|   | 
Details
   web
Records
Author Ramos, I.R.O.; Ferreira, W.P.; Munarin, F.F.; Peeters, F.M.
Title Dynamical properties and melting of binary two-dimensional colloidal alloys Type A1 Journal article
Year 2014 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 90 Issue 6 Pages (down) 062311
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A two-dimensional (2D) binary colloidal system consisting of interacting dipoles is investigated using an analytical approach. Within the harmonic approximation we obtain the phonon spectrum of the system as a function of the composition, dipole-moment ratio, and mass ratio between the small and big particles. Through a systematic analysis of the phonon spectra we are able to determine the stability region of the different lattice structures of the colloidal alloys. The gaps in the phonon frequency spectrum, the optical frequencies in the long-wavelength limit, and the sound velocity are discussed as well. Using the modified Lindemann criterion and within the harmonic approximation we estimate the melting temperature of the sublattice generated by the big particles.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000346833500007 Publication Date 2014-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 4 Open Access
Notes ; This work was supported by the Brazilian agencies CNPq (Program Science Without Border), CAPES, and FUNCAP (International cooperation program); the Flemish Science Foundation (FWO-Vl); the bilateral program between Flanders and Brazil (CNPq-FWO collaborating project); and the VLIR-UOS (University Development Cooperation). I.R.O.R. is grateful to Professor E. B. Barros for fruitful discussions. W. P. F. thanks Professor D. Martin A. Buzza for his illuminating comments on this manuscript. ; Approved Most recent IF: 2.366; 2014 IF: 2.288
Call Number UA @ lucian @ c:irua:122797 Serial 771
Permanent link to this record
 

 
Author Van der Donck, M.; Conti, S.; Perali, A.; Hamilton, A.R.; Partoens, B.; Peeters, F.M.; Neilson, D.
Title Three-dimensional electron-hole superfluidity in a superlattice close to room temperature Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 102 Issue 6 Pages (down) 060503
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Although there is strong theoretical and experimental evidence for electron-hole superfluidity in separated sheets of electrons and holes at low T, extending superfluidity to high T is limited by strong two-dimensional fluctuations and Kosterlitz-Thouless effects. We show this limitation can be overcome using a superlattice of alternating electron- and hole-doped semiconductor monolayers. The superfluid transition in a three-dimensional superlattice is not topological, and for strong electron-hole pair coupling, the transition temperature T-c can be at room temperature. As a quantitative illustration, we show T-c can reach 270 K for a superfluid in a realistic superlattice of transition metal dichalcogenide monolayers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000562320700001 Publication Date 2020-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 5 Open Access
Notes ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for M.V.d.D., by the FLAG-ERA project TRANS-2D-TMD, and by the Australian Government through the Australian Research Council Centre of Excellence in Future Low-Energy Electronics (Project No. CE170100039). We thank Milorad V. Milossevi ' c, Pierbiagio Pieri, and Jacques Tempere for helpful discussions. ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:172064 Serial 6628
Permanent link to this record
 

 
Author Milošević, M.V.; Perali, A.
Title Emergent phenomena in multicomponent superconductivity: an introduction to the focus issue Type A1 Journal article
Year 2015 Publication Superconductor Science & Technology Abbreviated Journal Supercond Sci Tech
Volume 28 Issue 28 Pages (down) 060201
Keywords A1 Journal article; CMT
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000354110200001 Publication Date 2015-04-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links
Impact Factor 2.878 Times cited 41 Open Access
Notes ; ; Approved Most recent IF: 2.878; 2015 IF: 2.325
Call Number UA @ lucian @ Serial 3945
Permanent link to this record
 

 
Author Ghorbanfekr-Kalashami, H.; Peeters, F.M.; Novoselov, K.S.; Neek-Amal, M.
Title Spatial design and control of graphene flake motion Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 6 Pages (down) 060101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000406860300001 Publication Date 2017-08-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. M.N.-A. was supported by Iran National Science Foundation (INSF). K.S.N. was supported by the EU Graphene Flagship Program, European Research Council Synergy Grant Hetero2D, the Royal Society, Engineering and Physical Research Council (UK), US Army Research Office. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145166 Serial 4724
Permanent link to this record
 

 
Author Dixit, H.; Tandon, N.; Cottenier, S.; Saniz, R.; Lamoen, D.; Partoens, B.
Title Erratum : First-principles study of possible shallow donors in ZnAl2O4 spinel [Phys. Rev. B 87, 174101 (2013)] Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 5 Pages (down) 059905-2
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000323572600009 Publication Date 2013-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 1 Open Access
Notes ; ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:110015 Serial 1080
Permanent link to this record
 

 
Author Shi, W.; Callewaert, V.; Barbiellini, B.; Saniz, R.; Butterling, M.; Egger, W.; Dickmann, M.; Hugenschmidt, C.; Shakeri, B.; Meulenberg, R. W.; Brück, E.; Partoens, B.; Bansil, A.; Eijt, S.W. H.
Title Nature of the Positron State in CdSe Quantum Dots Type A1 Journal article
Year 2018 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 121 Issue 5 Pages (down) 057401
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Previous studies have shown that positron-annihilation spectroscopy is a highly sensitive probe of the electronic structure and surface composition of ligand-capped semiconductor quantum dots (QDs) embedded in thin films. The nature of the associated positron state, however, whether the positron is confined inside the QDs or localized at their surfaces, has so far remained unresolved. Our positron-annihilation lifetime spectroscopy studies of CdSe QDs reveal the presence of a strong lifetime component in the narrow range of 358–371 ps, indicating abundant trapping and annihilation of positrons at the surfaces of the QDs. Furthermore, our ab initio calculations of the positron wave function and lifetime employing a recent formulation of the weighted density approximation demonstrate the presence of a positron surface state and predict positron lifetimes close to experimental values. Our study thus resolves the long-standing question regarding the nature of the positron state in semiconductor QDs and opens the way to extract quantitative information on surface composition and ligand-surface interactions of colloidal semiconductor QDs through highly sensitive positron-annihilation techniques.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000440635300012 Publication Date 2018-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 6 Open Access
Notes The work at Delft University of Technology was supported by the China Scholarship Council (CSC) grant of W. S. We acknowledge financial support for this research from ADEM, A green Deal in Energy Materials of the Ministry of Economic Affairs of The Netherlands. The PALS study is based upon experiments performed at the PLEPS instrument of the NEPOMUC facility at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany, and was supported by the European Commission under the 7th Framework Program, Key Action: Strengthening the European Research Area, Research Infrastructures, Contract No. 226507, NMI3. The work at the University of Maine was supported by the National Science Foundation under Grant No. DMR-1206940. V. C. and R. S. were supported by the FWO-Vlaanderen through Project No. G. 0224.14N. Computational resources and services used in this work were in part provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government (EWI Department). The work at Northeastern University was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences Grant No. DE-FG02-07ER46352 (core research), and benefited from Northeastern University’s Advanced Scientific Computation Center (ASCC), the National Energy Research Scientific Computing Center (NERSC) through DOE Grant No. DE-AC02-05CH11231, and support (functionals for modeling positron spectros- copies of layered materials) from the DOE EFRC: Center for the Computational Design of Functional Layered Materials (CCDM) under DE-SC0012575. Approved Most recent IF: 8.462
Call Number CMT @ cmt @c:irua:152999UA @ admin @ c:irua:152999 Serial 5009
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Latimer, M.L.; Xiao, Z.L.; Kwok, W.K.; Peeters, F.M.
Title Large magnetoresistance oscillations in mesoscopic superconductors due to current-excited moving vortices Type A1 Journal article
Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 109 Issue 5 Pages (down) 057004
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We show in the case of a superconducting Nb ladder that a mesoscopic superconductor typically exhibits magnetoresistance oscillations whose amplitude and temperature dependence are different from those stemming from the Little-Parks effect. We demonstrate that these large resistance oscillations (as well as the monotonic background on which they are superimposed) are due to current-excited moving vortices, where the applied current in competition with the oscillating Meissner currents imposes or removes the barriers for vortex motion in an increasing magnetic field. Because of the ever present current in transport measurements, this effect should be considered in parallel with the Little-Parks effect in low-critical temperature (T-c) samples, as well as with recently proposed thermal activation of dissipative vortex-antivortex pairs in high-T-c samples.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000306994900024 Publication Date 2012-07-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 65 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP) (theory) and by the U. S. Department of Energy (DOE) Award No. DE-FG02-06ER46334 (experiment). G. R. B. acknowledges individual grant from FWO-Vl. W. K. K. acknowledges support from DOE BES under Contract No. DE-AC02-06CH11357, which also funds Argonne's Center for Nanoscale Materials (CNM) where the focused-ion-beam milling was performed. ; Approved Most recent IF: 8.462; 2012 IF: 7.943
Call Number UA @ lucian @ c:irua:100832 Serial 1780
Permanent link to this record
 

 
Author Xu, B.; Milošević, M.V.; Lin, S.-H.; Peeters, F.M.; Jankó, B.
Title Formation of multiple-flux-quantum vortices in mesoscopic superconductors from simulations of calorimetric, magnetic, and transport properties Type A1 Journal article
Year 2011 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 107 Issue 5 Pages (down) 057002,1-057002,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Because of strong flux confinement in mesoscopic superconductors, a giant vortex may appear in the ground state of the system in an applied magnetic field. This multiquanta vortex can then split into individual vortices (and vice versa) as a function of, e.g., applied current, magnetic field, or temperature. Here we show that such transitions can be identified by calorimetry, as the formation or splitting of a giant vortex results in a clear jump in measured heat capacity versus external drive. We attribute this phenomenon to an abrupt change in the density of states of the quasiparticle excitations in the vortex core(s), and further link it to a sharp change of the magnetic susceptibility at the transitionproving that the formation of a giant vortex can also be detected by magnetometry.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000293333100006 Publication Date 2011-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 26 Open Access
Notes ; We thank O. Bourgeois, T. Yokoyama, M. Eschrig, and M. Ichioka for discussions. This work was supported by FWO-Vlaanderen, the Belgian Science Policy (IAP), the bilateral project Flanders-USA, NSF NIRT, ECS-0609249, and Institute of Theoretical Sciences, Notre Dame. ; Approved Most recent IF: 8.462; 2011 IF: 7.370
Call Number UA @ lucian @ c:irua:91237 Serial 1263
Permanent link to this record
 

 
Author Zha, G.-Q.; Peeters, F.M.; Zhou, S.-P.
Title Vortex-antivortex dynamics in mesoscopic symmetric and asymmetric superconducting loops with an applied ac current Type A1 Journal article
Year 2014 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 108 Issue 5 Pages (down) 57001
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In the framework of the time-dependent Ginzburg-Landau formalism, we study the dynamics of vortex-antivortex (V-Av) pairs in mesoscopic symmetric and asymmetric superconducting loops under an applied ac current. In contrast to the case of a constant biasing dc current, the process of the V-Av collision and annihilation is strongly affected by the time-periodic ac signal. As the direction of the applied ac current is reversed, the existed V-Av pair moves backward and then collides with a new created Av-V pair in a symmetric loop. In the presence of an appropriate external magnetic field, a novel sinusoidal-like oscillatory mode of the magnetization curve is observed, and the periodic dynamical process of the V-Av annihilation occurs in both branches of the sample. Moreover, for the asymmetric sample with an off-centered hole the creation point of the V-Av pair shifts away from the center of the sample, and the creation and annihilation dynamics of V-Av pairs turns out to be very different from the symmetric case. Copyright (C) EPLA, 2014
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000346792400027 Publication Date 2014-11-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 4 Open Access
Notes ; We are grateful to GOLIBJON BERDIYOROV for useful discussions. This work was supported by NSF China under Grant Nos. 61371020 and 61271163, by Visiting Scholar Program of Shanghai Municipal Education Commission, by Innovation Program of Shanghai Municipal Education Commission under Grant No. 13YZ006, and by Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.957; 2014 IF: 2.095
Call Number UA @ lucian @ c:irua:122800 Serial 3851
Permanent link to this record
 

 
Author Conti, S.; Perali, A.; Hamilton, A.R.; Milošević, M.V.; Peeters, F.M.; Neilson, D.
Title Chester supersolid of spatially indirect excitons in double-layer semiconductor heterostructures Type A1 Journal article
Year 2023 Publication Physical review letters Abbreviated Journal
Volume 130 Issue 5 Pages (down) 057001-57006
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A supersolid, a counterintuitive quantum state in which a rigid lattice of particles flows without resistance, has to date not been unambiguously realized. Here we reveal a supersolid ground state of excitons in a double-layer semiconductor heterostructure over a wide range of layer separations outside the focus of recent experiments. This supersolid conforms to the original Chester supersolid with one exciton per supersolid site, as distinct from the alternative version reported in cold-atom systems of a periodic density modulation or clustering of the superfluid. We provide the phase diagram augmented by the supersolid. This new phase appears at layer separations much smaller than the predicted exciton normal solid, and it persists up to a solid-solid transition where the quantum phase coherence collapses. The ranges of layer separations and exciton densities in our phase diagram are well within reach of the current experimental capabilities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000968650900001 Publication Date 2023-02-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007; 1079-7114 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.6 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 8.6; 2023 IF: 8.462
Call Number UA @ admin @ c:irua:196742 Serial 8817
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.
Title Reply to “Comment on 'Vortices induced in a superconducting loop by asymmetric kinetic inductance and their detection in transport measurements' ” Type Editorial
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 5 Pages (down) 056502
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract Our calculations, within known limitations of Ginzburg-Landau theory, are fully correct and valid for transport phenomena in asymmetric mesoscopic superconductors, deep in the superconducting state. We deemed the experiments of Burlakov et al. [JETP Lett. 86, 517 (2007)] relevant and important to mention in the general context of our paper since the observed shifts in the oscillations of different quantities are qualitatively similar, even though those measurements are performed close to the superconducting-normal state transition in the so-called Little-Parks regime.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000341266400006 Publication Date 2014-08-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 1 Open Access
Notes ; ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119256 Serial 2876
Permanent link to this record
 

 
Author Zografos, O.; Dutta, S.; Manfrini, M.; Vaysset, A.; Sorée, B.; Naeemi, A.; Raghavan, P.; Lauwereins, R.; Radu, I.P.
Title Non-volatile spin wave majority gate at the nanoscale Type A1 Journal article
Year 2017 Publication AIP advances T2 – 61st Annual Conference on Magnetism and Magnetic Materials (MMM), OCT 31-NOV 04, 2016, New Orleans, LA Abbreviated Journal Aip Adv
Volume 7 Issue 5 Pages (down) 056020
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract A spin wave majority fork-like structure with feature size of 40 nm, is presented and investigated, through micromagnetic simulations. The structure consists of three merging out-of-plane magnetization spin wave buses and four magneto-electric cells serving as three inputs and an output. The information of the logic signals is encoded in the phase of the transmitted spin waves and subsequently stored as direction of magnetization of the magneto-electric cells upon detection. The minimum dimensions of the structure that produce an operational majority gate are identified. For all input combinations, the detection scheme employed manages to capture the majority phase result of the spin wave interference and ignore all reflection effects induced by the geometry of the structure. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Address
Corporate Author Thesis
Publisher Amer inst physics Place of Publication Melville Editor
Language Wos 000402797100177 Publication Date 2017-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.568 Times cited 13 Open Access
Notes ; ; Approved Most recent IF: 1.568
Call Number UA @ lucian @ c:irua:144288 Serial 4673
Permanent link to this record
 

 
Author da Silva, A.L.C.; Candido, L.; Teixeira Rabelo, J.N.; Hai, G.-Q.; Peeters, F.M.
Title Anharmonic effects on thermodynamic properties of a graphene monolayer Type A1 Journal article
Year 2014 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 107 Issue 5 Pages (down) 56004
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We extend the unsymmetrized self-consistent-field method (USF) for anharmonic crystals to layered non-Bravais crystals to investigate structural, dynamical and thermodynamic properties of a free-standing graphene monolayer. In this theory, the main anharmonicity of the crystal lattice has been included and the quantum corrections are taken into account in an h-expansion for the one-particle density matrix. The obtained result for the thermal expansion coefficient (TEC) of graphene shows a strong temperature dependence and agrees with experimental results by Bao et al. (Nat. Nanotechnol., 4 (2009) 562). The obtained value of TEC at room temperature (300 K) is -6.4 x 10(- 6) K- 1 and it becomes positive for T > T-alpha = 358K. We find that quantum effects are significant for T < 1000 K. The interatomic distance, effective amplitudes of the graphene lattice vibrations, adiabatic and isothermal bulk moduli, isobaric and isochoric heat capacities are also calculated and their temperature dependences are determined. Copyright (C) EPLA, 2014
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000341559900020 Publication Date 2014-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 23 Open Access
Notes ; This research was supported by the Brazilian agencies CNPq, FAPEG and FAPESP, the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 1.957; 2014 IF: 2.095
Call Number UA @ lucian @ c:irua:119289 Serial 118
Permanent link to this record
 

 
Author Nelissen, K.; Misko, V.R.; Peeters, F.M.
Title Single-file diffusion of interacting particles in a one-dimensional channel Type A1 Journal article
Year 2007 Publication Epl Abbreviated Journal Epl-Europhys Lett
Volume 80 Issue 5 Pages (down) 56004,1-5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000251647900018 Publication Date 2007-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 48 Open Access
Notes Approved Most recent IF: 1.957; 2007 IF: 2.206
Call Number UA @ lucian @ c:irua:67336 Serial 3022
Permanent link to this record
 

 
Author Ullah, S.; Hussain, A.; Syed, W.A.; Saqlain, M.A.; Ahmad, I.; Leenaerts, O.; Karim, A.
Title Band-gap tuning of graphene by Be doping and Be, B co-doping : a DFT study Type A1 Journal article
Year 2015 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 5 Issue 5 Pages (down) 55762-55773
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract First-principles density functional theory (DFT) calculations were carried out to investigate the structural and electronic properties of beryllium (Be) doped and Be and boron (B) co-doped graphene systems. We observed that not only the concentration of impurity atoms is important to tune the band-gap to some desired level, but also the specific substitution sites play a key role. In our system, which consists of 32 atoms, a maximum of 4Be and, in the co-doped state, 2Be and 3B atom substitutions are investigated. Both dopants are electron deficient relative to C atoms and cause the Fermi level to shift downward (p-type doping). A maximum band gap of 1.44 eV can be achieved on incorporation of 4Be atoms. The introduction of Be is more sensitive in terms of geometry and stability than B. However, in opening the energy gap, Be is more effective than B and N (nitrogen). Our results offer the possibility to modify the band-gap of graphene sufficiently for utilization in diverse electronic device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000357803200018 Publication Date 2015-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 33 Open Access
Notes ; ; Approved Most recent IF: 3.108; 2015 IF: 3.840
Call Number c:irua:127167 Serial 216
Permanent link to this record
 

 
Author Miranda, L.P.; da Costa, D.R.; Peeters, F.M.; Costa Filho, R.N.
Title Vacancy clustering effect on the electronic and transport properties of bilayer graphene nanoribbons Type A1 Journal article
Year 2023 Publication Nanotechnology Abbreviated Journal
Volume 34 Issue 5 Pages (down) 055706-55710
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Experimental realizations of two-dimensional materials are hardly free of structural defects such as e.g. vacancies, which, in turn, modify drastically its pristine physical defect-free properties. In this work, we explore effects due to point defect clustering on the electronic and transport properties of bilayer graphene nanoribbons, for AA and AB stacking and zigzag and armchair boundaries, by means of the tight-binding approach and scattering matrix formalism. Evident vacancy concentration signatures exhibiting a maximum amplitude and an universality regardless of the system size, stacking and boundary types, in the density of states around the zero-energy level are observed. Our results are explained via the coalescence analysis of the strong sizeable vacancy clustering effect in the system and the breaking of the inversion symmetry at high vacancy densities, demonstrating a similar density of states for two equivalent degrees of concentration disorder, below and above the maximum value.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000886630000001 Publication Date 2022-11-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.5; 2023 IF: 3.44
Call Number UA @ admin @ c:irua:192030 Serial 7350
Permanent link to this record
 

 
Author Becker, T.; Nelissen, K.; Cleuren, B.
Title Current fluctuations in boundary driven diffusive systems in different dimensions : a numerical study Type A1 Journal article
Year 2015 Publication New journal of physics Abbreviated Journal New J Phys
Volume 17 Issue 17 Pages (down) 055023
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We use kinetic Monte Carlo simulations to investigate current fluctuations in boundary driven generalized exclusion processes, in different dimensions. Simulation results are in full agreement with predictions based on the additivity principle and the macroscopic fluctuation theory. The current statistics are independent of the shape of the contacts with the reservoirs, provided they are macroscopic in size. In general, the current distribution depends on the spatial dimension. For the special cases of the symmetric simple exclusion process and the zero-range process, the current statistics are the same for all spatial dimensions.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000355282700001 Publication Date 2015-05-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 5 Open Access
Notes ; We thank Christian Van den Broeck for bringing this problem to our attention. We are grateful to Bart Partoens and Carlo Vanderzande for a careful reading of the manuscript. This work was supported by the Flemish Science Foundation (Fonds Wetenschappelijk Onderzoek), Project No. G038811N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI. ; Approved Most recent IF: 3.786; 2015 IF: 3.558
Call Number c:irua:126405 Serial 592
Permanent link to this record
 

 
Author Vodolazov, D.I.; Peeters, F.M.
Title Dynamic transitions between metastable states in a superconducting ring Type A1 Journal article
Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 66 Issue 5 Pages (down) 054537-054537,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Applying the time-dependent Ginzburg-Landau equations, transitions between metastable states of a superconducting ring are investigated in the presence of an external magnetic field. It is shown that if the ring exhibits several metastable states at a particular magnetic field, the transition from one metastable state to another one is governed by both the relaxation time of the absolute value of the order parameter tau(\psi\) and the relaxation time of the phase of the order parameter tau(phi). We found that the larger the ratio tau(\psi\)/tau(phi), the closer the final state will be to the absolute minimum of the free energy, i.e., the thermodynamic equilibrium. The transition to the final state occurs through a subsequent set of single phase slips at a particular point along the ring.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000177873000143 Publication Date 2002-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 34 Open Access
Notes Approved Most recent IF: 3.836; 2002 IF: NA
Call Number UA @ lucian @ c:irua:94917 Serial 768
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Baelus, B.J.; Peeters, F.M.
Title Stationary-phase slip state in quasi-one-dimensional rings Type A1 Journal article
Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 66 Issue 5 Pages (down) 054531-54536
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The nonuniform superconducting state in a ring in which the order parameter vanishing at one point is studied. This state is characterized by a jump of the phase by pi at the point where the order parameter becomes zero. In uniform rings such a state is a saddle-point state and consequently unstable. However, for nonuniform rings with, e.g., variations of geometrical or physical parameters or with attached wires this state can be stabilized and may be realized experimentally.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000177873000137 Publication Date 2002-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 29 Open Access
Notes Approved Most recent IF: 3.836; 2002 IF: NA
Call Number UA @ lucian @ c:irua:104147 Serial 3152
Permanent link to this record
 

 
Author Pogosov, W.V.; Misko, V.R.; Peeters, F.M.
Title Geometry-induced localization of thermal fluctuations in ultrathin superconducting structures Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 5 Pages (down) 054523-054523,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Thermal fluctuations of the order parameter in an ultrathin triangular-shaped superconducting structure are studied near Tc, in zero applied field. We find that the order parameter is prone to much larger fluctuations in the corners of the structure as compared to its interior. This geometry-induced localization of thermal fluctuations is attributed to the fact that condensate confinement in the corners is characterized by a lower effective dimensionality, which favors stronger fluctuations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000281294700006 Publication Date 2010-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access
Notes ; This work was supported by the “Odysseus” Program of the Flemish government, FWO-Vl, and the Belgian Science Policy (IAP). W. V. P. acknowledges supports from the RFBR [Project No. 09-02-00248] and the “Dynasty Foundation.” ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:84470 Serial 1334
Permanent link to this record
 

 
Author Vandenberghe, W.; Sorée, B.; Magnus, W.; Groeseneken, G.
Title Zener tunneling in semiconductors under nonuniform electric fields Type A1 Journal article
Year 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 107 Issue 5 Pages (down) 054520,1-054520,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recently, a renewed interest in Zener tunneling has arisen because of its increasing impact on semiconductor device performance at nanometer dimensions. In this paper we evaluate the tunnel probability under the action of a nonuniform electric field using a two-band model and arrive at significant deviations from the commonly used Kanes model, valid for weak uniform fields only. A threshold on the junction bias where Kanes model for Zener tunneling breaks down is determined. Comparison with Kanes model particularly shows that our calculation yields a higher tunnel probability for intermediate electric fields and a lower tunnel probability for high electric fields. When performing a current calculation comparing to the WKB approximation for the case of an abrupt p-n junction significant differences concerning the shape of the I-V curve are demonstrated.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000275657500136 Publication Date 2010-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 22 Open Access
Notes ; William Vandenberghe gratefully acknowledges the support of a Ph. D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). These authors acknowledge the support from IMEC's Industrial Affiliation Program and the authors would like to thank Anne Verhulst for useful comments. ; Approved Most recent IF: 2.068; 2010 IF: 2.079
Call Number UA @ lucian @ c:irua:82450 Serial 3929
Permanent link to this record
 

 
Author Chaves, A.; Peeters, F.M.; Farias, G.A.; Milošević, M.V.
Title Vortex-vortex interaction in bulk superconductors : Ginzburg-Landau theory Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 5 Pages (down) 054516-054516,14
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The vortex-vortex interaction potential in bulk superconductors is calculated within the Ginzburg-Landau (GL) theory and is obtained from a numerical solution of a set of two coupled nonlinear GL differential equations for the vector potential and the superconducting order parameter, where the merger of vortices into a giant vortex is allowed. Further, the interaction potentials between a vortex and a giant vortex and between a vortex and an antivortex are obtained for both type-I and type-II superconductors. Our numerical results agree asymptotically with the analytical expressions for large intervortex separations that are available in the literature. We propose empirical expressions valid over the full interaction range, which are fitted to our numerical data for different values of the GL parameter.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000287712100009 Publication Date 2011-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 31 Open Access
Notes ; Discussions with J. S. Andrade Jr. and A. A. Moreira are gratefully acknowledged. This work was financially supported by CNPq, under Contract No. NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES, the Bilateral programme between Flanders and Brazil, the collaborative project CNPq-FWO-Vl, the Belgian Science Policy (IAP), and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:88805 Serial 3899
Permanent link to this record
 

 
Author Chen, Y.; Shanenko, A.A.; Peeters, F.M.
Title Vortex anomaly in low-dimensional fermionic condensates : quantum confinement breaks chirality Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 89 Issue 5 Pages (down) 054513-54515
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Chiral fermions are responsible for low-temperature properties of vortices in fermionic condensates, both superconducting (charged) and superfluid (neutral). One of the most striking consequences of this fact is that the core of a single-quantum vortex collapses at low temperatures, T -> 0 (i.e., the Kramer-Pesch effect for superconductors), due to the presence of chiral quasiparticles in the vortex-core region. We show that the situation changes drastically for fermionic condensates confined in quasi-one-dimensional and quasi-two-dimensional geometries. Here quantum confinement breaks the chirality of in-core fermions. As a result, instead of the ultimate shrinking, the core of a single-quantum vortex extends at low temperatures, and the condensate profile surprisingly mimics the multiquantum vortex behavior. Our findings are relevant for nanoscale superconductors, such as recent metallic nanoislands on silicon, and also for ultracold superfluid Fermi gases in cigar-shaped and pancake-shaped atomic traps.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000332396800005 Publication Date 2014-02-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes ; This work was supported by the “Odysseus” Program of the Flemish Government, the Flemish Science Foundation (FWO-Vl), the Methusalem Program, and the National Science Foundation of China under Grant No. NSFC-11304134. A. A. S. acknowledges the support of Brazilian agencies CNPq and FACEPE (Grant No. APQ-0589-1.05/08). ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:115822 Serial 3850
Permanent link to this record
 

 
Author Chen, Y.; Doria, M.M.; Peeters, F.M.
Title Vortices in a mesoscopic cone: a superconducting tip in the presence of an applied field Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 77 Issue Pages (down) 054511,1-13
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000253764000095 Publication Date 2008-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 19 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:69628 Serial 3900
Permanent link to this record
 

 
Author Berdiyorov, G.; Harrabi, K.; Oktasendra, F.; Gasmi, K.; Mansour, A.I.; Maneval, J.P.; Peeters, F.M.
Title Dynamics of current-driven phase-slip centers in superconducting strips Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 5 Pages (down) 054506
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Phase-slip centers/lines and hot spots are the main mechanisms for dissipation in current-carrying superconducting thin films. The pulsed-current method has recently been shown to be an effective tool in studying the dynamics of phase-slip centers and their evolution to hot spots. We use the time-dependent Ginzburg-Landau theory in the study of the dynamics of the superconducting condensate in superconducting strips under external current and zero external magnetic field. We show that both the flux-flow state (i.e., slow-moving vortices) and the phase-slip line state (i.e., fast-moving vortices) are dynamically stable dissipative units with temperature smaller than the critical one, whereas hot spots, which are localized normal regions where the local temperature exceeds the critical value, expand in time, resulting ultimately in a complete destruction of the condensate. The response time of the system to abrupt switching on of the overcritical current decreases with increasing both the value of the current (at all temperatures) and temperature (for a given value of the applied current). Our results are in good qualitative agreement with experiments we have conducted on Nb thin strips.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344656700003 Publication Date 2014-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 42 Open Access
Notes ; This work was supported by EU Marie Curie Project No. 253057, the Flemish Science Foundation (FWO-Vl), and King Fahd University of Petroleum and Minerals, Saudi Arabia, under the IN131034 DSR project. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:121229 Serial 775
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M.; Dubonos, S.V.; Geim, A.K.
Title Multiple flux jumps and irreversible behavior of thin Al superconducting rings Type A1 Journal article
Year 2003 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 67 Issue 5 Pages (down) 054506-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract An experimental and theoretical investigation was made of flux jumps and irreversible magnetization curves of mesoscopic Al superconducting rings. In the small magnetic-field region the change of vorticity with magnetic field can be larger than unity. This behavior is connected with the existence of several metastable states of different vorticities. The intentional introduction of a defect in the ring has a large effect on the size of the flux jumps. Calculations based on the time-dependent Ginzburg-Landau model allows us to explain the experimental results semiquantitatively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000181360300061 Publication Date 2003-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 49 Open Access
Notes Approved Most recent IF: 3.836; 2003 IF: NA
Call Number UA @ lucian @ c:irua:102812 Serial 2227
Permanent link to this record
 

 
Author Muñoz, W.A.; Covaci, L.; Peeters, F.M.
Title Disordered graphene Josephson junctions Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages (down) 054506
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A tight-binding approach based on the Chebyshev-Bogoliubov-de Gennes method is used to describe disordered single-layer graphene Josephson junctions. Scattering by vacancies, ripples, or charged impurities is included. We compute the Josephson current and investigate the nature of multiple Andreev reflections, which induce bound states appearing as peaks in the density of states for energies below the superconducting gap. In the presence of single-atom vacancies, we observe a strong suppression of the supercurrent, which is a consequence of strong intervalley scattering. Although lattice deformations should not induce intervalley scattering, we find that the supercurrent is still suppressed, which is due to the presence of pseudomagnetic barriers. For charged impurities, we consider two cases depending on whether the average doping is zero, i.e., existence of electron-hole puddles, or finite. In both cases, short-range impurities strongly affect the supercurrent, similar to the vacancies scenario.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000349436500001 Publication Date 2015-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Methusalem funding of the Flemish Government. Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:129192 Serial 3961
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M.
Title Superconducting nanofilms: Andreev-type states induced by quantum confinement Type A1 Journal article
Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 78 Issue 5 Pages (down) 054505,1-054505,8
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract Quantum confinement of the transverse electron motion is the major effect governing the superconducting properties of high-quality metallic nanofilms, leading to a nonuniform transverse distribution of the superconducting condensate. In this case the order parameter can exhibit significant local enhancements due to these quantum-size effects and, consequently, quasiparticles have lower energies when they avoid the local enhancements of the pair condensate. Such excitations can be considered as new Andreev-type quasiparticles but now induced by quantum confinement. By numerically solving the Bogoliubovde Gennes equations and using Anderson's approximate solution to these equations, we: (a) formulate a criterion for such new Andreev-type states (NATS) and (b) study their effect on the superconducting characteristics in metallic nanofilms. We also argue that nanofilms made of low-carrier-density materials, e.g., of superconducting semiconductors, can be a more optimal choice for the observations of NATS and other quantum-size superconducting effects.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000259368200109 Publication Date 2008-08-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:76526 Serial 3356
Permanent link to this record
 

 
Author Vanderveken, F.; Mulkers, J.; Leliaert, J.; Van Waeyenberge, B.; Sorée, B.; Zografos, O.; Ciubotaru, F.; Adelmann, C.
Title Confined magnetoelastic waves in thin waveguides Type A1 Journal article
Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 103 Issue 5 Pages (down) 054439
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The characteristics of confined magnetoelastic waves in nanoscale ferromagnetic magnetostrictive waveguides have been investigated by a combination of analytical and numerical calculations. The presence of both magnetostriction and inverse magnetostriction leads to the coupling between confined spin waves and elastic Lamb waves. Numerical simulations of the coupled system have been used to extract the dispersion relations of the magnetoelastic waves as well as their mode profiles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000627548800003 Publication Date 2021-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:177607 Serial 6976
Permanent link to this record
 

 
Author Nikolaev, A.V.; Michel, K.H.
Title Symmetry lowering at the structural phase transitions in NpO2 and UO2 Type A1 Journal article
Year 2003 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 68 Issue 5 Pages (down) 054112-054112,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The structural phase transitions with electric-quadrupole long-range order in NpO2 (Fm (3) over barm-->Pn (3) over barm) and UO2 (Fm (3) over barm-->Pa (3) over bar) are analyzed from a group theoretical point of view. In both cases, the symmetry lowering involves three quadrupolar components belonging to the irreducible representation T-2g (Gamma(5)) of O-h and condensing in a triple-q structure at the X point of the Brillouin zone. The Pa (3) over bar structure is close to Pn (3) over barm, but allows for oxygen displacements. The Pa (3) over bar ordering leads to an effective electrostatic attraction between electronic quadrupoles while the Pn (3) over barm ordering results in a repulsion between them. It is concluded that the Pn (3) over barm structure can be stabilized only through some additional process such as strengthening of the chemical bonding between Np and O. We also derive the relevant structure-factor amplitudes for Pn (3) over barm and Pa (3) over bar, and the effect of domains on resonant x-ray scattering experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000185240100038 Publication Date 2003-08-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 15 Open Access
Notes Approved Most recent IF: 3.836; 2003 IF: NA
Call Number UA @ lucian @ c:irua:94847 Serial 3405
Permanent link to this record