|   | 
Details
   web
Records
Author Abakumov, A.M.; Hadermann, J.; Bals, S.; Nikolaev, I.V.; Antipov, E.V.; Van Tendeloo, G.
Title Crystallographic shear structures as a route to anion-deficient perovskites Type A1 Journal article
Year 2006 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 45 Issue 40 Pages (down) 6697-6700
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000241474500022 Publication Date 2006-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851;1521-3773; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 62 Open Access
Notes Approved Most recent IF: 11.994; 2006 IF: 10.232
Call Number UA @ lucian @ c:irua:61689 Serial 589
Permanent link to this record
 

 
Author Tunca, B.; Lapauw, T.; Delville, R.; Neuville, D.R.; Hennet, L.; Thiaudiere, D.; Ouisse, T.; Hadermann, J.; Vleugels, J.; Lambrinou, K.
Title Synthesis and Characterization of Double Solid Solution (Zr,Ti)(2)(Al,Sn)C MAX Phase Ceramics Type A1 Journal article
Year 2019 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 58 Issue 10 Pages (down) 6669-6683
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Quasi phase-pure (>98 wt %) MAX phase solid solution ceramics with the (ZryTi)(2)(Al-0.5,Sn-0.5)C stoichiometry and variable Zr/Ti ratios were synthesized by both reactive hot pressing and pressureless sintering of ZrH2, TiH2, Al, Sn, and C powder mixtures. The influence of the different processing parameters, such as applied pressure and sintering atmosphere, on phase purity and microstructure of the produced ceramics was investigated. The addition of Sn to the (Zr,Ti)(2)AlC system was the key to achieve phase purity. Its effect on the crystal structure of a 211-type MAX phase was assessed by calculating the distortions of the octahedral M6C and trigonal M(6)A prisms due to steric effects. The M(6)A prismatic distortion values were found to be smaller in Sn-containing double solid solutions than in the (Zr,Ti)(2)AlC MAX phases. The coefficients of thermal expansion along the < a > and < c > directions were measured by means of Rietveld refinement of high-temperature synchrotron X-ray diffraction data of (Zr1-x,Ti-x)(2)(Al-0.5,Sn-0.5)C MAX phase solid solutions with x = 0, 0.3, 0.7, and 1. The thermal expansion coefficient data of the Ti-2(Al-0.5,Sn-0.5)C solid solution were compared with those of the Ti2AlC and Ti2SnC ternary compounds. The thermal expansion anisotropy increased in the (Zr,Ti)(2)(Al-0.5,Sn-0.5)C double solid solution MAX phases as compared to the Zr-2(Al-0.5,Sn-0.5)C and Ti-2(Al-0.5,Sn-0.5)C end-members.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000469304700014 Publication Date 2019-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 3 Open Access Not_Open_Access
Notes ; H. Roussel and D. Pinek are acknowledged for the Ti<INF>2</INF>SnC single-crystal production and high-temperature XRD measurements performed at Grenoble INP-LMGP-CMTC. This research was funded partly by the European Atomic Energy Community's (Euratom) Seventh Framework Programme FP7/2007-2013 under Grant Agreement No. 604862 (FP7MatISSE), and partly by the Euratom research and training programme 2014-2018 under Grant Agreement No. 740415 (H2020 IL TROVATORE). T.L. thanks the Agency for Innovation by Science and Technology (IWT), Flanders, Belgium, for Ph.D. Grant No. 131081. B.T. acknowledges the financial support of the SCK.CEN Academy for Nuclear Science and Technology. All authors gratefully acknowledge Synchrotron SOLEIL for the allocated time at the DIFFABS beamline in association with Project 20161410 entitled “Investigation of (Zr-Ti)-Al-C MAX phases with in-situ high-temperature XRD” and the Hercules Foundation for Project AKUL/1319 (CombiS(T)EM). ; Approved Most recent IF: 4.857
Call Number UA @ admin @ c:irua:160318 Serial 5261
Permanent link to this record
 

 
Author Aghaei, M.; Bogaerts, A.
Title Flowing Atmospheric Pressure Afterglow for Ambient Ionization: Reaction Pathways Revealed by Modeling Type A1 Journal article
Year 2021 Publication Analytical Chemistry Abbreviated Journal Anal Chem
Volume 93 Issue 17 Pages (down) 6620-6628
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We describe the plasma chemistry in a helium flowing atmospheric pressure afterglow (FAPA) used for analytical spectrometry, by means of a quasione-dimensional (1D) plasma chemical kinetics model. We study the effect of typical impurities present in the feed gas, as well as the afterglow in ambient humid air. The model provides the species density profiles in the discharge and afterglow regions and the chemical pathways. We demonstrate that H, N, and O atoms are formed in the discharge region, while the dominant reactive neutral species in the afterglow are O3 and NO. He* and He2* are responsible for Penning ionization of O2, N2, H2O, H2, and N, and especially O and H atoms. Besides, He2+ also contributes to ionization of N2, O2, H2O, and O through charge transfer reactions. From the pool of ions created in the discharge, NO+ and (H2O)3H+ are the dominant ions in the afterglow. Moreover, negatively charged clusters, such as NO3H2O− and NO2H2O−, are formed and their pathway is discussed as well. Our model predictions are in line with earlier observations in the literature about the important reagent ions and provide a comprehensive overview of the underlying pathways. The model explains in detail why helium provides a high analytical sensitivity because of high reagent ion formation by both Penning ionization and charge transfer. Such insights are very valuable for improving the analytical performance of this (and other) ambient desorption/ionization source(s).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000648505900008 Publication Date 2021-05-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 6713 ; The authors gratefully acknowledge financial support from the Fonds voor Wetenschappelijk Onderzoek (FWO) grant number 6713. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), and the UA. The authors also thank J. T. Shelley for providing experimental data for the gas velocity behind the anode disk and before the mass spectrometer interface, to validate our model. Approved Most recent IF: 6.32
Call Number PLASMANT @ plasmant @c:irua:178126 Serial 6762
Permanent link to this record
 

 
Author Wang, L.; Hu, Z.-Y.; Yang, X.-Y.; Zhang, B.-B.; Geng, W.; Van Tendeloo, G.; Su, B.-L.
Title Polydopamine nanocoated whole-cell asymmetric biocatalysts Type A1 Journal article
Year 2017 Publication Chemical communications Abbreviated Journal Chem Commun
Volume 53 Issue 49 Pages (down) 6617-6620
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Our whole-cell biocatalyst with a polydopamine nanocoating shows high catalytic activity (5 times better productivity than the native cell) and reusability (84% of the initial yield after 5 batches, 8 times higher than the native cell) in asymmetric reduction. It also integrates with titania, silica, and magnetic nanoparticles for multi-functionalization.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000403572100018 Publication Date 2017-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345; 1364-548x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 15 Open Access OpenAccess
Notes ; This work was supported by PCSIRT (IRT_15R52), NSFC (U1663225, U1662134, 51472190, 51611530672, 51503166), ISTCP (2015DFE52870), HPNSF (2016CFA033), CNPC (PPC2016007) and the China Scholarship Council (CSC). We thank Prof. Damien Hermand (URPhyM in UNamur) for help with cell culture, Ms Noelle Ninane (Narilis in UNamur) for help with CLSM characterization and Ms Siming Wu (WHUT) for help with magnetic property characterization. ; Approved Most recent IF: 6.319
Call Number UA @ lucian @ c:irua:144185 Serial 4681
Permanent link to this record
 

 
Author Quan Manh, P.; Pourtois, G.; Swerts, J.; Pierloot, K.; Delabie, A.
Title Atomic layer deposition of Ruthenium on Ruthenium surfaces : a theoretical study Type A1 Journal article
Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 119 Issue 119 Pages (down) 6592-6603
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Atomic, layer deposition,(ALD of ruthenium using two ruthenium precursors, i.e., Ru(C5H5)(2) (RuCp2) and Ru(C5H5)(C4H4N) (RuCpPy), is studied using density functional theory. By investigating the reaction mechanisms On bare ruthenium surfaces, i.e., (001), (101), and (100), and H-terminated surfaces, an atomistic insight in the Ru ALD is provided. The calculated results show that on the Ru surfaces both RuCp2 and RuCpPy an undergo dehydrogenation and ligand dissociation reactions. RuCpPy is more reactive than RuCp2. By forming a, strong, bond between N of Py and Ru of the surface, RuCpPy can easily chemisorb on the surfaces. The reactions of RuCp2,On the Surfaces are less favorable the adsorption is not strong enough This could be a,factor contributing to the higher growth-per-cycle of Ru using RuCpPy, as observed experimentally. By Studying, the adsorption on H-terminated Ru surfaces, We showed that H Can prevent the adsorption of the precursors, thus inhibiting the growth of Ru. Our calculations indicate that the H content on the surface can have an impact on the growth-per-cycle. Finally, our simulations also demonstrate large impacts of the surface structure on the reaction mechanisms. Of the three surfaces, the (100) surface, which is the less stable and has a zigzag surface structure, is also the most reactive one.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000351970800015 Publication Date 2015-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 10 Open Access
Notes Approved Most recent IF: 4.536; 2015 IF: 4.772
Call Number c:irua:125544 Serial 171
Permanent link to this record
 

 
Author Taylor, P.R.; Martin, J.M.L.; François, J.P.; Gijbels, R.
Title An ab initio study of the C3+ cation using multireference methods Type A1 Journal article
Year 1991 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
Volume 95 Issue Pages (down) 6530-6534
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606 ISBN Additional Links UA library record
Impact Factor 2.952 Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:720 Serial 39
Permanent link to this record
 

 
Author Lebedev, O.I.; Millange, F.; Serre, C.; Van Tendeloo, G.; Férey, G.
Title First direct imaging of giant pores of the metal-organic framework MIL-101 Type A1 Journal article
Year 2005 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 17 Issue 26 Pages (down) 6525-6527
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000234187300007 Publication Date 2005-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 191 Open Access
Notes Approved Most recent IF: 9.466; 2005 IF: 4.818
Call Number UA @ lucian @ c:irua:56404 Serial 1197
Permanent link to this record
 

 
Author Jafarzadeh, A.; Bal, K.M.; Bogaerts, A.; Neyts, E.C.
Title CO2 activation on TiO2-supported Cu5 and Ni5 nanoclusters : effect of plasma-induced surface charging Type A1 Journal article
Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 123 Issue 11 Pages (down) 6516-6525
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Surface charging is an often overlooked factor in many plasma-surface interactions and in particular in plasma catalysis. In this study, we investigate the effect of excess electrons induced by a plasma on the adsorption properties of CO2 on titania-supported Cu-5 and Ni-5 clusters using spin-polarized and dispersion-corrected density functional theory calculations. The effect of excess electrons on the adsorption of Ni and Cu pentamers as well as on CO2 adsorption on a pristine anatase TiO2(101) slab is studied. Our results indicate that adding plasma-induced excess electrons to the system leads to further stabilization of the bent CO2 structure. Also, dissociation of CO2 on charged clusters is energetically more favorable than on neutral clusters. We hypothesize that surface charge is a plausible cause for the synergistic effects sometimes observed in plasma catalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000462260700024 Publication Date 2019-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 4 Open Access OpenAccess
Notes Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:159422 Serial 5281
Permanent link to this record
 

 
Author Weiβ, R.; Gritsch, S.; Brader, G.; Nikolic, B.; Spiller, M.; Santolin, J.; Weber, H.K.; Schwaiger, N.; Pluchon, S.; Dietel, K.; Guebitz, G.; Nyanhongo, G.
Title A biobased, bioactive, low CO₂ impact coating for soil improvers Type A1 Journal article
Year 2021 Publication Green Chemistry Abbreviated Journal Green Chem
Volume 23 Issue 17 Pages (down) 6501-6514
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Lignosulfonate-based bioactive coatings as soil improvers for lawns were developed using laccase as a biocatalyst. Incorporation of glycerol, xylitol and sorbitol as plasticizers considerably reduced the brittleness of the synthesized coatings of marine carbonate granules while thermal enzyme inactivation at 100 degrees C enabled the production of stable coatings. Heat inactivation produced stable coatings with a molecular weight of 2000 kDa and a viscosity of 4.5 x 10(-3) Pas. The desired plasticity for the spray coating of soil improver granules was achieved by the addition of 2.7% of xylitol. Agriculture beneficial microorganisms (four different Bacillus species) were integrated into the coatings. The stable coatings protected the marine calcium carbonate granules, maintained the viability of the microorganisms and showed no toxic effects on the germination and growth of model plants including corn, wheat, salad, and tomato despite a slight delay in germination. Moreover, the coatings reduced the dust formation of soil improvers by 70%. CO2 emission analysis showed potential for the reduction of up to 3.4 kg CO2-eq. kg(-1) product, making it a viable alternative to fossil-based coatings.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000683056500001 Publication Date 2021-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.125 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 9.125
Call Number UA @ admin @ c:irua:180511 Serial 7558
Permanent link to this record
 

 
Author Mehta, A.N.; Mo, J.; Pourtois, G.; Dabral, A.; Groven, B.; Bender, H.; Favia, P.; Caymax, M.; Vandervorst, W.
Title Grain-boundary-induced strain and distortion in epitaxial bilayer MoS₂ lattice Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 124 Issue 11 Pages (down) 6472-6478
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Grain boundaries between 60 degrees rotated and twinned crystals constitute the dominant type of extended line defects in two-dimensional transition metal dichalcogenides (2D MX2) when grown on a single crystalline template through van der Waals epitaxy. The two most common 60 degrees grain boundaries in MX2 layers, i.e., beta- and gamma-boundaries, introduce distinct distortion and strain into the 2D lattice. They impart a localized tensile or compressive strain on the subsequent layer, respectively, due to van der Waals coupling in bilayer MX2 as determined by combining atomic resolution electron microscopy, geometric phase analysis, and density functional theory. Based on these observations, an alternate route to strain engineering through controlling intrinsic van der Waals forces in homobilayer MX2 is proposed. In contrast to the commonly used external means, this approach enables the localized application of strain to tune the electronic properties of the 2D semiconducting channel in ultra-scaled nanoelectronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000526396000067 Publication Date 2020-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 2 Open Access
Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 4.536
Call Number UA @ admin @ c:irua:168625 Serial 6528
Permanent link to this record
 

 
Author Lepoittevin, C.; Malo, S.; Nguyen, N.; Hebert, S.; Van Tendeloo, G.; Hervieu, M.
Title A layered iron-rich 2234-type with a mixed valence of iron: the ferrimagnetic Tl-doped Fe2(Sr2-\varepsilonTl\varepsilon)Sr3Fe4O14.65 Type A1 Journal article
Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 20 Issue 20 Pages (down) 6468-6476
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new Tl-doped strontium ferrite Fe2(Sr2-Tl)Sr3Fe4O14.65, with an original structure, has been synthesized and structurally characterized by powder X-ray diffraction and transmission electron microscopy. The TGA and Mssbauer studies evidence a mixed valence of iron. The structure exhibits a commensurate modulation, with a F-type subcell a ≈ b ≈ 5.4 Å (≈ ap√2), c ≈ 42 Å with a modulation vector q = αa* with α = 0.4. The supercell parameters have been refined as a= 27.1101(8) Å, b= 5.5187(2) Å and c= 42.0513(9) Å, in the space group Fmmm. The electron diffraction and electron microscopy data of this novel ferrite show that it can be described as a FeTl-2234-type structure corresponding to the intergrowth of a quadruple perovskite slice [(SrFeO2.8)4], with a complex rock salt related slice [Fe2(Sr2-Tl)O3.4]∞, built up of one double iron layer [Fe2O2.4] sandwiched between two [SrO] layers. The HRTEM images show that the oxygen atoms and vacancies are randomly distributed in the perovskite layers while the HAADF STEM images evidence the absence of Tl segregation in the matrix. Fe2(Sr2-Tl)Sr3Fe4O14.65 exhibits a very large value of χ (11emu/mol) at 5 K, which remains large at 400 K; the M(H) loop presents a shape characteristic of ferrimagnetism, with a large coercive field of 0.3 T. The value of magnetization saturates at 400 K at 0.68 μB/Fe. At 10 K, the value of magnetization reaches a maximum of 2 μB/Fe. The resistivity presents a semiconducting-like behavior, with ρ 800 Ω·cm at 300 K.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000260254400030 Publication Date 2008-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 8 Open Access
Notes Approved Most recent IF: 9.466; 2008 IF: 5.046
Call Number UA @ lucian @ c:irua:76671 Serial 1804
Permanent link to this record
 

 
Author Vanmeert, F.; de Nolf, W.; Dik, J.; Janssens, K.
Title Macroscopic X-ray powder diffraction scanning : possibilities for quantitative and depth-selective parchment analysis Type A1 Journal article
Year 2018 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 90 Issue 11 Pages (down) 6445-6452
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract At or below the surface of painted works of art, valuable information is present that provides insights into an objects past, such as the artists technique and the creative process that was followed or its conservation history but also on its current state of preservation. Various noninvasive techniques have been developed over the past 2 decades that can probe this information either locally (via point analysis) or on a macroscopic scale (e.g., full-field imaging and raster scanning). Recently macroscopic X-ray powder diffraction (MA-XRPD) mapping using laboratory X-ray sources was developed. This method can visualize highly specific chemical distributions at the macroscale (dm(2)). In this work we demonstrate the synergy between the quantitative aspects of powder diffraction and the noninvasive scanning capability of MA-XRPD highlighting the potential of the method to reveal new types of information. Quantitative data derived from a 15th/16th century illuminated sheet of parchment revealed three lead white pigments with different hydrocerussite-cerussite compositions in specific pictorial elements, while quantification analysis of impurities in the blue azurite pigment revealed two distinct azurite types: one rich in barite and one in quartz. Furthermore, on the same artifact, the depth-selective possibilities of the method that stem from an exploitation of the shift of the measured diffraction peaks with respect to reference data are highlighted. The influence of different experimental parameters on the depth-selective analysis results is briefly discussed. Promising stratigraphic information could be obtained, even though the analysis is hampered by not completely understood variations in the unit cell dimensions of the crystalline pigment phases.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000434893200020 Publication Date 2018-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 6 Open Access
Notes ; The authors thank Incoatec GmbH for giving us the opportunity to test the I mu S Cu X-ray source. We acknowledge financial support from BELSPO (Brussels) S2-ART, the NWO (The Hague) Science4Arts “ReVisRembrandt” project, and GOA Project Solarpaint (University of Antwerp Research Council). Photo Copyright Geert Van der Snickt, 2008 for the photograph of the illuminated manuscript in the TOC graphic. ; Approved Most recent IF: 6.32
Call Number UA @ admin @ c:irua:151994 Serial 5702
Permanent link to this record
 

 
Author Vanmeert, F.; de Nolf, W.; De Meyer, S.; Dik, J.; Janssens, K.
Title Macroscopic X-ray powder diffraction scanning, a new method for highly selective chemical imaging of works of art : instrument optimization Type A1 Journal article
Year 2018 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 90 Issue 11 Pages (down) 6436-6444
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract In the past decade macroscopic X-ray fluorescence imaging (MA-XRF) has become established as a method for the noninvasive investigation of flat painted surfaces, yielding large scale elemental maps. MA-XRF is limited by a lack of specificity, only allowing for indirect pigment identification based on the simultaneous presence of chemical elements. The high specificity of X-ray powder diffraction (XRPD) mapping is already being exploited at synchrotron facilities for investigations at the (sub)microscopic scale, but the technique has not yet been employed using lab sources. In this paper we present the development of a novel MA-XRPD/XRF instrument based on a laboratory X-ray source. Several combinations of X-ray sources and area detectors are evaluated in terms of their spatial and angular resolution and their sensitivity. The highly specific imaging capability of the combined MA-XRPD/XRF instrument is demonstrated on a 15th/16th century illuminated manuscript directly revealing the distribution of a large number of inorganic pigments, including the uncommon yellow pigment massicot (o-PbO). The case study illustrates the wealth of new mapping information that can be obtained in a noninvasive manner using the laboratory MA-XRPD/XRF instrument.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000434893200019 Publication Date 2018-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 11 Open Access
Notes ; The authors thank the persons involved at Incoatec GmbH, imXPAD SAS and Dectris Ltd. for loaning us some of their products over the past years. We acknowledge financial support from BELSPO (Brussels) S2-ART, the NWO (The Hague) Science4Arts “ReVisRembrandt” Project and GOA Project Solarpaint (University of Antwerp Research Council). Photo Copyright Geert Van der Snickt, 2008 for the photograph of the illuminated manuscript in the TOC graphic. ; Approved Most recent IF: 6.32
Call Number UA @ admin @ c:irua:151993 Serial 5701
Permanent link to this record
 

 
Author Dik, J.; Janssens, K.; van der Snickt, G.; van der Loeff, L.; Rickers, K.; Cotte, M.
Title Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping Type A1 Journal article
Year 2008 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 80 Issue 16 Pages (down) 6436-6442
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Vincent van Gogh (1853−1890), one of the founding fathers of modern painting, is best known for his vivid colors, his vibrant painting style, and his short but highly productive career. His productivity is even higher than generally realized, as many of his known paintings cover a previous composition. This is thought to be the case in one-third of his early period paintings. Van Gogh would often reuse the canvas of an abandoned painting and paint a new or modified composition on top. These hidden paintings offer a unique and intimate insight into the genesis of his works. Yet, current museum-based imaging tools are unable to properly visualize many of these hidden images. We present the first-time use of synchrotron radiation based X-ray fluorescence mapping, applied to visualize a womans head hidden under the work Patch of Grass by Van Gogh. We recorded decimeter-scale, X-ray fluorescence intensity maps, reflecting the distribution of specific elements in the paint layers. In doing so we succeeded in visualizing the hidden face with unprecedented detail. In particular, the distribution of Hg and Sb in the red and light tones, respectively, enabled an approximate color reconstruction of the flesh tones. This reconstruction proved to be the missing link for the comparison of the hidden face with Van Goghs known paintings. Our approach literally opens up new vistas in the nondestructive study of hidden paint layers, which applies to the oeuvre of Van Gogh in particular and to old master paintings in general.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000258448100039 Publication Date 2008-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 178 Open Access
Notes Approved Most recent IF: 6.32; 2008 IF: 5.712
Call Number UA @ admin @ c:irua:74466 Serial 5906
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Akgenc, B.; Mortazavi, B.; Ghergherehchi, M.; Nguyen, C.V.
Title Embedding of atoms into the nanopore sites of the C₆N₆ and C₆N₈ porous carbon nitride monolayers with tunable electronic properties Type A1 Journal article
Year 2020 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys
Volume 22 Issue 11 Pages (down) 6418-6433
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first-principles calculations, we study the effect of embedding various atoms into the nanopore sites of both C6N6 and C6N8 monolayers. Our results indicate that the embedded atoms significantly affect the electronic and magnetic properties of C6N6 and C6N8 monolayers and lead to extraordinary and multifarious electronic properties, such as metallic, half-metallic, spin-glass semiconductor and dilute-magnetic semiconductor behaviour. Our results reveal that the H atom concentration dramatically affects the C6N6 monolayer. On increasing the H coverage, the impurity states also increase due to H atoms around the Fermi-level. C6N6 shows metallic character when the H atom concentration reaches 6.25%. Moreover, the effect of charge on the electronic properties of both Cr@C6N6 and C@C6N8 is also studied. Cr@C6N6 is a ferromagnetic metal with a magnetic moment of 2.40 mu(B), and when 0.2 electrons are added and removed, it remains a ferromagnetic metal with a magnetic moment of 2.57 and 2.77 mu(B), respectively. Interestingly, one can observe a semi-metal, in which the VBM and CBM in both spin channels touch each other near the Fermi-level. C@C6N8 is a semiconductor with a nontrivial band gap. When 0.2 electrons are removed, it remains metallic, and under excess electronic charge, it exhibits half-metallic behaviour.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000523409400037 Publication Date 2020-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited 17 Open Access
Notes ; This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2017R1A2B2011989). ; Approved Most recent IF: 3.3; 2020 IF: 4.123
Call Number UA @ admin @ c:irua:168617 Serial 6504
Permanent link to this record
 

 
Author Esken, D.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Fischer, R.A.
Title Au@ZIFs: stabilization and encapsulation of cavity-size matching gold clusters inside functionalized Zeolite Imidazolate Frameworks, ZIFs Type A1 Journal article
Year 2010 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 22 Issue 23 Pages (down) 6393-6401
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The selective formation and stabilization of very small, naked metal particles inside the cavities of metal organic frameworks (MOFs) and the simultaneous realization of an even distribution of the particles throughout the crystalline MOF host matrix over a wide range of metal loading are challenging goals. MOFs reveal high specific surface areas, tunable pore sizes, and organic linkers, which are able to interact with guests. The chemically very robust zeolite imidazolate frameworks (ZIFs) are a subclass of MOFs. We chose the microporous sodalite-like ZIF-8 (Zn(MelM)(2); IM = imidazolate) and ZIF-90 (Zn(ICA)(2); ICA = imidazolate-2-carboxyaldehyde) as host matrices to influence the dispersion of imbedded gold nanoparticles (Au NPs). The metal loading was achieved via gas phase infiltration of [Au(CO)Cl] followed by a thermal hydrogenation step to form the Au NPs. Low-dose high-resolution transmission electron microscopy ((HR)TEM) and electron tomography reveal a homogeneous distribution of Au NPs throughout the ZIF matrix. The functional groups of ZIF-90 direct the anchoring of intermediate Au species and stabilize drastically smaller and quite monodisperse Au NPs in contrast to the parent not functionalized ZIF-8. The particles can be very small, match the cavity size and approach defined molecular clusters of magic numbers, i.e., Au(55), independently from the level of loading. Post-synthetic oxidation of the aldehyde groups to yield alkyl esters by the adjacent, catalytically active metal NPs is presented as a new concept of encapsulating nanoparticles inside MOFs and allows multiple steps of metal loadings without decomposition of the MOF.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000284975100025 Publication Date 2010-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 194 Open Access
Notes Esteem 026019 Approved Most recent IF: 9.466; 2010 IF: 6.400
Call Number UA @ lucian @ c:irua:95530 Serial 208
Permanent link to this record
 

 
Author Volkova, N.E.; Lebedev, O.I.; Gavrilova, L.Y.; Turner, S.; Gauquelin, N.; Seikh, M.M.; Caignaert, V.; Cherepanov, V.A.; Raveau, B.; Van Tendeloo, G.
Title Nanoscale ordering in oxygen deficient quintuple perovskite Sm2-\epsilonBa3+\epsilonFe5O15-\delta : implication for magnetism and oxygen stoichiometry Type A1 Journal article
Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 26 Issue 21 Pages (down) 6303-6310
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The investigation of the system SmBaFe-O in air has allowed an oxygen deficient perovskite Sm2-epsilon Ba3+epsilon Fe5O15-delta (delta = 0.75, epsilon = 0.125) to be synthesized. In contrast to the XRPD pattern which gives a cubic symmetry (a(p) = 3.934 angstrom), the combined HREM/EELS study shows that this phase is nanoscale ordered with a quintuple tetragonal cell, a(p) X a(p) X 5(ap). The nanodomains exhibit a unique stacking sequence of the A-site cationic layers along the crystallographic c-axis, namely SmBaBa/SmBa/SmBaSm, and are chemically twinned in the three crystallographic directions. The nanoscale ordering of this perovskite explains its peculiar magnetic properties on the basis of antiferromagnetic interactions with spin blockade at the boundary between the nanodomains. The variation of electrical conductivity and oxygen content of this oxide versus temperature suggest potential SOFC applications. They may be related to the particular distribution of oxygen vacancies in the lattice and to the 3d(5)(L) under bar configuration of iron.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344905600029 Publication Date 2014-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 16 Open Access
Notes The UrFU authors were financially supported by the Ministry of Education and Science of Russian Federation (project N 4.1039.2014/K) and by UrFU under the Framework Program of development of UrFU through the «Young scientists UrFU» competition. The CRISMAT authors gratefully acknowledge the EC, the CNRS and the French Minister of Education and Research for financial support through their Research, Strategic and Scholarship programs. This work was supported by funding from the European Research Council under the Seventh Framework Program (FP7), ERC grant N°246791 – COUNTATOMS. S.T. gratefully acknowledges the fund for scientific research Flanders for a post-doctoral fellowship and for financial support under contract number G004413N. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC starting grant number 278510 – VORTEX; ECASJO_; Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number UA @ lucian @ c:irua:122137 Serial 2269
Permanent link to this record
 

 
Author Rouwenhorst, K.H.R.; Engelmann, Y.; van ‘t Veer, K.; Postma, R.S.; Bogaerts, A.; Lefferts, L.
Title Plasma-driven catalysis: green ammonia synthesis with intermittent electricity Type A1 Journal article
Year 2020 Publication Green Chemistry Abbreviated Journal Green Chem
Volume 22 Issue 19 Pages (down) 6258-6287
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)
Abstract Ammonia is one of the most produced chemicals, mainly synthesized from fossil fuels for fertilizer applications. Furthermore, ammonia may be one of the energy carriers of the future, when it is produced from renewable electricity. This has spurred research on alternative technologies for green ammonia production. Research on plasma-driven ammonia synthesis has recently gained traction in academic literature. In the current review, we summarize the literature on plasma-driven ammonia synthesis. We distinguish between mechanisms for ammonia synthesis in the presence of a plasma, with and without a catalyst, for different plasma conditions. Strategies for catalyst design are discussed, as well as the current understanding regarding the potential plasma-catalyst synergies as function of the plasma conditions and their implications on energy efficiency. Finally, we discuss the limitations in currently reported models and experiments, as an outlook for research opportunities for further unravelling the complexities of plasma-catalytic ammonia synthesis, in order to bridge the gap between the currently reported models and experimental results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000575015700002 Publication Date 2020-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.8 Times cited 4 Open Access
Notes ; ; Approved Most recent IF: 9.8; 2020 IF: 9.125
Call Number PLASMANT @ plasmant @c:irua:172671 Serial 6430
Permanent link to this record
 

 
Author Gillie, L.J.; Hadermann, J.; Hervieu, M.; Maignan, A.; Martin, C.
Title Oxygen vacancy ordering in the double-layered Ruddlesden-Popper cobaltite Sm2BaCo2O7-\delta Type A1 Journal article
Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 20 Issue 19 Pages (down) 6231-6237
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new oxygen-deficient Ruddlesden−Popper (RP) cobaltite Sm2BaCo2O7−δ (δ ≈ 1.0) has been synthesized and the crystal structure elucidated by Rietveld analysis of X-ray powder diffraction (XRD) data and transmission electron microscopy (TEM). The phase crystallizes in a primitive orthorhombic unit cell, with lattice parameters a = 5.4371(4) Å; b = 5.4405(4) Å and c = 19.8629(6) Å, and space group Pnnm. Contrary to other oxygen-deficient cobalt RP phases, the oxygen vacancies are located in the equatorial positions of the [CoO] layers to give an intralayer structure similar to Sr2Mn2O5, which is not usually observed for cobalt-containing materials. The Sm3+ and Ba2+ cations show a strong preference for distinct sites, with the majority of the larger Ba2+ cations situated in the perovskite block layers and Sm3+ cations predominantly in the rock salt layers. Magnetic susceptibility data demonstrate the strong antiferromagnetic (AFM) character of Sm2BaCo2O7−δ.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000259871500038 Publication Date 2008-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 7 Open Access
Notes Approved Most recent IF: 9.466; 2008 IF: 5.046
Call Number UA @ lucian @ c:irua:72946 Serial 2548
Permanent link to this record
 

 
Author Mandal, T.K.; Abakumov, A.M.; Hadermann, J.; Van Tendeloo, G.; Croft, M.; Greenblatt, M.
Title Synthesis, crystal structure, and magnetic properties of Srl.31Co0.63Mn0.3703: a reivative of the incommensurate composite hexagonal perovskite structure Type A1 Journal article
Year 2007 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 19 Issue 25 Pages (down) 6158-6167
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000251422000019 Publication Date 2007-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 5 Open Access
Notes Approved Most recent IF: 9.466; 2007 IF: 4.883
Call Number UA @ lucian @ c:irua:67597 Serial 3449
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C.
Title Overcoming Old Scaling Relations and Establishing New Correlations in Catalytic Surface Chemistry: Combined Effect of Charging and Doping Type A1 Journal article
Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 123 Issue 10 Pages (down) 6141-6147
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Optimization of catalytic materials for a given application is greatly constrained by linear scaling relations. Recently, however, it has been demonstrated that it is possible to reversibly modulate the chemisorption of molecules on nanomaterials by charging (i.e., injection or removal of electrons) and hence reversibly and selectively modify catalytic activity beyond structure−activity correlations. The fundamental physical relation between the properties of the material, the charging process, and the chemisorption energy, however, remains unclear, and a systematic exploration and optimization of charge-switchable sorbent materials is not yet possible. Using hybrid DFT calculations of CO2 chemisorption on hexagonal boron nitride nanosheets with several types of defects and dopants, we here reveal the existence of fundamental correlations between the electron affinity of a material and charge-induced chemisorption, show how defect engineering can be used to modulate the strength and efficiency of the adsorption process, and demonstrate that excess electrons stabilize many topological defects. We then show how these insights could be exploited in the development of new electrocatalytic materials and the synthesis of doped nanomaterials. Moreover, we demonstrate that calculated chemical properties of charged materials are highly sensitive to the employed computational methodology because of the self-interaction error, which underlines the theoretical challenge posed by such systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461537400035 Publication Date 2019-03-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 5 Open Access Not_Open_Access: Available from 21.02.2020
Notes Fonds Wetenschappelijk Onderzoek, 11V8915N ; Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:158117 Serial 5160
Permanent link to this record
 

 
Author Nayuk, R.; Zacher, D.; Schweins, R.; Wiktor, C.; Fischer, R.A.; Van Tendeloo, G.; Huber, K.
Title Modulated formation of MOF-5 nanoparticles : a SANS analysis Type A1 Journal article
Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 116 Issue 10 Pages (down) 6127-6135
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract MOF-5 nanoparticles were prepared by mixing a solution of [Zn4O(C6H5COO)(6)] with a solution of benzene-1,4-dicarboxylic acid in DMF at ambient conditions. The former species mimics as a secondary building unit (SBU), and the latter acts as linker. Mixing of the two solutions induced the formation of MOF-5 nanoparticles in dilute suspension. The applied conditions were identified as suitable for a closer investigation of the particle formation process by combined light and small angle neutron scattering (SANS). Scattering analysis revealed a significant impact of the molar ratio of the two components in the reaction mixture. Excessive use of the building unit slowed down the process. A similar effect was observed upon addition of 4n-decylbenzoic acid, which is supposed to act as a modulator. The formation mechanism leads to initial intermediates, which turn into cubelike nanoparticles with a diameter of about 60-80 nm. This initial stage is followed by an extended formation period, where nucleation proceeds over hours, leading to an increasing number of nanoparticles with the same final size of 60-80 nm.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000301509600020 Publication Date 2012-02-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 24 Open Access
Notes Approved Most recent IF: 4.536; 2012 IF: 4.814
Call Number UA @ lucian @ c:irua:97789 Serial 2163
Permanent link to this record
 

 
Author Schröder, F.; Esken, D.; Cokoja, M.; van den Berg, M.W.E.; Lebedev, O.I.; Van Tendeloo, G.; Walaszek, B.; Buntkowsky, G.; Limbach, H.H.; Chaudret, B.; Fischer, R.A.;
Title Ruthenium nanoparticles inside porous (Zn40(bdC)(3)) by hydrogenolysis of adsorbed (Ru(cod)(cot)): a solid-state reference system for surfactant-stabilized ruthenium colloids Type A1 Journal article
Year 2008 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 130 Issue 19 Pages (down) 6119-6130
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000255620200018 Publication Date 2008-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 272 Open Access
Notes Esteem 026019 Approved Most recent IF: 13.858; 2008 IF: 8.091
Call Number UA @ lucian @ c:irua:68851 Serial 2934
Permanent link to this record
 

 
Author Bogaerts, A.
Title Modeling plasmas in analytical chemistry—an example of cross-fertilization Type A1 Journal article
Year 2020 Publication Analytical And Bioanalytical Chemistry Abbreviated Journal Anal Bioanal Chem
Volume 412 Issue 24 Pages (down) 6059-6083
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper gives an overview of the modeling work developed in our group in the last 25 years for various plasmas used in analytical spectrochemistry, i.e., glow discharges (GDs), inductively coupled plasmas (ICPs), and laser ablation (LA) for sample introduction in the ICP and for laser-induced breakdown spectroscopy (LIBS). The modeling approaches are briefly presented, which are different for each case, and some characteristic results are illustrated. These plasmas are used not only in analytical chemistry but also in other applications, and the insights obtained in these other fields were quite helpful for us to develop models for the analytical plasmas. Likewise, there is now a huge interest in plasma–liquid interaction, atmospheric pressure glow discharges (APGDs), and dielectric barrier discharges (DBDs) for environmental, medical, and materials applications of plasmas. The insights obtained in these fields are also very relevant for ambient desorption/ionization sources and for liquid sampling, which are nowadays very popular in analytical chemistry, and they could be very helpful in developing models for these sources as well.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000522701700005 Publication Date 2020-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1618-2642 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.3 Times cited Open Access
Notes M. Aghaei, Z. Chen, D. Autrique, T. Martens, and P. Heirman are gratefully acknowledged for their valuable efforts in the model developments illustrated in this paper. Approved Most recent IF: 4.3; 2020 IF: 3.431
Call Number PLASMANT @ plasmant @c:irua:168600 Serial 6412
Permanent link to this record
 

 
Author King, G.; Abakumov, A.M.; Hadermann, J.; Alekseeva, A.M.; Rozova, M.G.; Perkisas, T.; Woodward, P.M.; Van Tendeloo, G.; Antipov, E.V.
Title Crystal structure and phase transitions in Sr3WO6 Type A1 Journal article
Year 2010 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 49 Issue 13 Pages (down) 6058-6065
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structures of the beta and gamma polymorphs of Sr3WO6 and the gamma <->beta phase transition have been investigated using electron diffraction, synchrotron X-ray powder diffraction, and neutron powder diffraction. The gamma-Sr3WO6 polymorph is stable above T-c approximate to 470 K and adopts a monoclinically distorted double perovskite A(2)BB'O-6= Sr2SrWO6 structure (space group Cc, a = 10.2363(1)angstrom, b= 17.9007(1)angstrom, c= 11.9717(1)angstrom, beta=125.585(1)degrees at T= 1373 K, Z=12, corresponding to a = a(p)+1/2b(p) – 1/2c(p), b =3/2b(p) + 3/2c(p), c =-b(p) + c(p), a(p),b(p), c(p), lattice vectors of the parent Fm (3) over barm double perovskite structure). Upon cooling it undergoes a continuous phase transition into the triclinically distorted beta-Sr3WO6 phase (space group Cl, a = 10.09497(3)angstrom, b = 17.64748(5)angstrom, c = 11.81400(3)angstrom, alpha = 89.5470(2)degrees, beta= 125.4529(2)degrees, gamma =90.2889(2)degrees at T= 300 K). Both crystal structures of Sr3WO6 belong to a family of double perovskites with broken corner sharing connectivity of the octahedral framework. A remarkable feature of the gamma-Sr3WO6 structure is a non-cooperative rotation of the WO6 octahedra. One third of the WO6 octahedra are rotated by 45 about either the bp or the cp axis of the parent double perovskite structure. As a result, the WO6 octahedra do not share corners but instead share edges with the coordination polyhedra of the Sr cations at the B positions increasing their coordination number from 6 to 7 or 8. The crystal structure of the beta-phase is very close to the structure of the gamma-phase; decreasing symmetry upon the gamma ->beta transformation occurs because of unequal octahedral rotation angles about the bp and cp axes and increasing distortions of the WO6 octahedra.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000279211500036 Publication Date 2010-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 18 Open Access
Notes Approved Most recent IF: 4.857; 2010 IF: 4.326
Call Number UA @ lucian @ c:irua:83877 Serial 562
Permanent link to this record
 

 
Author Engelmann, Y.; Mehta, P.; Neyts, E.C.; Schneider, W.F.; Bogaerts, A.
Title Predicted Influence of Plasma Activation on Nonoxidative Coupling of Methane on Transition Metal Catalysts Type A1 Journal article
Year 2020 Publication Acs Sustainable Chemistry & Engineering Abbreviated Journal Acs Sustain Chem Eng
Volume 8 Issue 15 Pages (down) 6043-6054
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)
Abstract The combination of catalysis and nonthermal plasma holds promise for enabling difficult chemical conversions. The possible synergy between both depends strongly on the nature of the reactive plasma species and the catalyst material. In this paper, we show how vibrationally excited species and plasma-generated radicals interact with transition metal catalysts and how changing the catalyst material can improve the conversion rates and product selectivity. We developed a microkinetic model to investigate the impact of vibrational excitations and plasma-generated radicals on the nonoxidative coupling of methane over transition metal surfaces. We predict a significant increase in ethylene formation for vibrationally excited methane. Plasma-generated radicals have a stronger impact on the turnover frequencies with high selectivity toward ethylene on noble catalysts and mixed selectivity on non-noble catalysts. In general, we show how the optimal catalyst material depends on the desired products as well as the plasma conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000526884000025 Publication Date 2020-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited Open Access
Notes Herculesstichting; University of Notre Dame; Universiteit Antwerpen; Division of Engineering Education and Centers, EEC-1647722 ; We would like to thank Tom Butterworth for his work on methane vibrational distribution functions (VDF) and for sharing his thoughts and experiences on this matter, specifically regarding the VDF of the degenerate modes of methane. We ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Research Article https://dx.doi.org/10.1021/acssuschemeng.0c00906 ACS Sustainable Chem. Eng. 2020, 8, 6043−6054 6052 also acknowledge financial support from the DOC-PRO3 and the TOP-BOF projects of the University of Antwerp. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), and the University of Antwerp. Support for W.F.S. was provided by the National Science Foundation under cooperative agreement no. EEC-1647722, an Engineering Research Center for the Innovative and Strategic Transformation of Alkane Resources (CISTAR). P.M. acknowledges support through the Eilers Graduate Fellowship of the University of Notre Dame. Approved Most recent IF: 8.4; 2020 IF: 5.951
Call Number PLASMANT @ plasmant @c:irua:169228 Serial 6366
Permanent link to this record
 

 
Author Çakir, D.; Sevik, C.; Gulseren, O.; Peeters, F.M.
Title Mo2C as a high capacity anode material: a first-principles study Type A1 Journal article
Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 4 Issue 16 Pages (down) 6029-6035
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The adsorption and diffusion of Li, Na, K and Ca atoms on a Mo2C monolayer are systematically investigated by using first principles methods. We found that the considered metal atoms are strongly bound to the Mo2C monolayer. However, the adsorption energies of these alkali and earth alkali elements decrease as the coverage increases due to the enhanced repulsion between the metal ions. We predict a significant charge transfer from the ad-atoms to the Mo2C monolayer, which indicates clearly the cationic state of the metal atoms. The metallic character of both pristine and doped Mo2C ensures a good electronic conduction that is essential for an optimal anode material. Low migration energy barriers are predicted as small as 43 meV for Li, 19 meV for Na and 15 meV for K, which result in the very fast diffusion of these atoms on Mo2C. For Mo2C, we found a storage capacity larger than 400 mA h g(-1) by the inclusion of multilayer adsorption. Mo2C expands slightly upon deposition of Li and Na even at high concentrations, which ensures the good cyclic stability of the atomic layer. The calculated average voltage of 0.68 V for Li and 0.30 V for Na ions makes Mo2C attractive for low charging voltage applications.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000374790700033 Publication Date 2016-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 202 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C. S. acknowledges the support from Turkish Academy of Sciences (TUBA-GEBIP). C. S acknowledges the support from Anadolu University (Grant No. 1407F335). We acknowledge the support from TUBITAK, The Scientific and Technological Research Council of Turkey (Grant No. 115F024). ; Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:144763 Serial 4669
Permanent link to this record
 

 
Author Yin, S.; Tian, H.; Ren, Z.; Wei, X.; Chao, C.; Pei, J.; Li, X.; Xu, G.; Shen, G.; Han, G.
Title Octahedral-shaped perovskite nanocrystals and their visible-light photocatalytic activity Type A1 Journal article
Year 2014 Publication Chemical communications Abbreviated Journal Chem Commun
Volume 50 Issue 45 Pages (down) 6027-6030
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Octahedral-shaped perovskite PbTiO3 nanocrystals (PT OCT) with well-defined {111} facets exposed have been successfully synthesized via a facile hydrothermal method by using LiNO3 as an ion surfactant. The Li-O bond on the surface of PT OCT nanocrystals is essential to the stability of such nanocrystals and also results in a dramatic high visible-light photocatalytic activity.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000335984700022 Publication Date 2014-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 19 Open Access
Notes Approved Most recent IF: 6.319; 2014 IF: 6.834
Call Number UA @ lucian @ c:irua:117690 Serial 2428
Permanent link to this record
 

 
Author Queralto, A.; Graf, D.; Frohnhoven, R.; Fischer, T.; Vanrompay, H.; Bals, S.; Bartasyte, A.; Mathur, S.
Title LaFeO3 nanofibers for high detection of sulfur-containing gases Type A1 Journal article
Year 2019 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal Acs Sustain Chem Eng
Volume 7 Issue 7 Pages (down) 6023-6032
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Lanthanum ferrite nanofibers were electrospun from a chemical sol and calcined at 600 degrees C to obtain singlephase LaFeO3 (LFO) perovskite. High-resolution transmission electron microscopy in conjunction with 3D tomographic analysis confirmed an interwoven network of hollow and porous (surface) LFO nanofibers. Owing to their high surface area and p-type behavior, the nanofiber meshes showed high chemoselectivity toward reducing toxic gases (SO2, H2S) that could be reproducibly detected at very low concentrations (<1 ppm), well below the threshold values for occupational safety and health. An increased sensitivity was observed in the temperature range of 150-300 degrees C with maximum sensor response at 250 degrees C. The surface reaction at the heterogeneous solid (LFO)/gas (SO2) interface that confirmed the formation of La-2(SO4)(3) was investigated by X-ray photoelectron spectroscopy. Moreover, the LFO fibers showed a high selectivity in the detection of oxidizing and reducing gases. Whereas superior detection of NH3 and H2S was measured, little response was observed for CO and NO2. Finally, the integration of nanowire meshes in commercial sensor platforms was successfully demonstrated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461978200047 Publication Date 2019-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.951 Times cited 41 Open Access OpenAccess
Notes ; The authors kindly acknowledge the ERA.Net RUS Plus project FONSENS funded by the German Federal Ministry of Education and Research (BMBF) under the grant no. 01DJ16017. A.Q. highly appreciates the support of the Alexander von Humboldt Foundation (grant no. AVH 1184642) and the BMBF for his postdoctoral fellowship. A.Q., D.G., R.F., T.F., and S.M. also kindly acknowledge the financial support of the University of Cologne. H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). We also express our gratitude to Prof. Dr. J. Hadermann from the Electron Microscopy for Materials Science group at the University of Antwerp for her assistance. A.B. is grateful for the EUR EIPHI program (grant no. ANR-17-EURE-0002). ; Approved Most recent IF: 5.951
Call Number UA @ admin @ c:irua:158535 Serial 5263
Permanent link to this record
 

 
Author Yusupov, M.; Bogaerts, A.; Huygh, S.; Snoeckx, R.; van Duin, A.C.T.; Neyts, E.C.
Title Plasma-induced destruction of bacterial cell wall components : a reactive molecular dynamics simulation Type A1 Journal article
Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 117 Issue 11 Pages (down) 5993-5998
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nonthermal atmospheric pressure plasmas are gaining increasing attention for biomedical applications. However, very little fundamental information on the interaction mechanisms between the plasma species and biological cells is currently available. We investigate the interaction of important plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, with bacterial peptidoglycan by means of reactive molecular dynamics simulations, aiming for a better understanding of plasma disinfection. Our results show that OH, O, O3, and H2O2 can break structurally important bonds of peptidoglycan (i.e., CO, CN, or CC bonds), which consequently leads to the destruction of the bacterial cell wall. The mechanisms behind these breakups are, however, dependent on the impinging plasma species, and this also determines the effectiveness of the cell wall destruction.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000316773000056 Publication Date 2013-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 59 Open Access
Notes Approved Most recent IF: 4.536; 2013 IF: 4.835
Call Number UA @ lucian @ c:irua:107154 Serial 2636
Permanent link to this record