|   | 
Details
   web
Records
Author Zhang, C.; Ren, K.; Wang, S.; Luo, Y.; Tang, W.; Sun, M.
Title Recent progress on two-dimensional van der Waals heterostructures for photocatalytic water splitting : a selective review Type A1 Journal article
Year 2023 Publication Journal of physics: D: applied physics Abbreviated Journal
Volume 56 Issue 48 Pages (up) 483001-483024
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Hydrogen production through photocatalytic water splitting is being developed swiftly to address the ongoing energy crisis. Over the past decade, with the rise of graphene and other two-dimensional (2D) materials, an increasing number of computational and experimental studies have focused on relevant van der Waals (vdW) semiconductor heterostructures for photocatalytic water splitting. In this review, the fundamental mechanism and distinctive performance of type-II and Z-scheme vdW heterostructure photocatalysts are presented. Accordingly, we have conducted a systematic review of recent studies focusing on candidates for photocatalysts, specifically vdW heterostructures involving 2D transition metal disulfides (TMDs), 2D Janus TMDs, and phosphorenes. The photocatalytic performance of these heterostructures and their suitability in theoretical scenarios are discussed based on their electronic and optoelectronic properties, particularly in terms of band structures, photoexcited carrier dynamics, and light absorption. In addition, various approaches for tuning the performance of these potential photocatalysts are illustrated. This strategic framework for constructing and modulating 2D heterostructure photocatalysts is expected to provide inspiration for addressing possible challenges in future studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001076327300001 Publication Date 2023-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited Open Access
Notes Approved Most recent IF: 3.4; 2023 IF: 2.588
Call Number UA @ admin @ c:irua:200353 Serial 9081
Permanent link to this record
 

 
Author McLachlan, G.; Majdak, P.; Reijniers, J.; Mihocic, M.; Peremans, H.
Title Dynamic spectral cues do not affect human sound localization during small head movements Type A1 Journal article
Year 2023 Publication Frontiers in neuroscience Abbreviated Journal
Volume 17 Issue Pages (up) 1027827-10
Keywords A1 Journal article; Psychology; Condensed Matter Theory (CMT); Engineering Management (ENM)
Abstract Natural listening involves a constant deployment of small head movement. Spatial listening is facilitated by head movements, especially when resolving front-back confusions, an otherwise common issue during sound localization under head-still conditions. The present study investigated which acoustic cues are utilized by human listeners to localize sounds using small head movements (below ±10° around the center). Seven normal-hearing subjects participated in a sound localization experiment in a virtual reality environment. Four acoustic cue stimulus conditions were presented (full spectrum, flattened spectrum, frozen spectrum, free-field) under three movement conditions (no movement, head rotations over the yaw axis and over the pitch axis). Localization performance was assessed using three metrics: lateral and polar precision error and front-back confusion rate. Analysis through mixed-effects models showed that even small yaw rotations provide a remarkable decrease in front-back confusion rate, whereas pitch rotations did not show much of an effect. Furthermore, MSS cues improved localization performance even in the presence of dITD cues. However, performance was similar between stimuli with and without dMSS cues. This indicates that human listeners utilize the MSS cues before the head moves, but do not rely on dMSS cues to localize sounds when utilizing small head movements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000938567400001 Publication Date 2023-02-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1662-4548; 1662-453x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:194507 Serial 9025
Permanent link to this record
 

 
Author Niklas, K.J.; Shi, P.; Gielis, J.; Schrader, J.; Niinemets, U.
Title Editorial: leaf functional traits : ecological and evolutionary implications Type Editorial
Year 2023 Publication Frontiers in plant science Abbreviated Journal
Volume 14 Issue Pages (up) 1169558-5
Keywords Editorial; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000964122500001 Publication Date 2023-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-462x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.6; 2023 IF: 4.298
Call Number UA @ admin @ c:irua:196076 Serial 7834
Permanent link to this record
 

 
Author Faust, V.; Boon, N.; Ganigué, R.; Vlaeminck, S.E.; Udert, K.M.
Title Optimizing control strategies for urine nitrification : narrow pH control band enhances process stability and reduces nitrous oxide emissions Type A1 Journal article
Year 2023 Publication Frontiers in environmental science Abbreviated Journal
Volume 11 Issue Pages (up) 1275152-14
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Nitrification is well-suited for urine stabilization. No base dosage is required if the pH is controlled within an appropriate operating range by urine feeding, producing an ammonium-nitrate fertilizer. However, the process is highly dependent on the selected pH set-points and is susceptible to process failures such as nitrite accumulation or the growth of acid-tolerant ammonia-oxidizing bacteria. To address the need for a robust and reliable process in decentralized applications, two different strategies were tested: operating a two-position pH controller (inflow on/off) with a narrow pH control band at 6.20/6.25 (∆pH = 0.05, narrow-pH) vs. a wider pH control band at 6.00/6.50 (∆pH = 0.50, wide-pH). These variations in pH also cause variations in the chemical speciation of ammonia and nitrite and, as shown, the microbial production of nitrite. It was hypothesized that the higher fluctuations would result in greater microbial diversity and, thus, a more robust process. The diversity of nitrifiers was higher in the wide-pH reactor, while the diversity of the entire microbiome was similar in both systems. However, the wide-pH reactor was more susceptible to tested process disturbances caused by increasing pH or temperature, decreasing dissolved oxygen, or an influent stop. In addition, with an emission factor of 0.47%, the nitrous oxide (N2O) emissions from the wide-pH reactor were twice as high as the N2O emissions from the narrow-pH reactor, most likely due to the nitrite fluctuations. Based on these results, a narrow control band is recommended for pH control in urine nitrification.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001087861500001 Publication Date 2023-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-665x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:199585 Serial 8909
Permanent link to this record
 

 
Author Han, I.; Song, I.S.; Choi, S.A.; Lee, T.; Yusupov, M.; Shaw, P.; Bogaerts, A.; Choi, E.H.; Ryu, J.J.
Title Bioactive Nonthermal Biocompatible Plasma Enhances Migration on Human Gingival Fibroblasts Type A1 Journal article
Year 2023 Publication Advanced healthcare materials Abbreviated Journal
Volume 12 Issue 4 Pages (up) 2200527
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This study hypothesizes that the application of low-dose nonthermal biocompatible dielectric barrier discharge plasma (DBD-NBP) to human gingival fibroblasts (HGFs) will inhibit colony formation but not cell death and induce matrix metalloproteinase (MMP) expression, extracellular matrix (ECM) degradation, and subsequent cell migration, which can result in enhanced wound healing. HGFs treated with plasma for 3 min migrate to each other across the gap faster than those in the control and 5-min treatment groups on days 1 and 3. The plasma-treated HGFs show significantly high expression levels of the cell cycle arrest-related p21 gene and enhanced MMP activity. Focal adhesion kinase (FAK) mediated attenuation of wound healing or actin cytoskeleton rearrangement, and plasma-mediated reversal of this attenuation support the migratory effect of DBD-NBP. Further, this work performs computer simulations to investigate the effect of oxidation on the stability and conformation of the catalytic kinase domain (KD) of FAK. It is found that the oxidation of highly reactive amino acids (AAs) Cys427, Met442, Cys559, Met571, Met617, and Met643 changes the conformation and increases the structural flexibility of the FAK protein and thus modulates its function and activity. Low-dose DBD-NBP-induces host cell cycle arrest, ECM breakdown, and subsequent migration, thus contributing to the enhanced wound healing process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000897762100001 Publication Date 2022-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2192-2640 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10 Times cited Open Access OpenAccess
Notes National Research Foundation of Korea; Kementerian Pendidikan, 2020R1I1A1A01073071 2021R1A6A1A03038785 ; Approved Most recent IF: 10; 2023 IF: 5.11
Call Number PLASMANT @ plasmant @c:irua:192804 Serial 7242
Permanent link to this record
 

 
Author Živanić, M.; Espona‐Noguera, A.; Lin, A.; Canal, C.
Title Current State of Cold Atmospheric Plasma and Cancer‐Immunity Cycle: Therapeutic Relevance and Overcoming Clinical Limitations Using Hydrogels Type A1 Journal article
Year 2023 Publication Advanced Science Abbreviated Journal Adv Sci
Volume Issue Pages (up) 2205803
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric plasma (CAP) is a partially ionized gas that gains attention

as a well-tolerated cancer treatment that can enhance anti-tumor immune

responses, which are important for durable therapeutic effects. This review

offers a comprehensive and critical summary on the current understanding of

mechanisms in which CAP can assist anti-tumor immunity: induction of

immunogenic cell death, oxidative post-translational modifications of the

tumor and its microenvironment, epigenetic regulation of aberrant gene

expression, and enhancement of immune cell functions. This should provide

a rationale for the effective and meaningful clinical implementation of CAP. As

discussed here, despite its potential, CAP faces different clinical limitations

associated with the current CAP treatment modalities: direct exposure of

cancerous cells to plasma, and indirect treatment through injection of

plasma-treated liquids in the tumor. To this end, a novel modality is proposed:

plasma-treated hydrogels (PTHs) that can not only help overcome some of the

clinical limitations but also offer a convenient platform for combining CAP

with existing drugs to improve therapeutic responses and contribute to the

clinical translation of CAP. Finally, by integrating expertise in biomaterials and

plasma medicine, practical considerations and prospective for the

development of PTHs are offered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000918224200001 Publication Date 2023-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2198-3844 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes European Research Council, 714793 ; Fonds Wetenschappelijk Onderzoek, 12S9221N G044420N ; Ministerio de Economía y Competitividad, PID2019‐103892RB‐I00/AEI/10.13039/501100011033 ; Approved Most recent IF: 15.1; 2023 IF: 9.034
Call Number PLASMANT @ plasmant @c:irua:193166 Serial 7238
Permanent link to this record
 

 
Author Marchetti, A.; Gori, A.; Ferretti, A.M.; Esteban, D.A.; Bals, S.; Pigliacelli, C.; Metrangolo, P.
Title Templated Out‐of‐Equilibrium Self‐Assembly of Branched Au Nanoshells Type A1 Journal article
Year 2023 Publication Small Abbreviated Journal
Volume Issue Pages (up) 2206712
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Out-of-equilibrium self-assembly of metal nanoparticles (NPs) has been devised using different types of strategies and fuels, but the achievement of finite 3D structures with a controlled morphology through this assembly mode is still rare. Here we used a spherical peptide-gold superstructure (PAuSS) as a template to control the out-of-equilibrium self-assembly of Au NPs, obtaining a transient 3D branched Au-nanoshell (BAuNS) stabilized by sodium dodecyl sulphate (SDS). The BAuNS dismantled upon concentration gradient equilibration over time in the solution, leading to NPs disassembly. Notably, BAuNS assembly and disassembly favoured temporary interparticle plasmonic coupling, leading to a remarkable oscillation of their optical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000914725800001 Publication Date 2023-01-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.3 Times cited 1 Open Access OpenAccess
Notes European Research Council, ERC‐2017‐PoC MINIRES 789815 ERC‐2012‐StG_20111012 FOLDHALO 307108 815128 ; Approved Most recent IF: 13.3; 2023 IF: 8.643
Call Number EMAT @ emat @c:irua:194299 Serial 7247
Permanent link to this record
 

 
Author Tampieri, F.; Gorbanev, Y.; Sardella, E.
Title Plasma‐treated liquids in medicine: Let's get chemical Type A1 Journal Article
Year 2023 Publication Plasma Processes and Polymers Abbreviated Journal Plasma Processes & Polymers
Volume 20 Issue 9 Pages (up) e2300077
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Fundamental and applied research on plasma‐treated liquids for biomedical applications was boosted in the last few years, dictated by their advantages with respect to direct treatments. However, often, the lack of consistent analysis at a molecular level of these liquids, and of the processes used to produce them, have raised doubts of their usefulness in the clinic. The aim of this article is to critically discuss some basic aspects related to the use of plasma‐treated liquids in medicine, with a focus on their chemical composition. We analyze the main liquids used in the field, how they are affected by non‐thermal plasmas, and the possibility to replicate them without plasma treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001005060700001 Publication Date 2023-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.5 Times cited Open Access Not_Open_Access
Notes We thank COST Actions CA20114 (Therapeutical Applications of Cold Plasmas) and CA19110 (Plasma Applications for Smart and Sustainable Agriculture) for the stimulating environment provided. Francesco Tampieri wishes to thank Dr. Cristina Canal for the helpful discussion during the planning stage of this paper. Approved Most recent IF: 3.5; 2023 IF: 2.846
Call Number PLASMANT @ plasmant @c:irua:197386 Serial 8814
Permanent link to this record
 

 
Author Jenkinson, K.; Spadaro, M.C.; Golovanova, V.; Andreu, T.; Morante, J.R.; Arbiol, J.; Bals, S.
Title Direct operando visualization of metal support interactions induced by hydrogen spillover during CO₂ hydrogenation Type A1 Journal article
Year 2023 Publication Advanced materials Abbreviated Journal
Volume 35 Issue 51 Pages (up) 2306447-10
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The understanding of catalyst active sites is a fundamental challenge for the future rational design of optimized and bespoke catalysts. For instance, the partial reduction of Ce4+ surface sites to Ce3+ and the formation of oxygen vacancies are critical for CO2 hydrogenation, CO oxidation, and the water gas shift reaction. Furthermore, metal nanoparticles, the reducible support, and metal support interactions are prone to evolve under reaction conditions; therefore a catalyst structure must be characterized under operando conditions to identify active states and deduce structure-activity relationships. In the present work, temperature-induced morphological and chemical changes in Ni nanoparticle-decorated mesoporous CeO2 by means of in situ quantitative multimode electron tomography and in situ heating electron energy loss spectroscopy, respectively, are investigated. Moreover, operando electron energy loss spectroscopy is employed using a windowed gas cell and reveals the role of Ni-induced hydrogen spillover on active Ce3+ site formation and enhancement of the overall catalytic performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001106139400001 Publication Date 2023-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record
Impact Factor 29.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 29.4; 2023 IF: 19.791
Call Number UA @ admin @ c:irua:201143 Serial 9022
Permanent link to this record
 

 
Author Okamura, I.; Van Passel, S.; Fabri, C.; Senda, T.
Title A Ricardian analysis of climate change impacts on Japan's agriculture : accounting for solar radiation Type A1 Journal article
Year 2023 Publication Climate change economics Abbreviated Journal
Volume 14 Issue 4 Pages (up) 2350022-2350025
Keywords A1 Journal article; Economics; Engineering Management (ENM)
Abstract This study evaluates the effects of climate change on the net revenue of farmers in Japan. We adopted the Ricardian model, which implicitly accounts for farmers’ full adaptation. The main findings of this study are as follows. First, the Ricardian regression shows that changes in temperature significantly impact farmers’ net revenue. In contrast, changes in precipitation have limited effects on farmers’ net revenue. The results of future predictions showed that the effects of climate change are positive across the country, with varying degrees between north and south. These results are more optimistic than those in the existing literature, which frequently reveal negative climate change impacts in southern Japan. However, it should be noted that this model assumes full adaptation and does not consider the transition costs of farmers, and understanding the actual adaptive measures is an important remaining issue.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001075308800001 Publication Date 2023-08-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2010-0086 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:199659 Serial 9223
Permanent link to this record
 

 
Author Harrabi, K.; Gasmi, K.; Mekki, A.; Bahlouli, H.; Kunwar, S.; Milošević, M.V.
Title Detection and measurement of picoseconds-pulsed laser energy using a NbTiN superconducting filament Type A1 Journal article
Year 2023 Publication IEEE transactions on applied superconductivity Abbreviated Journal
Volume 33 Issue 5 Pages (up) 2400205-5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract investigate non-equilibrium states created by a laser beam incident on a superconducting NbTiN filament subject to an electrical pulse at 4 K. In absence of the laser excitation, when the amplitude of the current pulse applied to the filament exceeds the critical current value, we monitored the delay time td that marks the collapse of the superconducting phase which is then followed by a voltage rise. We linked the delay time to the applied current using the time-dependent Ginzburg-Landau (TDGL) theory, which enabled us to deduce the cooling (or heat-removal) time from the fit to the experimental data. Subsequently, we exposed the filament biased with a current pulse close to its critical value to a focused laser beam, inducing a normal state in the impact region of the laser beam. We showed that the energy of the incident beam and the incurred delay time are related to each other by a simple expression, that enables direct measurement of incident beam energy by temporal monitoring of the transport response. This method can be extended for usage in single-photon detection regime, and be used for accurate calibration of an arbitrary light source.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000946265900016 Publication Date 2023-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.8 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 1.8; 2023 IF: NA
Call Number UA @ admin @ c:irua:195110 Serial 7295
Permanent link to this record
 

 
Author Ciocarlan, R.-G.; Blommaerts, N.; Lenaerts, S.; Cool, P.; Verbruggen, S.W.
Title Recent trends in plasmon‐assisted photocatalytic CO₂ reduction Type A1 Journal article
Year 2023 Publication Chemsuschem Abbreviated Journal
Volume 16 Issue 5 Pages (up) e202201647-25
Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA)
Abstract Direct photocatalytic reduction of CO2 has become an highly active field of research. It is thus of utmost importance to maintain an overview of the various materials used to sustain this process, find common trends, and, in this way, eventually improve the current conversions and selectivities. In particular, CO2 photoreduction using plasmonic photocatalysts under solar light has gained tremendous attention, and a wide variety of materials has been developed to reduce CO2 towards more practical gases or liquid fuels (CH4, CO, CH3OH/CH3CH2OH) in this manner. This Review therefore aims at providing insights in current developments of photocatalysts consisting of only plasmonic nanoparticles and semiconductor materials. By classifying recent studies based on product selectivity, this Review aims to unravel common trends that can provide effective information on ways to improve the photoreduction yield or possible means to shift the selectivity towards desired products, thus generating new ideas for the way forward.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000926901300001 Publication Date 2023-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 8.4; 2023 IF: 7.226
Call Number UA @ admin @ c:irua:193633 Serial 7335
Permanent link to this record
 

 
Author Ramesha, B.M.; Pawlak, B.; Arenas Esteban, D.; Reekmans, G.; Bals, S.; Marchal, W.; Carleer, R.; Adriaensens, P.; Meynen, V.
Title Partial hydrolysis of diphosphonate ester during the formation of hybrid Tio₂ nanoparticles : role of acid concentration Type A1 Journal article
Year 2023 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal
Volume Issue Pages (up) e202300437-13
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract In the present work, a method was utilized to control the in‐situ partial hydrolysis of a diphosphonate ester in presence of a titania precursor and in function of acid content and its impact on the hybrid nanoparticles was assessed. The hydrolysis degree of organodiphosphonate ester linkers during the formation of hybrid organic‐inorganic metal oxide nanoparticles, are relatively underexplored . Quantitative solution NMR spectroscopy revealed that during the synthesis of TiO2 nanoparticles, an increase in acid concentration introduces a higher degree of partial hydrolysis of the TEPD linker into diverse acid/ester derivatives of TEPD. Increasing the HCl/Ti ratio from 1 to 3, resulted in an increase in degree of partial hydrolysis of the TEPD linker in solution from 4% to 18.8% under the here applied conditions. As a result of the difference in partial hydrolysis, the linker‐TiO2 bonding was altered. Upon subsequent drying of the colloidal TiO2 solution, different textures, at nanoscale and macroscopic scale, were obtained dependent on the HCl/Ti ratio and thus the degree of hydrolysis of TEPD. Understanding such linker‐TiO2 nanoparticle surface dynamics is crucial for making hybrid organic‐inorganic materials (i.e. (porous) metal phosphonates) employed in applications such as electronic/photonic devices, separation technology and heterogeneous catalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001071673900001 Publication Date 2023-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235; 1439-7641 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.9 Times cited Open Access OpenAccess
Notes This work was supported by the Research Foundation-Flanders (FWO Vlaanderen) Project G.0121.17 N. The work was further supported by Hasselt University and the Research Foundation – Flanders (FWO Vlaanderen) via the Hercules project AUHL/15/2 – GOH3816 N. V. M. acknowledges the Research Foundation Flanders (FWO) for project K801621 N. B. M. R. acknowledges, Prof. Dr. Christophe Detavernier and Dr. Davy Deduystche (COCOON, Ghent University) for PXRD and VT-XRD measurements, Prof. Dr. Christophe Van De Velde (iPRACS, University of Antwerp) and Dr. Radu Ciocarlan (LADCA, University of Antwerp) for helpful discussions on PXRD measurements and Dr. Nick Gys (University of Antwerp and VITO) for ICP-OES measurements. Approved Most recent IF: 2.9; 2023 IF: 3.075
Call Number UA @ admin @ c:irua:198934 Serial 8911
Permanent link to this record
 

 
Author Cassimon, J.; Kovács, A.; Neyts, E.; Cornet, I.; Billen, P.
Title Deacetylation of mannosylerythritol lipids in hydrophobic natural deep eutectic solvents Type A1 Journal article
Year 2023 Publication European journal of organic chemistry Abbreviated Journal
Volume 27 Issue 5 Pages (up) e202300934-10
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Mannosylerythritol lipids (MELs) are a promising group of biosurfactants due to their high fermentation yield, selfassembly and biological activity. During fermentation by Pseudozyma aphidis, a mixture of MELs with different levels of acylation is formed, of which the fully deacetylated form is the most valuable. In order to reduce the environmental impact of deacetylation, an enzymatic process using natural deep eutectic solvents (NADES) has been developed. We tested the deacetylation of a purified MELs mixture with immobilized Candida antarctica lipase B enzyme and 2-ethylhexanol as co-substrate in 140 h reactions with different NADES. We identified hydrophobic NADES systems with similar yields and kinetics as in pure 2-ethylhexanol solvent. Our results indicate that deacetylation of MELs mixtures in NADES as a solvent is possible with yields comparable to pure co-substrate and that hydrophobic NADES without carboxylic acid compounds facilitate the reaction to the greatest extent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-193x; 1099-0690 ISBN Additional Links UA library record
Impact Factor 2.8 Times cited Open Access
Notes Approved Most recent IF: 2.8; 2023 IF: 2.834
Call Number UA @ admin @ c:irua:201382 Serial 9017
Permanent link to this record
 

 
Author Cangi, A.; Moldabekov, Z.A.; Neilson, D.
Title International Conference on “Strongly Coupled Coulomb Systems” (July 24-29, 2022, Görlitz, Germany) Type Editorial
Year 2023 Publication Contributions to plasma physics Abbreviated Journal
Volume 63 Issue 9-10 Pages (up) e202300110-3
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001100083800001 Publication Date 2023-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0863-1042; 1521-3986 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.6 Times cited Open Access
Notes Approved Most recent IF: 1.6; 2023 IF: 1.44
Call Number UA @ admin @ c:irua:201156 Serial 9051
Permanent link to this record