (0001) interface. As such it enhances interfacial connectivity and improves the electrical transport properties. Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient. Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient, the maximum power factor of the Bi1.8Sb0.2Te3 nanoflake films reaches 1.72 mW m(-1) K-2, which is 43% higher than that of a pure Bi2Te3 thin film.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001204495900001 Publication Date 2024-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:205438 Serial 9148
Permanent link to this record
 

 
Author Naik, P.V.; Wee, L.H.; Meledina, M.; Turner, S.; Li, Y.; Van Tendeloo, G.; Martens, J.A.; Vankelecom, I.F.J.
Title PDMS membranes containing ZIF-coated mesoporous silica spheres for efficient ethanol recovery via pervaporation Type A1 Journal article
Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 4 Issue 4 Pages (up) 12790-12798
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The design of functional micro- and mesostructured composite materials is significantly important for separation processes. Mesoporous silica is an attractive material for fast diffusion, while microporous zeolitic imidazolate frameworks (ZIFs) are beneficial for selective adsorption and diffusion. In this work, ZIF-71 and ZIF-8 nanocrystals were grown on the surface of mesoporous silica spheres (MSS) via the seeding and regrowth approach in order to obtain monodispersed MSS-ZIF-71 and MSS-ZIF-8 spheres with a particle size of 2-3 mm. These MSS-ZIF spheres were uniformly dispersed into a polydimethylsiloxane (PDMS) matrix to prepare mixed matrix membranes (MMMs). These MMMs were evaluated for the separation of ethanol from water via pervaporation. The pervaporation results reveal that the MSS-ZIF filled MMMs substantially improve the ethanol recovery in both aspects viz. flux and separation factor. These MMMs outperforms the unfilled PDMS membranes and the conventional carbon and zeolite filled MMMs. As expected, the mesoporous silica core allows very fast flow of the permeating compound, while the hydrophobic ZIF coating enhances the ethanol selectivity through its specific pore structure, hydrophobicity and surface chemistry. It can be seen that ZIF-8 mainly has a positive impact on the selectivity, while ZIF-71 enhances fluxes more significantly.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000382015100012 Publication Date 2016-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 26 Open Access
Notes Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:137188 Serial 4395
Permanent link to this record
 

 
Author Callini, E.; Aguey-Zinsou, K.F.; Ahuja, R.; Ares, J.R.; Bals, S.; Biliškov, N.; Chakraborty, S.; Charalambopoulou, G.; Chaudhary, A.L.; Cuevas, F.; Dam, B.; de Jongh, P.; Dornheim, M.; Filinchuk, Y.; Grbović Novaković, J.; Hirscher, M.; Jensen, T.R.; Jensen, P.B.; Novaković, N.; Lai, Q.; Leardini, F.; Gattia, D.M.; Pasquini, L.; Steriotis, T.; Turner, S.; Vegge, T.; Züttel, A.; Montone, A.
Title Nanostructured materials for solid-state hydrogen storage : a review of the achievement of COST Action MP1103 Type A1 Journal article
Year 2016 Publication International journal of hydrogen energy T2 – E-MRS Fall Meeting / Symposium C on Hydrogen Storage in Solids -, Materials, Systems and Aplication Trends, SEP 15-18, 2015, Warsaw, POLAND Abbreviated Journal Int J Hydrogen Energ
Volume 41 Issue 41 Pages (up) 14404-14428
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In the framework of the European Cooperation in Science and Technology (COST) Action MP1103 Nanostructured Materials for Solid-State Hydrogen Storage were synthesized, characterized and modeled. This Action dealt with the state of the art of energy storage and set up a competitive and coordinated network capable to define new and unexplored ways for Solid State Hydrogen Storage by innovative and interdisciplinary research within the European Research Area. An important number of new compounds have been synthesized: metal hydrides, complex hydrides, metal halide ammines and amidoboranes. Tuning the structure from bulk to thin film, nanoparticles and nanoconfined composites improved the hydrogen sorption properties and opened the perspective to new technological applications. Direct imaging of the hydrogenation reactions and in situ measurements under operando conditions have been carried out in these studies. Computational screening methods allowed the prediction of suitable compounds for hydrogen storage and the modeling of the hydrogen sorption reactions on mono-, bi-, and three-dimensional systems. This manuscript presents a review of the main achievements of this Action. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Pergamon-elsevier science ltd Place of Publication Oxford Editor
Language Wos 000381950800051 Publication Date 2016-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-3199 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.582 Times cited 89 Open Access Not_Open_Access
Notes All the authors greatly thank the COST Action MP1103 for financial support. Approved Most recent IF: 3.582
Call Number UA @ lucian @ c:irua:135723 Serial 4307
Permanent link to this record
 

 
Author Simon, Q.; Barreca, D.; Bekermann, D.; Gasparotto, A.; Maccato, C.; Comini, E.; Gombac, V.; Fornasiero, P.; Lebedev, O.I.; Turner, S.; Devi, A.; Fischer, R.A.; Van Tendeloo, G.
Title Plasma-assisted synthesis of Ag/ZnO nanocomposites : first example of photo-induced H2 production and sensing Type A1 Journal article
Year 2011 Publication International journal of hydrogen energy Abbreviated Journal Int J Hydrogen Energ
Volume 36 Issue 24 Pages (up) 15527-15537
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Ag/ZnO nanocomposites were developed by a plasma-assisted approach. The adopted strategy exploits the advantages of Plasma Enhanced-Chemical Vapor Deposition (PE-CVD) for the growth of columnar ZnO arrays on Si(100) and Al2O3 substrates, in synergy with the infiltration power of the Radio Frequency (RF)-sputtering technique for the subsequent dispersion of different amounts of Ag nanoparticles (NPs). The resulting composites, both as-prepared and after annealing in air, were thoroughly characterized with particular attention on their morphological organization, structure and composition. For the first time, the above systems have been used as catalysts in the production of hydrogen by photo-reforming of alcoholic solutions, yielding a stable H2 evolution even by the sole use of simulated solar radiation. In addition, Ag/ZnO nanocomposites presented an excellent response in the gas-phase detection of H2, opening attractive perspectives for advanced technological applications.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000297089700006 Publication Date 2011-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-3199; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.582 Times cited 62 Open Access
Notes Esteem 026019; Fwo Approved Most recent IF: 3.582; 2011 IF: 4.054
Call Number UA @ lucian @ c:irua:91901 Serial 2627
Permanent link to this record
 

 
Author Snoeckx, R.; Setareh, M.; Aerts, R.; Simon, P.; Maghari, A.; Bogaerts, A.
Title Influence of N2 concentration in a CH4/N2 dielectric barrier discharge used for CH4 conversion into H2 Type A1 Journal article
Year 2013 Publication International journal of hydrogen energy Abbreviated Journal Int J Hydrogen Energ
Volume 38 Issue 36 Pages (up) 16098-16120
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We present a combined study of experimental and computational work for a dielectric barrier discharge (DBD) used for CH4 conversion into H2. More specifically, we investigated the influence of N2 as an impurity (150,000 ppm) and as additive gas (199%) on the CH4 conversion and H2 yield. For this purpose, a zero-dimensional chemical kinetics model is applied to study the plasma chemistry. The calculated conversions and yields for various gas mixing ratios are compared to the obtained experimental values, and good agreement is achieved. The study reveals the significance of the View the MathML source and View the MathML source metastable states for the CH4 conversion into H2, based on a kinetic analysis of the reaction chemistry.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000327904500027 Publication Date 2013-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-3199; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.582 Times cited 40 Open Access
Notes Approved Most recent IF: 3.582; 2013 IF: 2.930
Call Number UA @ lucian @ c:irua:111372 Serial 1642
Permanent link to this record
 

 
Author Mooij, L.; Perkisas, T.; Palsson, G.; Schreuders, H.; Wolff, M.; Hjorvarsson, B.; Bals, S.; Dam, B.
Title The effect of microstructure on the hydrogenation of Mg/Fe thin film multilayers Type A1 Journal article
Year 2014 Publication International journal of hydrogen energy Abbreviated Journal Int J Hydrogen Energ
Volume 39 Issue 30 Pages (up) 17092-17103
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanoconfined magnesium hydride can be simultaneously protected and thermodynamically destabilized when interfaced with materials such as Ti and Fe. We study the hydrogenation of thin layers of Mg (<14 nm) nanoconfined in one dimension within thin film Fe/Mg/Fe/Pd multilayers by the optical technique Hydrogenography. The hydrogenation of nanosized magnesium layers in Fe/Mg/Fe multilayers surprisingly shows the presence of multiple plateau pressures, whose nature is thickness dependent. In contrast, hydrogen desorption occurs via a single plateau which does not depend on the Mg layer thickness. From structural and morphological analyses with X-ray diffraction/reflectometry and cross-section TEM, we find that the Mg layer roughness is large when deposited on Fe and furthermore contains high-angle grain boundaries (GB's). When grown on Ti, the Mg layer roughness is low and no high-angle GB's are detected. From a Ti/Mg/Fe multilayer, in which the Mg layer is flat and has little or no GB's, we conclude that MgH2 is indeed destabilized by the interface with Fe. In this case, both the ab- and desorption plateau pressures are increased by a factor two compared to the hydrogenation of Mg within Ti/Mg/Ti multilayers. We hypothesize that the GB's in the Fe/Mg/Fe multilayer act as diffusion pathways for Pd, which is known to greatly alter the hydrogenation behavior of Mg when the two materials share an interface. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000343839000031 Publication Date 2014-09-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-3199; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.582 Times cited 15 Open Access Not_Open_Access
Notes COST Action MP1103 Approved Most recent IF: 3.582; 2014 IF: 3.313
Call Number UA @ lucian @ c:irua:121175 Serial 3575
Permanent link to this record
 

 
Author Pulinthanathu Sree, S.; Dendooven, J.; Geerts, L.; Ramachandran, R.K.; Javon, E.; Ceyssens, F.; Breynaert, E.; Kirschhock, C.E.A.; Puers, R.; Altantzis, T.; Van Tendeloo, G.; Bals, S.; Detavernier, C.; Martens, J.A.
Title 3D porous nanostructured platinum prepared using atomic layer deposition Type A1 Journal article
Year 2017 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 5 Issue 5 Pages (up) 19007-19016
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A robust and easy to handle 3D porous platinum structure was created via replicating the 3D channel system

of an ordered mesoporous silica material using atomic layer deposition (ALD) over micrometer distances.

After ALD of Pt in the silica material, the host template was digested using hydrogen fluoride (HF). A fully

connected ordered Pt nanostructure was obtained with morphology and sizes corresponding to that of

the pores of the host matrix, as revealed with high-resolution scanning transmission electron

microscopy and electron tomography. The Pt nanostructure consisted of hexagonal Pt rods originating

from the straight mesopores (11 nm) of the host structure and linking features resulting from Pt

replication of the interconnecting mesopore segments (2–4 nm) present in the silica host structure.

Electron tomography of partial replicas, made by incomplete infilling of Zeotile-4 material with Pt,

provided insight in the connectivity and formation mechanism of the Pt nanostructure by ALD. The Pt

replica was evaluated for its potential use as electrocatalyst for the hydrogen evolution reaction, one of

the half-reactions of water electrolysis, and as microelectrode for biomedical sensing. The Pt replica

showed high activity for the hydrogen evolution reaction and electrochemical characterization revealed

a large impedance improvement in comparison with reference Pt electrodes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411232100010 Publication Date 2017-06-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 9 Open Access OpenAccess
Notes This work was supported by the Flemish government through long-term structural funding (Methusalem) to JAM and FWO for a research project (G0A5417N). JD, TA and FC acknowledge Flemish FWO for a post-doctoral fellowship. S. B. acknowledges funding from ERC Starting Grant COLOURATOMS (335078). (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 8.867
Call Number EMAT @ emat @ c:irua:144624 c:irua:144624 c:irua:144624UA @ admin @ c:irua:144624 Serial 4634
Permanent link to this record
 

 
Author Lander, L.; Rousse, G.; Abakumov, A.M.; Sougrati, M.; Van Tendeloo, G.; Tarascon, J.-M.
Title Structural, electrochemical and magnetic properties of a novel KFeSO4F polymorph Type A1 Journal article
Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 3 Issue 3 Pages (up) 19754-19764
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In the quest for sustainable and low-cost positive electrode materials for Li-ion batteries, we discovered, as reported herein, a new low temperature polymorph of KFeSO4F. Contrary to the high temperature phase crystallizing in a KTiOPO4-like structure, this new phase adopts a complex layer-like structure built on FeO4F2 octahedra and SO4 tetrahedra, with potassium cations located in between the layers, as solved using neutron and synchrotron diffraction experiments coupled with electron diffraction. The detailed analysis of the structure reveals an alternation of edge-and corner-shared FeO4F2 octahedra leading to a large monoclinic cell of 1771.774(7) angstrom(3). The potassium atoms are mobile within the structure as deduced by ionic conductivity measurements and confirmed by the bond valence energy landscape approach thus enabling a partial electrochemical removal of K+ and uptake of Li+ at an average potential of 3.7 V vs. Li+/Li-0. Finally, neutron diffraction experiments coupled with SQUID measurements reveal a long range antiferromagnetic ordering of the Fe2+ magnetic moments below 22 K with a possible magnetoelectric behavior.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000362041300018 Publication Date 2015-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 11 Open Access
Notes Approved Most recent IF: 8.867; 2015 IF: 7.443
Call Number UA @ lucian @ c:irua:132566 Serial 4253
Permanent link to this record
 

 
Author Wee, L.H.; Meledina, M.; Turner, S.; Custers, K.; Kerkhofs, S.; Van Tendeloo, G.; Martens, J.A.
Title Hematite iron oxide nanorod patterning inside COK-12 mesochannels as an efficient visible light photocatalyst Type A1 Journal article
Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 3 Issue 3 Pages (up) 19884-19891
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The uniform dispersion of functional oxide nanoparticles on the walls of ordered mesoporous silica to tailor optical, electronic, and magnetic properties for biomedical and environmental applications is a scientific challenge. Here, we demonstrate homogeneous confined growth of 5 nanometer-sized hematite iron oxide (α-Fe2O3) inside mesochannels of ordered mesoporous COK-12 nanoplates. The three-dimensional inclusion of the α-Fe2O3 nanorods in COK-12 particles is studied using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray (EDX) spectroscopy and electron tomography. High resolution imaging and EDX spectroscopy provide information about the particle size, shape and crystal phase of the loaded α-Fe2O3 material, while electron tomography provides detailed information on the spreading of the nanorods throughout the COK-12 host. This nanocomposite material, having a semiconductor band gap energy of 2.40 eV according to diffuse reflectance spectroscopy, demonstrates an improved visible light photocatalytic degradation activity with rhodamine 6G and 1-adamantanol model compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000362041300033 Publication Date 2015-08-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 9 Open Access
Notes L.H.W. and S.T. thank the FWO-Vlaanderen for a postdoctoral research fellowship (12M1415N) and under contract number G004613N . J.A.M gratefully acknowledge financial supports from Flemish Government (Long-term structural funding-Methusalem). Collaboration among universities was supported by the Belgian Government (IAP-PAI network). Approved Most recent IF: 8.867; 2015 IF: 7.443
Call Number c:irua:132567 Serial 3959
Permanent link to this record
 

 
Author Zalfani, M.; van der Schueren, B.; Hu, Z.-Y.; Rooke, J.C.; Bourguiga, R.; Wu, M.; Li, Y.; Van Tendeloo, G.; Su, B.-L.
Title Novel 3DOM BiVO4/TiO2nanocomposites for highly enhanced photocatalytic activity Type A1 Journal article
Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 3 Issue 3 Pages (up) 21244-21256
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Novel 3DOM BiVO4/TiO2 nanocomposites with intimate contact were for the first time synthesized by a hydrothermal method in order to elucidate their visible-light-driven photocatalytic performances. BiVO4 nanoparticles and 3DOM TiO2 inverse opal were fabricated respectively. These materials were characterized by XRD, XPS, SEM, TEM, N2 adsorption–desorption and UV-vis diffuse (UV-vis) and photoluminescence spectroscopies. As references for comparison, a physical mixture of BiVO4 nanoparticles and 3DOM TiO2 inverse opal powder (0.08 : 1), and a BiVO4/P25 TiO2 (0.08 : 1) nanocomposite made also by the hydrothermal method were prepared. The photocatalytic performance of all the prepared materials was evaluated by the degradation of rhodamine B (RhB) as a model pollutant molecule under visible light irradiation. The highly ordered 3D macroporous inverse opal structure can provide more active surface areas and increased mass transfer because of its highly accessible 3D porosity. The results show that 3DOM BiVO4/TiO2 nanocomposites possess a highly prolonged lifetime and increased separation of visible light generated charges and extraordinarily high photocatalytic activity. Owing to the intimate contact between BiVO4 and large surface area 3DOM TiO2, the photogenerated high energy charges can be easily transferred from BiVO4 to the 3DOM TiO2 support. BiVO4 nanoparticles in the 3DOM TiO2 inverse opal structure act thus as a sensitizer to absorb visible light and to transfer efficiently high energy electrons to TiO2 to ensure long lifetime of the photogenerated charges and keep them well separated, owing to the direct band gap of BiVO4 of 2.4 eV, favourably positioned band edges, very low recombination rate of electron–hole pairs and stability when coupled with photocatalysts, explaining the extraordinarily high photocatalytic performance of 3DOM BiVO4/TiO2 nanocomposites. It is found that larger the amount of BiVO4 in the nanocomposite, longer the duration of photogenerated charge separation and higher the photocatalytic activity. This work can shed light on the development of novel visible light responsive nanomaterials for efficient solar energy utilisation by the intimate combination of an inorganic light sensitizing nanoparticle with an inverse opal structure with high diffusion efficiency and high accessible surface area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000363163200049 Publication Date 2015-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 88 Open Access
Notes This work was realized with the financial support of the Belgian FNRS (Fonds National de la Recherche Scientifique). This research used resources of the Electron Microscopy Service located at the University of Namur. This Service is a member of the “Plateforme Technologique Morphologie – Imagerie”. The XPS analyses were made in the LISE, Department of Physics of the University of Namur thanks to Dr P. Louette. This work was also supported by Changjiang Scholars and the Innovative Research Team (IRT1169) of the Ministry of Education of the People's Republic of China. B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents” and a Clare Hall Life Membership at the Clare Hall and the financial support of the Department of Chemistry, University of Cambridge. G. Van Tendeloo and Z. Y. Hu acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483).; esteem2_jra4 Approved Most recent IF: 8.867; 2015 IF: 7.443
Call Number c:irua:129476 c:irua:129476 Serial 3951
Permanent link to this record
 

 
Author Watson, G.; Kummamuru, N.B.; Verbruggen, S.W.; Perreault, P.; Houlleberghs, M.; Martens, J.; Breynaert, E.; Van Der Voort, P.
Title Engineering of hollow periodic mesoporous organosilica nanorods for augmented hydrogen clathrate formation Type A1 Journal article
Year 2023 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal
Volume 11 Issue 47 Pages (up) 26265-26276
Keywords A1 Journal article; Engineering sciences. Technology
Abstract Hydrogen (H2) storage, in the form of clathrate hydrates, has emerged as an attractive alternative to classical storage methods like compression or liquefaction. Nevertheless, the sluggish enclathration kinetics along with low gas storage capacities in bulk systems is currently impeding the progress of this technology. To this end, unstirred systems coupled with porous materials have been shown to tackle the aforementioned drawbacks. In line with this approach, the present study explores the use of hydrophobic periodic organosilica nanoparticles, later denoted as hollow ring-PMO (HRPMO), for H2 storage as clathrate hydrates under mild operating conditions (5.56 mol% THF, 7 MPa, and 265–273 K). The surface of the HRPMO nanoparticles was carefully decorated/functionalized with THF-like moieties, which are well-known promoter agents in clathrate formation when applied in classical, homogeneous systems. The study showed that, while the non-functionalized HRPMO can facilitate the formation of binary H2-THF clathrates, the incorporation of surface-bound promotor structures enhances this process. More intriguingly, tuning the concentration of these surface-bound promotor agents on the HRPMO led to a notable effect on solid-state H2 storage capacities. An increase of 3% in H2 storage capacity, equivalent to 0.26 wt%, along with a substantial increase of up to 28% in clathrate growth kinetics, was observed when an optimal loading of 0.14 mmol g−1 of promoter agent was integrated into the HRPMO framework. Overall, the findings from this study highlight that such tuning effects in the solid-state have the potential to significantly boost hydrate formation/growth kinetics and H2 storage capacities, thereby opening new avenues for the ongoing development of H2 clathrates in industrial applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001108752600001 Publication Date 2023-11-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.9 Times cited Open Access
Notes Approved Most recent IF: 11.9; 2023 IF: 8.867
Call Number UA @ admin @ c:irua:201007 Serial 9031
Permanent link to this record
 

 
Author Yorulmaz, U.; Demiroglu, I.; Cakir, D.; Gulseren, O.; Sevik, C.
Title A systematicalab-initioreview of promising 2D MXene monolayers towards Li-ion battery applications Type A1 Journal article
Year 2020 Publication JPhys Energy Abbreviated Journal
Volume 2 Issue 3 Pages (up) 032006
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Two-dimensional materials have been attracting increasing interests because of their outstanding properties for Lithium-ion battery applications. In particular, a material family called MXenes (Mn+1Cn, where n = 1, 2, 3) have been recently attracted immense interest in this respect due to their incomparable fast-charging properties and high capacity promises. In this article, we review the state-of-the-art computational progress on Li-ion battery applications of MXene materials in accordance with our systematical DFT calculations. Structural, mechanical, dynamical, and electrical properties of 20 distinct MXene (M: Sc, Ti, V, Cr, Nb, Mo, Hf, Ta, W, and Zr) have been discussed. The battery performances of these MXene monolayers are further investigated by Li-ion binding energies, open circuit voltage values, and Li migration energy barriers. The experimental and theoretical progress up to date demonstrates particularly the potential of non-terminated or pristine MXene materials in Li ion-storage applications. Stability analyses show most of the pristine MXenes should be achievable, however susceptible to the development progress on the experimental growth procedures. Among pristine MXenes, Ti2C, V2C, Sc2C, and Zr2C compounds excel with their high charge/discharge rate prospect due to their extremely low Li diffusion energy barriers. Considering also their higher predicted gravimetric capacities, Sc, Ti, V, and Zr containing MXenes are more promising for their utilization in energy storage applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000569868600001 Publication Date 2020-07-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2515-7655 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.9 Times cited Open Access
Notes Approved Most recent IF: 6.9; 2020 IF: NA
Call Number UA @ admin @ c:irua:193748 Serial 7399
Permanent link to this record
 

 
Author Andersen, J.A.; Christensen, J.M.; Østberg, M.; Bogaerts, A.; Jensen, A.D.
Title Plasma-catalytic ammonia decomposition using a packed-bed dielectric barrier discharge reactor Type A1 Journal article
Year 2022 Publication International Journal Of Hydrogen Energy Abbreviated Journal Int J Hydrogen Energ
Volume 47 Issue 75 Pages (up) 32081-32091
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-catalytic ammonia decomposition as a method for producing hydrogen was studied in a packed-bed dielectric barrier discharge (DBD) reactor at ambient pressure and a fixed plasma power. The influence of packing the plasma zone with various dielectric materials, typically used as catalyst supports, was examined. At conditions (21 W, 75 Nml/min NH3) where an NH3 conversion of 5% was achieved with plasma alone, an improved decomposition was found when introducing dielectric materials with dielectric constants between 4 and 30. Of the tested materials, MgAl2O4 yielded the highest conversion (15.1%). The particle size (0.3-1.4 mm) of the MgAl2O4 packing was found to have a modest influence on the conversion, which dropped from 15.1% to 12.6% with increasing particle size. Impregnation of MgAl2O4 with different metals was found to decrease the NH3 conversion, with the Ni impregnation still showing an improved conversion (7%) compared to plasma-only. The plasma-assisted ammonia decomposition occurs in the gas phase due to micro-discharges, as evident from a linear correlation between the conversion and the frequency of micro-discharges for both plasma alone and with the various solid packing materials. The primary function of the solid is thus to facilitate the gas phase reaction by assisting the creation of micro-discharges. Lastly, insulation of the reactor to raise the temperature to 230 degrees C in the plasma zone was found to have a negative effect on the conversion, as a change from volume discharges to surface discharges occurred. The study shows that NH3 can be decomposed to provide hydrogen by exposure to a non-thermal plasma, but further developments are needed for it to become an energy efficient technology. (C)2022 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000865421200012 Publication Date 2022-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-3199 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.2 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 7.2
Call Number UA @ admin @ c:irua:191512 Serial 7191
Permanent link to this record
 

 
Author Mortazavi, B.; Bafekry, A.; Shahrokhi, M.; Rabczuk, T.; Zhuang, X.
Title ZnN and ZnP as novel graphene-like materials with high Li-ion storage capacities Type A1 Journal article
Year 2020 Publication Materials today energy Abbreviated Journal
Volume 16 Issue Pages (up) Unsp 100392-8
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract In this work, we employed first-principles density functional theory (DFT) calculations to investigate the dynamical and thermal stability of graphene-like ZnX (X = N, P, As) nanosheets. We moreover analyzed the electronic, mechanical and optical properties of these novel two-dimensional (2D) systems. Acquired phonon dispersion relations reveal the absence of imaginary frequencies and thus confirming the dynamical stability of predicted monolayers. According to ab-initio molecular dynamics results however only ZnN and ZnP exhibit the required thermally stability. The elastic modulus of ZnN, ZnP and ZnAs are estimated to be 31, 21 and 17 N/m, respectively, and the corresponding tensile strengths values are 6.0, 4.9 and 4.0 N/m, respectively. Electronic band structure analysis confirms the metallic electronic character for the predicted monolayers. Results for the optical characteristics also indicate a reflectivity of 100% at extremely low energy levels, which is desirable for photonic and optoelectronic applications. According to our results, graphene-like ZnN and ZnP nanosheets can yield high capacities of 675 and 556 mAh/g for Li-ion storage, respectively. Acquired results confirm the stability and acceptable strength of ZnN and ZnP nanosheets and highlight their attractive application prospects in optical and energy storage systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000539083500049 Publication Date 2020-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-6069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.3 Times cited 13 Open Access
Notes ; B. M. and X. Z. appreciate the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). ; Approved Most recent IF: 9.3; 2020 IF: NA
Call Number UA @ admin @ c:irua:169752 Serial 6655
Permanent link to this record
 

 
Author Yan, X.F.; Chen, Q.; Li, L.L.; Guo, H.Z.; Peng, J.Z.; Peeters, F.M.
Title High performance piezotronic spin transistors using molybdenum disulfide nanoribbon Type A1 Journal article
Year 2020 Publication Nano Energy Abbreviated Journal Nano Energy
Volume 75 Issue Pages (up) 104953
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Two-dimensional (2D) materials are promising candidates for atomic-scale piezotronics and piezophototronics. Quantum edge states show fascinating fundamental physics such as nontrivial topological behavior and hold promising practical applications for low-power electronic devices. Here, using the tight-binding approach and quantum transport simulations, we investigate the piezotronic effect on the spin polarization of edge states in a zigzag-terminated monolayer MoS2 nanoribbon. We find that the strain-induced piezoelectric potential induces a phase transition of edge states from metal to semiconductor. However, in the presence of exchange field, edge states become semi-metallic with significant spin splitting and polarization that can be tuned by external strain. We show that quantum transport conductance exhibits a 100% spin polarization over a wide range of strain magnitudes. This effect is used in a propose prototype of piezotronic spin transistor. Our results provide a fundamental understanding of the piezotronic effect on edge states in zigzag monolayer MoS2 nanoribbons and are relevant for designing high-performance piezotronic spin devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000560729200011 Publication Date 2020-05-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 17.6 Times cited 20 Open Access
Notes ; This work was supported by Hunan Provincial Natural Science Foundation of China (Nos. 2015JJ2040, 2018JJ2078), Scientific Research Fund of Hunan Provincial Education Department (19A106), and the Funeral Service Foundation (FWO-VI). ; Approved Most recent IF: 17.6; 2020 IF: 12.343
Call Number UA @ admin @ c:irua:171123 Serial 6535
Permanent link to this record
 

 
Author Chernozem, R., V; Romanyuk, K.N.; Grubova, I.; Chernozem, P., V.; Surmeneva, M.A.; Mukhortova, Y.R.; Wilhelm, M.; Ludwig, T.; Mathur, S.; Kholkin, A.L.; Neyts, E.; Parakhonskiy, B.; Skirtach, A.G.; Surmenev, R.A.
Title Enhanced piezoresponse and surface electric potential of hybrid biodegradable polyhydroxybutyrate scaffolds functionalized with reduced graphene oxide for tissue engineering Type A1 Journal article
Year 2021 Publication Nano Energy Abbreviated Journal Nano Energy
Volume 89 Issue B Pages (up) 106473
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Piezoelectricity is considered to be one of the key functionalities in biomaterials to boost bone tissue regeneration, however, integrating biocompatibility, biodegradability and 3D structure with pronounced piezoresponse remains a material challenge. Herein, novel hybrid biocompatible 3D scaffolds based on biodegradable poly(3-hydroxybutyrate) (PHB) and reduced graphene oxide (rGO) flakes have been developed. Nanoscale insights revealed a more homogenous distribution and superior surface potential values of PHB fibers (33 +/- 29 mV) with increasing rGO content up to 1.0 wt% (314 +/- 31 mV). The maximum effective piezoresponse was detected at 0.7 wt% rGO content, demonstrating 2.5 and 1.7 times higher out-of-plane and in-plane values, respectively, than that for pure PHB fibers. The rGO addition led to enhanced zigzag chain formation between paired lamellae in PHB fibers. In contrast, a further increase in rGO content reduced the alpha-crystal size and prevented zigzag chain conformation. A corresponding model explaining structural and molecular changes caused by rGO addition in electrospun PHB fibers is proposed. In addition, finite element analysis revealed a negligible vertical piezoresponse compared to lateral piezoresponse in uniaxially oriented PHB fibers based on alpha-phase (P2(1)2(1)2(1) space group). Thus, the present study demonstrates promising results for the development of biodegradable hybrid 3D scaffolds with an enhanced piezoresponse for various tissue engineering applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000703592700002 Publication Date 2021-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.343 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 12.343
Call Number UA @ admin @ c:irua:182579 Serial 7914
Permanent link to this record
 

 
Author Martinez-Villarreal, S.; Breitenstein, A.; Nimmegeers, P.; Perez Saura, P.; Hai, B.; Asomaning, J.; Eslami, A.A.; Billen, P.; Van Passel, S.; Bressler, D.C.; Debecker, D.P.; Remacle, C.; Richel, A.
Title Drop-in biofuels production from microalgae to hydrocarbons : microalgal cultivation and harvesting, conversion pathways, economics and prospects for aviation Type A1 Journal article
Year 2022 Publication Biomass & Bioenergy Abbreviated Journal Biomass Bioenerg
Volume 165 Issue Pages (up) 106555-22
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract In the last few years, governments all around the world have agreed upon migrating towards carbon-neutral economies as a strategy for restraining the effects of climate change. A major obstacle limiting this achievement is greenhouse gases emissions, for which the aviation sector is a key contributor because of its dependence on fossil fuels. As an alternative, biofuels with similar characteristics to current fossil-fuels and fully compatible with the existing petroleum infrastructure (i.e., drop-in biofuels) are being developed. In this regard, microalgae are a promising feedstock thanks to, among other aspects, their potential for lipid accumulation. This review outlines the development status, opportunities, and challenges of different technologies that are capable of or applicable to transform microalgae into aviation fuels. To this effect, a baseline of the existing jet fuels and the requirements for potential aviation biofuels is initially presented. Then, microalgae production and valorization techniques are discussed with an emphasis on the thermochemical pathways. Finally, an assessment of the present techno-economic feasibility of microalgae-derived aviation fuels is discussed, along with the authors’ point of view on the suitability of these techniques. Further developments are needed to reduce the costs of cultivation and harvesting of microalgae, and a biorefinery approach might improve the economics of the overall process. In addition, while each of the conversion routes described has its advantages and drawbacks, they converge upon the need of optimizing the deoxygenation techniques and the proportion of the suitable type of hydrocarbons that match fuel requirements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000861095400001 Publication Date 2022-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0961-9534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6
Call Number UA @ admin @ c:irua:189953 Serial 7354
Permanent link to this record
 

 
Author Milis, K.; Peremans, H.; Springael, J.; Van Passel, S.
Title Win-win possibilities through capacity tariffs and battery storage in microgrids Type A1 Journal article
Year 2019 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 113 Issue 113 Pages (up) 109238
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
Abstract This paper investigates the impact of capacity tariff design on microgrids. While the possible benefits for utilities of capacity tariffs are well researched, comparatively little work has been done investigating the effects of capacity pricing on prosumers. Through simulating a grid connected microgrid and solving the day-ahead dispatch problem for a calendar year, we show that a well-designed capacity tariff will not only smooth out demand profiles, but could also lead to less erratic charge/discharge cycles in a real-time pricing scenario, lessening battery degradation. These results show that a properly designed capacity tariff has the potential to be beneficial for both the utilities as well as the battery-owning prosumer. Furthermore, we propose a new, heuristic approach to solve the day-ahead economic dispatch problem, which we prove to be effective and efficient. Additionally, we demonstrate that our novel approach does not impose mathematical restrictions such as continuous differentiability of the objective function. We show that the proposed capacity tariff achieves the stated aim of promoting battery storage uptake and that our novel method allows for compression and shorter run times.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000483422600019 Publication Date 2019-07-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.05 Times cited 1 Open Access
Notes ; ; Approved Most recent IF: 8.05
Call Number UA @ admin @ c:irua:160566 Serial 6279
Permanent link to this record
 

 
Author Thomassen, G.; Van Passel, S.; Dewulf, J.
Title A review on learning effects in prospective technology assessment Type A1 journal article
Year 2020 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 130 Issue Pages (up) 109937
Keywords A1 journal article; Learning effects; Life cycle assessment; Techno-economic assessment; Prospective technology assessment; Learning-by-doing; Learning curve; Progress rate; Experience curve; Engineering Management (ENM) ;
Abstract Global environmental problems have urged the need for developing sustainable technologies. However, new technologies that enter the market have often higher economic costs and potentially higher environmental impacts than conventional technologies. This can be explained by learning effects: a production process that is performed for the first time runs less smooth than a production process that has been in operation for years. To obtain a fair estimation of the potential of a new technology, learning effects need to be included. A review on the current literature on learning effects was conducted in order to provide guidelines on how to include learning effects in prospective technology assessment. Based on the results of this review, five recommendations have been formulated and an integration of learning effects in the structure of prospective technology assessment has been proposed. These five recommendations include the combined use of learning effects on the component level and on the end product level; the combined use of learning effects on the technical, economic and environmental level; the combined use of extrapolated values and expert estimates; the combined use of learning-by-doing and learning-by-searching effects and; a tier-based method, including quality criteria, to calculate the learning effect. These five complementary strategies could lead to a clearer perspective on the environmental impact and cost structure of the new technology and a fairer comparison base with conventional technologies, potentially resulting in a faster adoption and a shorter time-to-market for sustainable technologies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000548790900008 Publication Date 2020-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.9 Times cited Open Access
Notes The authors acknowledge the full financial support received from the Flemish administration via the Steunpunt Circulaire Economie (Policy Research Centre Circular Economy). We would also like to thank the SDEWES conference for the best paper award which was granted to the current paper. The authors declare no competing financial interests. This publication contains the opinions of the authors, not that of the Flemish administration. The Flemish administration will not carry any liability with respect to the use that can be made of the produced data or conclusions. Approved Most recent IF: 15.9; 2020 IF: 8.05
Call Number ENM @ enm @c:irua:170076 Serial 6389
Permanent link to this record
 

 
Author Erfurt, D.; Koida, T.; Heinemann, M.D.; Li, C.; Bertram, T.; Nishinaga, J.; Szyszka, B.; Shibata, H.; Klenk, R.; Schlatmann, R.
Title Impact of rough substrates on hydrogen-doped indium oxides for the application in CIGS devices Type A1 Journal article
Year 2020 Publication Solar Energy Materials And Solar Cells Abbreviated Journal Sol Energ Mat Sol C
Volume 206 Issue Pages (up) 110300
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Indium oxide based transparent conductive oxides (TCOs) are promising contact layers in solar cells due to their outstanding electrical and optical properties. However, when applied in Cu(In,Ga)Se-2 or Si-hetero-junction solar cells the specific roughness of the material beneath can affect the growth and the properties of the TCO. We investigated the electrical properties of hydrogen doped and hydrogen-tungsten co-doped indium oxides grown on rough Cu(In,Ga)Se-2 samples as well as on textured and planar glass. At sharp ridges and V-shaped valleys crack-shaped voids form inside the indium oxide films, which limit the effective electron mobility of the In2O3:H and In2O3:H,W thin films. This was found for films deposited by magnetron sputtering and reactive plasma deposition at several deposition parameters, before as well as after annealing and solid phase crystallization. This suggests universal behavior that will have a wide impact on solar cell devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000519653800038 Publication Date 2019-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.9 Times cited 5 Open Access OpenAccess
Notes ; This work was supported by the German Federal Ministry for Economic Affairs and Energy under contract number 0325762G (TCO4CIGS). The authors thank M. Hartig, K. Mayer-Stillrich, I. Dorbandt, B. Bunn, M. Kirsch for technical support. C. Li is grateful for financial support from Max Planck Society, Germany and technical support from the MPI FKF StEM group members. ; Approved Most recent IF: 6.9; 2020 IF: 4.784
Call Number UA @ admin @ c:irua:168668 Serial 6544
Permanent link to this record
 

 
Author Buchmayr, A.; Verhofstadt, E.; Van Ootegem, L.; Sanjuan Delmás, D.; Thomassen, G.; Dewulf, J.
Title The path to sustainable energy supply systems: Proposal of an integrative sustainability assessment framework Type A1 Journal Article
Year 2021 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 138 Issue Pages (up) 110666
Keywords A1 Journal Article; Engineering Management (ENM) ;
Abstract Energy supply is essential for the functioning and well-being of a society. Decision-makers are faced with the challenge to balance burdens and benefits of energy supply practices with the aim to achieve environmental, economic, and social sustainability. Literature exhibits a broad variety of sustainability assessment frameworks for energy supply technologies. However, there is no consensus on which aspects need to be covered for a comprehensive assessment of sustainability. While some aspects, such as environmental emission damage, receive predominant attention, there is a lack of coverage and adequate quantification for others. This led in the past to an unbalanced basis for decision-making.

Based on an analysis of literature, 12 impact categories were identified for the assessment of energy technologies. The analysis included the judgement of quantification approaches regarding their significance for describing the impact categories and their maturity resulting in the proposal of 12 concrete indicators. A framework is proposed to manage and integrate the assessment of single impact categories. The framework produces normalized and weighted output indicators to use in the form of a dashboard or alternatively a single sustainability index for informed decision-making.

Finally, the proposed sustainability assessment framework relies on life cycle, local impact, and supply chain risks assessment. It consists of both well-established assessment methods as well as suggestions for new indicators in order to allow a full assessment of all impact categories. It thereby goes beyond the isolated assessment of impacts and offers the basis for comparison of complete energy supply mixes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2020-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321 ISBN Additional Links
Impact Factor 8.05 Times cited Open Access Not_Open_Access
Notes The authors acknowledge the financial support received from the Special Research Fund (Bijzonder Onderzoeksfonds – BOF) of Ghent University under grant agreement number BOF.24Y.2018.003. Approved Most recent IF: 8.05
Call Number ENM @ enm @ Serial 6680
Permanent link to this record
 

 
Author Khelifi, S.; Brammertz, G.; Choubrac, L.; Batuk, M.; Yang, S.; Meuris, M.; Barreau, N.; Hadermann, J.; Vrielinck, H.; Poelman, D.; Neyts, K.; Vermang, B.; Lauwaert, J.
Title The path towards efficient wide band gap thin-film kesterite solar cells with transparent back contact for viable tandem application Type A1 Journal article
Year 2021 Publication Solar Energy Materials And Solar Cells Abbreviated Journal Sol Energ Mat Sol C
Volume 219 Issue Pages (up) 110824
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Wide band gap thin-film kesterite solar cell based on non-toxic and earth-abundant materials might be a suitable candidate as a top cell for tandem configuration in combination with crystalline silicon as a bottom solar cell. For this purpose and based on parameters we have extracted from electrical and optical characterization techniques of Cu2ZnGeSe4 absorbers and solar cells, a model has been developed to describe the kesterite top cell efficiency limitations and to investigate the different possible configurations with transparent back contact for fourterminal tandem solar cell application. Furthermore, we have studied the tandem solar cell performance in view of the band gap and the transparency of the kesterite top cell and back contact engineering. Our detailed analysis shows that a kesterite top cell with efficiency > 14%, a band gap in the range of 1.5-1.7 eV and transparency above 80% at the sub-band gaps photons energies are required to achieve a tandem cell with higher efficiency than with a single silicon solar cell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000591683500002 Publication Date 2020-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.784 Times cited Open Access OpenAccess
Notes The authors would like to acknowledge the SWInG project financed by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 640868 and the Research Foundation Flanders-Hercules Foundation (FWO-Vlaanderen, project No AUGE/13/16:FT-IMAGER). Approved Most recent IF: 4.784
Call Number EMAT @ emat @c:irua:174337 Serial 6706
Permanent link to this record
 

 
Author Dingenen, F.; Verbruggen, S.W.
Title Tapping hydrogen fuel from the ocean : a review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater Type A1 Journal article
Year 2021 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 142 Issue Pages (up) 110866
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Direct splitting of earth-abundant seawater provides an eco-friendly route for the production of clean H2, but is hampered by selectivity and stability issues. Direct seawater electrolysis is the most established technology, attaining high current densities in the order of 1–2 A cm−2. Alternatively, light-driven processes such as photocatalytic and photoelectrochemical seawater splitting are particularly promising as well, as they rely on renewable solar power. Solar-to-Hydrogen efficiencies have increased over the past decade from negligible values to about 2%. Especially the absence of large local pH changes (in the order of several tenths of a pH unit compared to up to 9 pH units for electrolysis) is a strong asset for pure photocatalysis. This may lead to less adverse side-reactions such as Cl2 and ClO− formation, (acid or base induced) corrosion and scaling. Besides, additional requirements for electrolytic cells, e.g. membranes and electricity input, are not needed in pure photocatalysis systems. In this review, the state-of-the-art technologies in light-driven seawater splitting are compared to electrochemical approaches with a focus on sustainability and stability. Promising advances are identified at the level of the catalyst as well as the process, and insight is provided in solutions crossing different fields.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000632316600003 Publication Date 2021-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.05 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 8.05
Call Number UA @ admin @ c:irua:175701 Serial 8642
Permanent link to this record
 

 
Author Srivastava, A.; Van Passel, S.; Valkering, P.; Laes, E.J.W.
Title Power outages and bill savings : a choice experiment on residential demand response acceptability in Delhi Type A1 Journal article
Year 2021 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
Volume 143 Issue Pages (up) 110904
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract This paper conducts a discrete choice experiment among 167 households in the Delhi region in India, to study the acceptability of demand response (DR) programs among upper-income households. Attributes include rate types, rate bands, reductions in power outages, and expected monthly savings. Results indicate a preference for time-of-use pricing over real-time pricing, and a preference for three rate slabs per day over two. Respondents prioritize reductions in power outages and minimizing potential expenses, reflecting the financial sensitivity and energy poverty relative to other countries. Respondents' ages and incomes further affect the value that they attach to reductions in power outages. The paper proposes various structures of DR programs that could achieve high predicted enrollment and concludes by estimating the potential benefits of implementing such programs. Overall, the analysis indicates that a DR program could be feasible in a developing country context, particularly if it is designed keeping in mind local socio-economic considerations. This may be supported through further confirmatory research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000637710200016 Publication Date 2021-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.05 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 8.05
Call Number UA @ admin @ c:irua:178188 Serial 6938
Permanent link to this record
 

 
Author Srivastava, A.; Van Passel, S.; Kessels, R.; Valkering, P.; Laes, E.
Title Reducing winter peaks in electricity consumption: A choice experiment to structure demand response programs Type A1 Journal Article
Year 2020 Publication Energy Policy Abbreviated Journal Energ Policy
Volume 137 Issue Pages (up) 111183
Keywords A1 Journal Article; Engineering Management (ENM) ;
Abstract Winter peaks in Belgian electricity demand are significantly higher than the summer peaks, creating a greater potential for imbalances between demand and supply. This potential is exacerbated because of the risk of outages in its ageing nuclear power plants, which are being phased out in the medium term. This paper conducts a choice experiment to investigate the acceptability of a load control-based demand response program in the winter months. It surveys 186 respondents on their willingness to accept limits on the use of home appliances in return for a compensation. Results indicate that respondents are most affected by the days of the week that their appliance usage would be curtailed, and by the compensation they would receive. The willingness to enroll in a program increases with age, environmental consciousness, home ownership, and lower privacy concerns. The analysis predicts that 95% of the sample surveyed could enroll in a daily load control program for a compen- sation of €41 per household per year. Thus while an initial rollout among older and more pro-environment homeowners could be successful, a wider implementation would require an explanation of its environmental and financial benefits to the population, and a greater consideration of their data privacy concerns.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000515439900040 Publication Date 2019-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4215 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9 Times cited Open Access
Notes The authors gratefully acknowledge the guidance offered by the Flemish Electricity Regulatory Agency (VREG), the Flemish Department for Environment, Nature, and Energy (LNE), and Guido Pepermans in designing the experiment. We are also grateful for the translations provided by Loic De Weerdt, and the support extended by Macarena MacLean Larrain in pre-testing the experiment. Finally, Roselinde Kes- sels thanks the Flemish Research Foundation (FWO) for her postdoctoral fellowship and the JMP Division of SAS Institute for further financial support. Approved Most recent IF: 9; 2020 IF: 4.14
Call Number ENM @ enm @c:irua:167253 Serial 6348
Permanent link to this record
 

 
Author Vasilakou, K.; Nimmegeers, P.; Billen, P.; Van Passel, S.
Title Geospatial environmental techno-economic assessment of pretreatment technologies for bioethanol production Type A1 Journal article
Year 2023 Publication Renewable and sustainable energy reviews Abbreviated Journal
Volume 187 Issue Pages (up) 113743-16
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Second-generation biofuels, starting from lignocellulosic biomass, are considered as a renewable alternative for fossil fuels with lower environmental impact and potentially higher supply and energy security. The economic and environmental performance of second-generation bioethanol production from corn stover in the European Union (EU) is studied, starting in Belgium as base case. A comparative environmental techno-economic assessment has been conducted, with process simulations in Aspen Plus and corn stover availability data in thirteen EU countries to calculate minimum ethanol selling prices (MESP) and Greenhouse gas emissions (GHGe). In this analysis, the emphasis is on the comparison of different pretreatment technologies, namely (i) dilute acid, (ii) alkaline, (iii) steam explosion and (iv) liquid hot water. Dilute acid showed the best economic and environmental performance for the base case scenario. Within the EU, Hungary and Romania presented the lowest MESP for the steam explosion model at 0.39 and 0.43 EUR/L respectively. Poland showed the lowest GHGe, at 0.46 kg CO2eq/L for the alkaline model, mainly due to the avoided product allocation on electricity and its high carbon intensity in the electricity generation sector. The second lowest GHGe were obtained in France for the dilute acid model and are attributed to its low agricultural emissions intensity. This study identifies a location-dependence of the economic and environmental performance of pretreatment technologies, which can be extrapolated from the EU to other large regions around the world and should be taken into consideration by decision-makers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001082526000001 Publication Date 2023-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record
Impact Factor 15.9 Times cited Open Access
Notes Approved Most recent IF: 15.9; 2023 IF: 8.05
Call Number UA @ admin @ c:irua:198804 Serial 9205
Permanent link to this record
 

 
Author Vetters, J.; Thomassen, G.; Van Passel, S.
Title Sailing through end-of-life challenges : a comprehensive review for offshore wind Type A1 Journal article
Year 2024 Publication Renewable and sustainable energy reviews Abbreviated Journal
Volume 199 Issue Pages (up) 114486-16
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Over the past thirty years, European offshore wind farm development surged, yet end-of-life and decommissioning considerations were overshadowed by initial climate and energy security objectives during design and construction. As the first major projects near their final decade, numerous unanswered questions persist. Through a comprehensive literature review, this study identifies, maps, and evaluates challenges across technical, economic, environmental, social, and policy dimensions spanning five end-of-life phases: planning, dismantling, transport and logistics, waste management, and site recovery. Examining 42 publications reveals 46 distinct challenges affecting stakeholders such as the end-of-life supply chain, policy makers, and society. While 33% of the challenges manifested in the technical dimension, 48% of the challenges covered the planning phase. Notably, the economic challenge of vessel cost and availability was raised most often. Less-explored challenges underscore the importance of consideration before the end-of-life phase intensifies. The study illustrates the complex interconnection of numerous end-of-life challenges across phases, dimensions, and disciplines, emphasizing the imperative of addressing bottlenecks in a comprehensive and integrated manner. The results of this study help steering future research, while also improving awareness of challenges for stakeholders, emphasizing the need for collaborative efforts between governmental bodies and industry stakeholders to address imminent challenges through transparent guidelines, data exchange, and circular design principles. The novelty of this study lies in its holistic, multidisciplinary approach, systematic framework for identifying challenges, and critical perspective unveiling interconnectedness.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record
Impact Factor 15.9 Times cited Open Access
Notes Approved Most recent IF: 15.9; 2024 IF: 8.05
Call Number UA @ admin @ c:irua:205652 Serial 9226
Permanent link to this record