toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Houssa, M.; van den Broek, B.; Scalise, E.; Ealet, B.; Pourtois, G.; Chiappe, D.; Cinquanta, E.; Grazianetti, C.; Fanciulli, M.; Molle, A.; Afanas’ev, V.V.; Stesmans, A.; doi  openurl
  Title Theoretical aspects of graphene-like group IV semiconductors Type A1 Journal article
  Year 2014 Publication Applied surface science Abbreviated Journal Appl Surf Sci  
  Volume 291 Issue Pages (down) 98-103  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Silicene and germanene are the silicon and germanium counterparts of graphene, respectively. Recent experimental works have reported the growth of silicene on (1 1 1)Ag surfaces with different atomic configurations, depending on the growth temperature and surface coverage. We first theoretically study the structural and electronic properties of silicene on (1 1 1) Ag surfaces, focusing on the (4 x 4) silicene/Ag structure. Due to symmetry breaking in the silicene layer (nonequivalent number of top and bottom Si atoms), the corrugated silicene layer, with the Ag substrate removed, is predicted to be semiconducting, with a computed energy bandgap of about 0.3 eV. However, the hybridization between the Si 3p orbitals and the Ag 5s orbital in the silicene/(1 1 1)Ag slab model leads to an overall metallic system, with a distribution of local electronic density of states, which is related to the slightly disordered structure of the silicene layer on the (1 1 1)Ag surface. We next study the interaction of silicene and germanene with different hexagonal non-metallic substrates, namely ZnS and ZnSe. On reconstructed (0 0 0 1)ZnS or ZnSe surfaces, which should be more energetically stable for very thin layers, silicene and germanene are found to be semiconducting. Remarkably, the nature and magnitude of their energy bandgap can be controlled by an out-of-plane electric field, an important finding for the potential use of these materials in nanoelectronic devices. (C) 2013 Elsevier B. V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000329327700022 Publication Date 2013-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 20 Open Access  
  Notes Approved Most recent IF: 3.387; 2014 IF: 2.711  
  Call Number UA @ lucian @ c:irua:113765 Serial 3603  
Permanent link to this record
 

 
Author Vanhellemont, J.; Maes, H.E.; Schaekers, M.; Armigliato, A.; Cerva, H.; Cullis, A.; de Sande, J.; Dinges, H.; Hallais, J.; Nayar, V.; Pickering, C.; Stehlé, J.L.; Van Landuyt, J.; Walker, C.; Werner, H.; Salieri, P.; pdf  doi
openurl 
  Title Round-robin investigation of silicon-oxide on silicon reference materials for ellipsometry Type A1 Journal article
  Year 1993 Publication Applied surface science T2 – SYMP ON DIAGNOSTIC TECHNIQUES FOR SEMICONDUCTOR MATERIALS ANALYSIS AND, FABRICATION PROCESS CONTROL, AT THE 1992 SPRING CONF OF THE EUROPEAN, MATERIALS RESEARCH SOC, JUN 02-05, 1992, STRASBOURG, FRANCE Abbreviated Journal Appl Surf Sci  
  Volume 63 Issue 1-4 Pages (down) 45-51  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The main results and conclusions are presented of a round robin study of silicon oxide on silicon reference samples for ellipsometry. The oxide films with nominal thicknesses of 10, 50 and 120 nm are grown by thermal oxidation. The oxide film thicknesses have been determined by single wavelength ellipsometry (SWE), by spectroscopic ellipsometry (SE) and by cross-sectional conventional and high-resolution transmission electron microscopy (TEM and HREM) in different laboratories. The main conclusions are that special precautions have to be taken in order to use TEM as a reliable thickness measurement technique; that single wavelength ellipsometry can be used with great accuracy and reproducibility for the 50 and 120 nm film thicknesses but that it shows some inherent problems for the 10 nm films; and that spectroscopic ellipsometry showed for all film thicknesses an accuracy and reproducibility which is clearly superior to that of SWE.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier science bv Place of Publication Amsterdam Editor  
  Language Wos A1993KF03400009 Publication Date 2002-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.711 Times cited 13 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:104539 Serial 2932  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: